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The point of this talk:

Optimal martingale transport has rich but hidden structures, especially in
multi-dimensions.



Optimal Martingale Transport Problem

I cost function c : Rn × Rn → R,
I Probability measures µ, ν on Rn.
I MT (µ, ν): probability measures π on

Rn × Rn with the marginals µ, ν,
and its disintegration (πx )x∈Rn has
barycenter at x (martingale constraint):∫

ydπx (y) = x .

Study the optimal solutions of

max /minπ∈MT (µ,ν)

∫
Rn×Rn

c(x , y)dπ(x , y).

 

Remark: [Strassen ’65]
I MT (µ, ν) 6= ∅
⇔ µ and ν are in convex order;

µ ≤c ν, i.e.
∫
ξdµ ≤

∫
ξdν, ∀ convex ξ : Rn → R.
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Some references:

I Discrete-time : Beiglböck, Davis, De March, Ghoussoub, Griessler,
Henry-Labordère, Hobson, Kim, Klimmek, Lim, Neuberger, Nutz,
Penkner, Juillet, Schachermayer, Touzi.....

I Continuous-time : Beiglböck, Bayraktar, Claisse, Cox, Davis,
Dolinsky, Galichon, Guo, Hu, Henry-Labordère, Hobson,
Huesmann, Perkowski, Proemel, Kallblad, Klimmek, Oblój,
Siorpaes, Soner, Spoida, Stebegg, Tan, Touzi, Zaev....



Optimal Martingale Transport Problem

Existence of optimal π again follows from weak compactness.

[Graphical solution (mapping solution) not available]
π is martingale

∫
ydπx (y) = x

⇒
for π to move a unit mass, it has to split the mass!

 

So, π cannot be supported on the graph {(x ,T (x))} of a map T : Rn → Rn,
unless the trivial case µ = ν.



Optimal Martingale Transport Problem

Question: How does it split?

Let

I π ∈ MT (µ, ν) optimal solution
I Γ ⊂ Rn × Rn: concentration set of π, i.e. π(Γ) = 1
I Γx = Γ ∩ ({x} × Rn) the vertical slice at x

(the "Splitting set")

Question :

I What is the structure of π, or the set Γ, especially
Γx ?

I When is π unique?

 



From now on, we will focus on the case:

I µ� Lebesgue.
I

c(x , y) = |x − y |



1-dimensional results

Theorem (Hobson-Neuberger ’13, Beiglböck-Juillet ’13)
Suppose n = 1 and

I c(x , y) = |x − y |
I µ ≤C ν on R and µ << L1.
I π ∈ MT (µ, ν) optimal solution (for max / min).
I Assume µ ∧ ν = 0 for the minimization problem.

Then
I There exists Γ ⊂ R× R: concentration set of π, i.e. π(Γ) = 1,

such that for a.e. x ∈ R,

#(Γx ) ≤ 2, for Γx = Γ ∩ ({x} × R),

that is, the disintegration (conditional probability) πx is concentrated on
at most two points.

I In particular, the optimal solution π is unique.
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Higher dimensions?

Theorem (Dimension reduction.
Ghousshoub, K. & Lim)
Assume:

I c(x , y) = |x − y |
I µ << Ln

I π ∈ MT (µ, ν) be optimal.

Then the following holds:
I There is concentration set of π,

Γ ⊂ Rn × Rn such that

dim(Γx ) ≤ n − 1 for µ-almost every x,
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Theorem (Discrete target. Ghousshoub, K. & Lim)

If furthermore, ν is discrete ν =
∑∞

k=1 qiδyi ,

then for µ a.e. x, under the optimal martingale transport,

x 7→ n + 1 vertices of a n-dimensional simplex in Rn.

Moreover. the optimal solution is unique.

 



Conjectures in higher dimensions. [Ghousshoub, K. & Lim]

Assume:

I c(x , y) = |x − y |
I µ << Ln

I π ∈ MT (µ, ν) be optimal.

Conjecture: Then, ∃ concentration set Γ,
such that for µ almost every x,

Γx = Ext
(

conv(Γx )

)
.

 



Progress towards the conjecture

Assume:

I c(x , y) = |x − y |
I µ << Ln

I π ∈ MT (µ, ν) be optimal.

Conjecture: Then, ∃ concentration set Γ, such that for µ almost every x,

Γx = Ext
(

conv(Γx )

)
.

