

Optimal Transportation and its use in data assimilation and sequential Bayesian inference

Walter Acevedo, Jana de Wiljes, and Sebastian Reich

Universität Potsdam/ University of Reading

CMO-BIRS, Oaxaca, May 3rd 2017

Given:

- *M* samples \mathbf{z}_i^f from a RV Z^f with PDF $\pi^f(\mathbf{z})$ (prior)
- ► normalized importance weights $w_i \propto \pi(\mathbf{y}_{obs} | \mathbf{z}_i^f)$ (likelihood)

Desired:

• *M* samples \mathbf{z}_i^a from a RV Z^a with PDF (posterior)

 $\pi^{\rm a}(\boldsymbol{z}) \propto \pi(\boldsymbol{y}_{\rm obs} | \boldsymbol{z}) \, \pi^{\rm f}(\boldsymbol{z}).$

typically achieved by sampling from a discrete RV

$$\widehat{Z}^{\mathsf{a}}(\omega) \in \{\mathbf{z}_{i}^{\mathsf{f}}\}_{i=1,\dots,M}$$

with $\mathbb{P}[\widehat{Z}^{a}(\omega) = \mathbf{z}_{i}^{f}] = w_{i}$ (resampling with replacement).

Q: How to make this work for high-dimensional problems and relatively small sample sizes *M*.

Given:

- *M* samples \mathbf{z}_i^f from a RV Z^f with PDF $\pi^f(\mathbf{z})$ (prior)
- normalized importance weights $w_i \propto \pi(\mathbf{y}_{obs} | \mathbf{z}_i^f)$ (likelihood)

Desired:

• *M* samples \mathbf{z}_i^a from a RV Z^a with PDF (posterior)

 $\pi^{\rm a}(\boldsymbol{z}) \propto \pi(\boldsymbol{y}_{\rm obs} | \boldsymbol{z}) \, \pi^{\rm f}(\boldsymbol{z}). \label{eq:phi_alpha}$

typically achieved by sampling from a discrete RV

$$\widehat{Z}^{\mathsf{a}}(\omega) \in \{\mathbf{z}_{i}^{\mathsf{f}}\}_{i=1,\dots,M}$$

with $\mathbb{P}[\widehat{Z}^{a}(\omega) = \mathbf{z}_{i}^{f}] = w_{i}$ (resampling with replacement).

Q: How to make this work for high-dimensional problems and relatively small sample sizes *M*.

Given:

- *M* samples \mathbf{z}_i^f from a RV Z^f with PDF $\pi^f(\mathbf{z})$ (prior)
- normalized importance weights $w_i \propto \pi(\mathbf{y}_{obs} | \mathbf{z}_i^f)$ (likelihood)

Desired:

• *M* samples \mathbf{z}_i^a from a RV Z^a with PDF (posterior)

 $\pi^{\rm a}(\boldsymbol{z}) \propto \pi(\boldsymbol{y}_{\rm obs} | \boldsymbol{z}) \, \pi^{\rm f}(\boldsymbol{z}). \label{eq:phi_alpha}$

typically achieved by sampling from a discrete RV

$$\widehat{Z}^{\mathsf{a}}(\omega) \in \{\mathbf{z}_{i}^{\mathsf{f}}\}_{i=1,...,M}$$

with $\mathbb{P}[\widehat{Z}^{a}(\omega) = \mathbf{z}_{i}^{f}] = w_{i}$ (resampling with replacement).

Q: How to make this work for high-dimensional problems and relatively small sample sizes *M*.

- **Model**: highly nonlinear discretized partial differential equations
- Data: heterogeneous mix of ground-, airborne-, satellite-based and radar data
- 24/7 data assimilation service for optimal weather prediction
- ▶ non-traditional particle filters (PF) with M = O(10²) particles for models with dimension of state space N = O(10⁷) being used operationally

Numerical Weather Prediction

- **Model**: highly nonlinear discretized partial differential equations
- Data: heterogeneous mix of ground-, airborne-, satellite-based and radar data
- > 24/7 data assimilation service for optimal weather prediction
- ► non-traditional particle filters (PF) with M = O(10²) particles for models with dimension of state space N = O(10⁷) being used operationally

Key idea: Localization

Classic PF: Resampling with replacement

Resampling interpreted as discrete Markov chain

s.t. $p_{ij} \ge 0$ and

$$\sum_{i} p_{ij} = 1, \qquad \frac{1}{M} \sum_{j} p_{ij} = w_i.$$

and

Example. Monomial resampling

$$\mathbf{P}^{0} := \mathbf{w} \otimes \mathbf{1} = \begin{pmatrix} w_{1} & w_{1} & \cdots & w_{1} \\ w_{2} & w_{2} & \cdots & w_{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M} & w_{M} & \cdots & w_{M} \end{pmatrix}$$

 $\mathbf{P} \in \mathbb{R}^{M \times M}$

 $\mathbf{z}_i^a = \mathbf{z}_i^f$ with probability p_{ij} .