Theorem (Ghoussuob, K. & Lim)
Conjecture 1 holds in the following cases:

I n = 2, or
I ν is obtained from µ by diffusion with respect to a time-dependent elliptic

operator. More generally, if there is a stopping time T > 0 of a Brownian
motion with B0 ∼ µ and BT ∼ ν.



Key principle

I Duality



Duality

I Duality (e.g, [Beiglböck-Juillet ’13])
I

inf
π∈MT (µ,ν)

∫
c(x , y)dπ(x , y)

= sup{
∫
β(y)dν(x)−

∫
α(x)dµ(x) :

β(y)≤c(x , y) + α(x) + γ(x) · (y − x), ∀x , y}
I

sup
π∈MT (µ,ν)

∫
c(x , y)dπ(x , y)

= inf{
∫
β(y)dν(x)−

∫
α(x)dµ(x) :

β(y)≥c(x , y) + α(x) + γ(x) · (y − x), ∀x , y}

I If the maximizer/minimizer (α, β, γ) exists, then the set,

saturation set: Γ = {(x , y) | β(y) = c(x , y) + α(x) + γ(x) · (y − x)}

gives a concentration set of an optimal π.
In this case, we say "π admits a dual".



Question Can one always have a dual (α, β, γ) for an optimal π?

Answer
No! [Beiglböck-Juillet ’13]
Counterexample: For the maximization problem,
µ = ν cannot attain dual (Exercise: Otherwise, γ must be ±∞ on [0, 1].)
(The term γ(x) · (y − x) is the trouble maker. )

We do not know for the minimization problem in general.
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There are cases where dual functions exist

Theorem (Ghoussoub, K., & Lim)
The dual functions (locally) exist for an optimal π ∈ MT (µ, ν) if

I µ << Leb, compactly supported
I ν is obtained from µ by diffusion with respect to a time-dependent elliptic

operator. More generally, if there is a stopping time T > 0 of a Brownian
motion with B0 ∼ µ and BT ∼ ν.

It is good to have dual functions.



If dual functions are attained.

Lemma (Ghousshoub, K. & Lim ’15)
Let c = |x − y |. Suppose a dual (α, β, γ) is attained and Γ its saturation set.
Then for a.e. x

Γx = Ext
(

conv(Γx )

)
.

 

Proof.
“ Differentiate the duality relation to get information!"
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Proof continued.
duality relation (for the minimization problem)

β(y) ≤ c(x , y) + α(x) + γ(x) · (y − x) ∀x ∈ XΓ, y ∈ YΓ,

β(y) = c(x , y) + α(x) + γ(x) · (y − x) ∀(x , y) ∈ Γ.

If (x , y) ∈ Γ,

|x − y |+ γ(x) · (y − x) + α(x) ≤ |x ′ − y |+ γ(x ′) · (y − x ′) + α(x ′) ∀x ′

⇒ ∇x (|x − y |+ γ(x) · (y − x) + α(x))

=
x − y
|x − y | +∇γ(x) · (y − x)− γ(x) +∇α(x) = 0.

Now suppose that we can find {y , y0, ..., ys} ⊂ Γx with y = Σs
i=0piyi ,

Σs
i=0pi = 1, pi > 0. Then we get

x − y
|x − y | =

s∑
i=0

pi
x − yi

|x − yi |
.

But this can hold only if all yi lie on the same ray emanated from x . Hence...
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Summary: the conclusion under dual attainment
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For general cases where we do not have dual functions:

Partition:
Make partition into duality attainable components!



For general cases where we do not have dual functions:

Theorem (Beiglböck-Juillet ’13)
Suppose

I c : Rn × Rn → R continuous.
I π ∈ MT (µ, ν): an optimal solution for martingale transport problem.

Then there exists a concentration set Γ ⊂ Rn × Rn, (i.e. π(Γ) = 1)
such that Γ is monotone,
that is, any finite subset H ⊂ Γ admits a dual.



Partition into dual attainable components.
Theorem (Beiglböck-Juillet ’13 for 1dim,
Ghousshoub, K. & Lim ’15 for general dim)
Suppose

I c : Rn × Rn → R continuous.
I π ∈ MT (µ, ν): an optimal solution for martingale transport problem.