1

Classic PF: Resampling with replacement

Resampling interpreted as discrete Markov chain

s.t. $p_{ij} \ge 0$ and

$$\sum_{i} p_{ij} = 1, \qquad \frac{1}{M} \sum_{j} p_{ij} =$$

and

$$\mathbf{P}^{0} := \mathbf{w} \otimes \mathbf{1} = \begin{pmatrix} w_{1} & w_{1} & \cdots & w_{1} \\ w_{2} & w_{2} & \cdots & w_{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M} & w_{M} & \cdots & w_{M} \end{pmatrix}$$

$$\mathbf{P} \in \mathbb{R}^{M \times M}$$

 $\mathbf{z}_i^{a} = \mathbf{z}_i^{f}$ with probability p_{ij} .

1

Wi.

Define resampling Markov chain \mathbf{P}^{λ} :

$$\mathbf{P}^{\lambda} = \operatorname{argmin} \sum_{ij} p_{ij} \left\{ \|\mathbf{z}_{i}^{\mathrm{f}} - \mathbf{z}_{j}^{\mathrm{f}}\|^{2} + \frac{1}{\lambda} \ln \frac{p_{ij}}{p_{ij}^{0}} \right\}$$

for given $\lambda > 0$ subject to

$$p_{ij} \geq 0,$$
 $\sum_{i} p_{ij} = 1,$ $\frac{1}{M} \sum_{j} p_{ij} = w_i.$

Remark.

- ► $\lambda \rightarrow 0$: $\mathbf{P}^0 = \mathbf{w} \otimes \mathbf{1}$ (monomial resampling).
- ▶ $\lambda \rightarrow \infty$: **P**[∞] solves the optimal coupling/transport problem.
- Effective iterative solvers are available [Cuturi, 2013].

Define resampling Markov chain \mathbf{P}^{λ} :

$$\mathbf{P}^{\lambda} = \operatorname{argmin} \sum_{ij} p_{ij} \left\{ \|\mathbf{z}_{i}^{\mathrm{f}} - \mathbf{z}_{j}^{\mathrm{f}}\|^{2} + rac{1}{\lambda} \ln rac{p_{ij}}{p_{ij}^{0}}
ight\}$$

for given $\lambda > 0$ subject to

$$p_{ij} \geq 0,$$
 $\sum_i p_{ij} = 1,$ $\frac{1}{M} \sum_j p_{ij} = w_i.$

Remark.

- ► $\lambda \rightarrow 0$: $\mathbf{P}^0 = \mathbf{w} \otimes \mathbf{1}$ (monomial resampling).
- ▶ $\lambda \rightarrow \infty$: **P**[∞] solves the optimal coupling/transport problem.
- Effective iterative solvers are available [Cuturi, 2013].

Prior and posterior means:

$$\overline{\mathbf{z}}^{\mathrm{f}} = \frac{1}{M} \sum_{i} \mathbf{z}_{i}^{\mathrm{f}}, \qquad \overline{\mathbf{z}}^{\mathrm{a}} = \sum_{i} w_{i} \mathbf{z}_{i}^{\mathrm{f}}$$

Mean value for each column of the resampling Markov chain:

$$\overline{\mathbf{z}}_{j}^{\mathrm{a}} = \sum_{i} \mathbf{z}_{i}^{\mathrm{f}} p_{ij}$$

Reformulated Sinkhorn cost:

$$J(\mathbf{P}) = -2\sum_{j} (\overline{\mathbf{z}}_{j}^{a} - \overline{\mathbf{z}}^{a}) \cdot (\mathbf{z}_{j}^{f} - \overline{\mathbf{z}}^{f}) + \frac{1}{\lambda} \sum_{ij} p_{ij} \ln \frac{p_{ij}}{p_{ij}^{0}} + \text{constant}$$

Remark. Monomial resampling:

$$-2\sum_{j}(\overline{\mathbf{z}}_{j}^{a}-\overline{\mathbf{z}}^{a})\cdot(\mathbf{z}_{j}^{f}-\overline{\mathbf{z}}^{f})=0.$$

Prior and posterior means:

$$\overline{\mathbf{z}}^{\mathrm{f}} = \frac{1}{M} \sum_{i} \mathbf{z}_{i}^{\mathrm{f}}, \qquad \overline{\mathbf{z}}^{\mathrm{a}} = \sum_{i} w_{i} \mathbf{z}_{i}^{\mathrm{f}}$$

Mean value for each column of the resampling Markov chain:

$$\overline{\mathbf{z}}_{j}^{\mathsf{a}} = \sum_{i} \mathbf{z}_{i}^{\mathsf{f}} p_{ij}$$

Reformulated Sinkhorn cost:

$$J(\mathbf{P}) = -2\sum_{j} (\overline{\mathbf{z}}_{j}^{a} - \overline{\mathbf{z}}^{a}) \cdot (\mathbf{z}_{j}^{f} - \overline{\mathbf{z}}^{f}) + \frac{1}{\lambda} \sum_{ij} p_{ij} \ln \frac{p_{ij}}{p_{ij}^{0}} + \text{constant}$$

Remark. Monomial resampling:

$$-2\sum_{j}(\overline{\mathbf{z}}_{j}^{a}-\overline{\mathbf{z}}^{a})\cdot(\mathbf{z}_{j}^{f}-\overline{\mathbf{z}}^{f})=0.$$

Non-classic particle filters (PFs) [Reich and Cotter, 2015]:

$$\mathbf{z}_{j}^{\mathsf{a}} = \sum_{i} \mathbf{z}_{i}^{\mathsf{f}} d_{ij}$$

with transformation matrix $\mathbf{D} = \{d_{ij}\}$ subject to

$$\sum_{i=1}^M d_{ij} = 1$$
 $\frac{1}{M} \sum_{j=1}^M d_{ij} = \widehat{w}_i.$

Remark.

- Non-classic PFs been pioneered in the EnKF community.
- Mostly developed for Gaussian likelihood functions and Gaussian approximations to the prior distribution.
- ▶ Entries *d_{ij}* can take negative values.

Non-classic particle filters (PFs) [Reich and Cotter, 2015]:

$$\mathbf{z}_{j}^{\mathsf{a}} = \sum_{i} \mathbf{z}_{i}^{\mathsf{f}} d_{ij}$$

with transformation matrix $\mathbf{D} = \{d_{ij}\}$ subject to

$$\sum_{i=1}^M d_{ij} = 1$$
 $\frac{1}{M} \sum_{j=1}^M d_{ij} = \widehat{w}_i.$

Remark.

- Non-classic PFs been pioneered in the EnKF community.
- Mostly developed for Gaussian likelihood functions and Gaussian approximations to the prior distribution.
- ► Entries *d_{ij}* can take negative values.

Definition. A LETF is called first-order if

$$\frac{1}{M}\sum_{i}\mathbf{z}_{i}^{\mathsf{a}}=\overline{\mathbf{z}}^{\mathsf{a}}$$

i.e.

$$rac{1}{M}\sum_{j}d_{ij}=w_i$$
 \iff **D1** = Mw

Result.

$$\mathbf{D} = \mathbf{P}^{\lambda}$$

is first-order for any $\lambda \ge 0$.

Definition. A LETF is called first-order if

$$\frac{1}{M}\sum_{i}\mathbf{z}_{i}^{\mathsf{a}}=\overline{\mathbf{z}}^{\mathsf{a}}$$

i.e.

$$\frac{1}{M}\sum_{j}d_{jj}=w_{i} \quad \Longleftrightarrow \quad \mathbf{D1}=M\mathbf{w}$$

Result.

$$\mathbf{D} = \mathbf{P}^{\lambda}$$

is first-order for any $\lambda \ge 0$.

Definition A first-order LETF is called second-order if

$$\mathbf{D} = \mathbf{w} \otimes \mathbf{1} + \mathbf{S} = \mathbf{P}^0 + \mathbf{S}$$

with \boldsymbol{S} such that $\boldsymbol{S1}=\boldsymbol{0}$ and

$$\mathbf{S}\mathbf{S}^{\mathsf{T}} = M(\mathbf{W} - \mathbf{w} \otimes \mathbf{w})$$

where $\mathbf{W} = \text{diag}(\mathbf{w})$.