Then there exists a concentration set Γ ⊂ Rn × Rn, (i.e. π(Γ) = 1):

I One can define mutually disjoint convex sets {C}
I such that “transport” Γ is partitioned on C’s,
I and on each such component C, the set Γ attains a dual.

  



Convex Partition in n-dimensions

I x ∼1 z equivalence relation if there is a chain of IC(Γx ) := int(convΓxi )’s

 

I Get partition for ∼1.
Rmk: In 1-dim, we can stop here.

I Take convex hull for each component of ∼1.
I Define equivalence relation ∼2 using chains of those convex hulls
I Iterate this procedure on and on,
I to get equivalence relation ∼ and corresponding “convex” partition {C}

generated by Γ.
I It can be shown (highly nontrivial) that each such component C attains

dual!



Now, for each such component, dual is attained.

 

The method of [Ghousoub, K. & Lim ’15]:

Disintegrate µ and ν into partition {C}, each of which attains dual.

If the disintegration of µ on each C is absolutely continuous,

to use the dual functions and their a.e. differentiability to get the
structural result for µ-a.e. x .



Partition can be useful only if we know good disintegration of µ along it.

But unfortunately, getting such a good disintegration is NOT clear in
general.

Nikodym set [Ambrosio, Kirchheim, and Pratelli ’04]
There is a Nikodym set in R3,

having full measure in the unit cube,

intersecting each element of a family of pairwise disjoint open lines

only at one point.

This means, the point where we have differentiability of dual may not, in
general, belong to the set we want.
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Still can handle dimension question even without good disintegration:

Corollary (Ghousshoub, K. & Lim ’15)
Suppose

I c(x , y) = |x − y |
I π ∈ MT (µ, ν) optimal
I µ << Ln.

Then, there is a concentration set Γ of π, such that for µ-almost every x,

dim Γx ≤ n − 1.

Proof.
I If dim C = n, then C is open, thus, µ can be restricted on C, so

absolutely continuous on C! Apply previous results.
I For other components with dim C ≤ n − 1, but, in this case already the

dimension is ≤ n − 1.



A case with good disintegration: discrete target, thus countable partition
components

Theorem (Discrete target. Ghousshoub, K. & Lim ’15)

If furthermore, ν is discrete ν =
∑∞

k=1 qiδyi ,

then for µ a.e. x, under the optimal martingale transport,

x 7→ n + 1 vertices of a n-dimensional simplex in Rn.

Moreover. the optimal solution is unique.

 



A case with good disintegration: two dimensions
Theorem (Ghousshoub, K. & Lim ’15 n = 2)
Suppose

I c(x , y) = |x − y |,
I π ∈ MT (µ, ν) optimal,
I µ << Ln,
I n = 2,

Then, there is a concentration set Γ of π, such that for µ-almost every x,

Γx = Ext(conv(Γx )).

 



Codimension ≤ 1 case. Idea: Flattening!

 



Summary:

To study the structure of optimal martingale transport in MT (µ, ν) with
µ << Ln in general dimensions n:

I Find optimal martingale plan π ∈ MT (µ, ν) using compactness.
I Get a suitable monotone set Γ.
I Apply the partition of Γ into duality attainable components C.
I Get dual functions α, β, γ for Γ in C.
I Almost everywhere differentiability of α, γ on C.

If µ disintegrates into an absolutely continuous measure µC on each
component C,

I Get the structure of Γ (of Γx for µC a.e. x) in each C from almost
everywhere differentiability,

I thus finally, get the structure of Γ (of Γx for µ-a.e. x)!



Summary:

To study the structure of optimal martingale transport in MT (µ, ν) with
µ << Ln in general dimensions n:

I Find optimal martingale plan π ∈ MT (µ, ν) using compactness.
I Get a suitable monotone set Γ.
I Apply the partition of Γ into duality attainable components C.
I Get dual functions α, β, γ for Γ in C.
I Almost everywhere differentiability of α, γ on C.

If µ disintegrates into an absolutely continuous measure µC on each
component C,

I Get the structure of Γ (of Γx for µC a.e. x) in each C from almost
everywhere differentiability,

I thus finally, get the structure of Γ (of Γx for µ-a.e. x)!



Some related work:

I [Beiglböck, Nutz, & Touzi ’15] : quasi-sure duality.
I [De March& Touzi ’17] [Oblój & Siorpaes ’17]: canonical partition for

martingale transport.



Thank You Very Much!