Remark.

- The posterior samples reproduce the covariance matrix defined through the importance weights.
- $\mathbf{D} = \mathbf{P}^{\lambda}$ is **not** second-order accurate for any λ . In fact, the posterior samples underestimate the covariance.
- ▶ But the first-order $\mathbf{D} = \mathbf{P}^{\infty}$ leads to $\hat{\pi}^{a} \rightarrow \pi^{a}$ as $M \rightarrow \infty$ (ETPF, [Reich, 2013]) with

$$\widehat{\pi}^{a}(\mathbf{z}) = \frac{1}{M} \sum_{i} \delta(\mathbf{z}_{i}^{a} - \mathbf{z}).$$

Definition A first-order LETF is called second-order if

$$\mathbf{D} = \mathbf{w} \otimes \mathbf{1} + \mathbf{S} = \mathbf{P}^0 + \mathbf{S}$$

with \boldsymbol{S} such that $\boldsymbol{S1}=\boldsymbol{0}$ and

$$\mathbf{S}\mathbf{S}^\mathsf{T} = M(\mathbf{W} - \mathbf{w} \otimes \mathbf{w})$$

where $\mathbf{W} = \text{diag}(\mathbf{w})$.

Remark.

- The posterior samples reproduce the covariance matrix defined through the importance weights.
- $\mathbf{D} = \mathbf{P}^{\lambda}$ is **not** second-order accurate for any λ . In fact, the posterior samples underestimate the covariance.
- ▶ But the first-order $\mathbf{D} = \mathbf{P}^{\infty}$ leads to $\hat{\pi}^a \rightarrow \pi^a$ as $M \rightarrow \infty$ (ETPF, [Reich, 2013]) with

$$\widehat{\pi}^{a}(\mathbf{z}) = \frac{1}{M} \sum_{i} \delta(\mathbf{z}_{i}^{a} - \mathbf{z}).$$

Result. Any second-order accurate LETF is of the form

$$\mathbf{D} = \mathbf{P}^0 + \mathbf{S}\mathbf{Q}, \qquad \mathbf{S} := \sqrt{M} (\mathbf{W} - \mathbf{w} \otimes \mathbf{w})^{1/2},$$

with **Q** being an orthogonal matrix s.t. $\mathbf{Q1} = \mathbf{1}$.

Remark.

 Second-order accurate LETFs have been proposed by [Xiong et al., 2006] and [Tödter and Ahrens, 2015] corresponding to Q = I or Q randomly chosen.

► **D** satisfies

$$\sum_{i} d_{ij} = 1, \qquad rac{1}{M} \sum_{j} d_{ij} = w_i$$

but entries can take negative values contrary to the resampling Markov chains ${\bf P}^{\lambda}.$

Result. Any second-order accurate LETF is of the form

$$\mathbf{D} = \mathbf{P}^0 + \mathbf{S}\mathbf{Q}, \qquad \mathbf{S} := \sqrt{M} (\mathbf{W} - \mathbf{w} \otimes \mathbf{w})^{1/2},$$

with **Q** being an orthogonal matrix s.t. $\mathbf{Q1} = \mathbf{1}$.

Remark.

- Second-order accurate LETFs have been proposed by [Xiong et al., 2006] and [Tödter and Ahrens, 2015] corresponding to Q = I or Q randomly chosen.
- D satisfies

$$\sum_{i} d_{ij} = 1, \qquad rac{1}{M} \sum_{j} d_{ij} = w_i$$

but entries can take negative values contrary to the resampling Markov chains \mathbf{P}^{λ} .

Find **Q** in

$$\mathbf{P} = \mathbf{P}^0 + \mathbf{S}\mathbf{Q}, \qquad \mathbf{S} := \sqrt{M}(\mathbf{W} - \mathbf{w} \otimes \mathbf{w})^{1/2},$$

such that the Sinkhorn cost ($\lambda = \infty$)

$$J(\mathbf{Q}) = -2\sum_{j} (\mathbf{z}_{j}^{a} - \overline{\mathbf{z}}^{a}) \cdot (\mathbf{z}_{j}^{f} - \overline{\mathbf{z}}^{f})$$

is minimized.

Proposition [de Wiljes et al., 2016]

The optimal **Q** is given by

$$\bm{Q} = \bm{U}\bm{V}^{\!\top}$$

with orthogonal matrices **U** and **V** obtained from the SVD of

$$\boldsymbol{\mathsf{S}}(\boldsymbol{\mathsf{Z}}^f)^T\boldsymbol{\mathsf{Z}}^f = \boldsymbol{\mathsf{U}} \wedge \boldsymbol{\mathsf{V}}^T.$$

with

$$\mathbf{Z}^{f} = \left(\mathbf{z}_{1}^{f} - \overline{\mathbf{z}}^{f}, \mathbf{z}_{2}^{f} - \overline{\mathbf{z}}^{f}, \dots, \mathbf{z}_{M}^{f} - \overline{\mathbf{z}}^{f}\right) \in \mathbb{R}^{N_{z} \times M}.$$

Find **Q** in

$$\mathbf{P} = \mathbf{P}^0 + \mathbf{S}\mathbf{Q}, \qquad \mathbf{S} := \sqrt{M}(\mathbf{W} - \mathbf{w} \otimes \mathbf{w})^{1/2},$$

such that the Sinkhorn cost ($\lambda = \infty$)

$$J(\mathbf{Q}) = -2\sum_{j} (\mathbf{z}_{j}^{a} - \overline{\mathbf{z}}^{a}) \cdot (\mathbf{z}_{j}^{f} - \overline{\mathbf{z}}^{f})$$

is minimized.

Proposition [de Wiljes et al., 2016]

The optimal **Q** is given by

 $\bm{Q} = \bm{U}\bm{V}^T$

with orthogonal matrices **U** and **V** obtained from the SVD of

$$\boldsymbol{\mathsf{S}}(\boldsymbol{\mathsf{Z}}^f)^T\boldsymbol{\mathsf{Z}}^f = \boldsymbol{\mathsf{U}}\boldsymbol{\wedge}\boldsymbol{\mathsf{V}}^T.$$

with

$$\mathbf{Z}^{f} = \left(\mathbf{z}_{1}^{f} - \overline{\mathbf{z}}^{f}, \mathbf{z}_{2}^{f} - \overline{\mathbf{z}}^{f}, \dots, \mathbf{z}_{M}^{f} - \overline{\mathbf{z}}^{f}\right) \in \mathbb{R}^{N_{z} \times M}.$$

Alternatively: Second-order accurate LETF through a correction to the Sinkhorn approximation [de Wiljes et al., 2016]:

$$\mathbf{D} = \mathbf{P}^{\lambda} + \mathbf{C} = \mathbf{P}^0 + \mathbf{B} + \mathbf{C}$$

with

$$\mathbf{B} = \mathbf{P}^{\lambda} - \mathbf{P}^{0}.$$

and symmetric \mathbf{C} subject to $\mathbf{C1} = \mathbf{0}$.

Requires solution of a **continuous-time algebraic Riccati equation** in C:

$$M(\mathbf{W} - \mathbf{w} \otimes \mathbf{w}) - \mathbf{B}\mathbf{B}^{\mathsf{T}} = \mathbf{C}\mathbf{C} + \mathbf{B}\mathbf{C} + \mathbf{C}\mathbf{B}^{\mathsf{T}}$$

Remark. Fully "observable", hence solutions exist.

Alternatively: Second-order accurate LETF through a correction to the Sinkhorn approximation [de Wiljes et al., 2016]:

$$\mathbf{D} = \mathbf{P}^{\lambda} + \mathbf{C} = \mathbf{P}^0 + \mathbf{B} + \mathbf{C}$$

with

$$\mathbf{B}=\mathbf{P}^{\lambda}-\mathbf{P}^{0}.$$

and symmetric \mathbf{C} subject to $\mathbf{C1} = \mathbf{0}$.

Requires solution of a **continuous-time algebraic Riccati equation** in **C**:

$$M(\mathbf{W} - \mathbf{w} \otimes \mathbf{w}) - \mathbf{B}\mathbf{B}^\mathsf{T} = \mathbf{C}\mathbf{C} + \mathbf{B}\mathbf{C} + \mathbf{C}\mathbf{B}^\mathsf{T}$$

Remark. Fully "observable", hence solutions exist.

Gaussian prior, non-Gaussian likelihood:

Figure: Prior and posterior distribution for the single Bayesian inference step

Numerical example I

Figure: Absolute errors in the first four moments of the posterior distribution as obtained from the standard Sinkhorn LETF ($\lambda = \infty$) (left panel) and the second-order corrected Sinkhorn LETF (right panel).

Lorenz-63 model, first component observed infrequently ($\Delta t = 0.12$) and with large measurement noise (R = 8):

Figure: RMSEs for various second-order accurate LETFs compared to the ETPF, the ESRF, and the SIR PF as a function of the sample size, M.

Hybrid filter: $\mathbf{P} := \mathbf{P}_{\mathsf{ESRF}}(\alpha) \mathbf{P}_{\mathsf{ETPF}}(1-\alpha)$.

Figure: RMSEs for hybrid ESRF ($\alpha = 0$) and 2nd-order corrected LETF/ETPF ($\alpha = 1$) as a function of the sample size, *M*.

Lorenz-96 model, discretized nonlinear advection equation, 40 grid points, every second observed.

Hybrid filter $\mathbf{P} := \mathbf{P}_{\text{LETKF}}(\alpha) \mathbf{P}_{\text{ETPF}}(1-\alpha) + \text{localization.}$

Figure: RMSE for hybrid LETKF ($\alpha = 0$) and 2nd-order corrected LETF/ETPF ($\alpha = 1$).

- The resampling step of a SIR particle filter can be replaced by a deterministic transformation step – variance reduction, increase in bias.
- There is a systematic family of options: ETPF, NETF, Sinkhorn + 2nd order correction, ... all with pros and cons; currently being implemented into DWD DA test system
- All these methods allow for localization and hybridization with an EnKF [Chustagulprom et al., 2016] and, hence, application to spatially extended systems.
- All these methods can be applied to non-Gaussian likelihoods and combined with **optimal proposal steps** of all flavors.
- Approach is applicable to any problem which requires coupling of samples from different distributions (e.g. multi-level MC, pseudo-marginal MCMC, approximation of the Barycenters in the Wasserstein space etc.)

- The resampling step of a SIR particle filter can be replaced by a deterministic transformation step – variance reduction, increase in bias.
- There is a systematic family of options: ETPF, NETF, Sinkhorn + 2nd order correction, ... all with pros and cons; currently being implemented into DWD DA test system
- All these methods allow for localization and hybridization with an EnKF [Chustagulprom et al., 2016] and, hence, application to spatially extended systems.
- All these methods can be applied to non-Gaussian likelihoods and combined with **optimal proposal steps** of all flavors.
- Approach is applicable to any problem which requires coupling of samples from different distributions (e.g. multi-level MC, pseudo-marginal MCMC, approximation of the Barycenters in the Wasserstein space etc.)

- The resampling step of a SIR particle filter can be replaced by a deterministic transformation step – variance reduction, increase in bias.
- There is a systematic family of options: ETPF, NETF, Sinkhorn + 2nd order correction, ... all with pros and cons; currently being implemented into DWD DA test system
- All these methods allow for localization and hybridization with an EnKF [Chustagulprom et al., 2016] and, hence, application to spatially extended systems.
- All these methods can be applied to non-Gaussian likelihoods and combined with **optimal proposal steps** of all flavors.
- Approach is applicable to any problem which requires coupling of samples from different distributions (e.g. multi-level MC, pseudo-marginal MCMC, approximation of the Barycenters in the Wasserstein space etc.)

- The resampling step of a SIR particle filter can be replaced by a deterministic transformation step – variance reduction, increase in bias.
- There is a systematic family of options: ETPF, NETF, Sinkhorn + 2nd order correction, ... all with pros and cons; currently being implemented into DWD DA test system
- All these methods allow for localization and hybridization with an EnKF [Chustagulprom et al., 2016] and, hence, application to spatially extended systems.
- All these methods can be applied to non-Gaussian likelihoods and combined with **optimal proposal steps** of all flavors.
- Approach is applicable to any problem which requires coupling of samples from different distributions (e.g. multi-level MC, pseudo-marginal MCMC, approximation of the Barycenters in the Wasserstein space etc.)

- The resampling step of a SIR particle filter can be replaced by a deterministic transformation step – variance reduction, increase in bias.
- There is a systematic family of options: ETPF, NETF, Sinkhorn + 2nd order correction, ... all with pros and cons; currently being implemented into DWD DA test system
- All these methods allow for localization and hybridization with an EnKF [Chustagulprom et al., 2016] and, hence, application to spatially extended systems.
- All these methods can be applied to non-Gaussian likelihoods and combined with **optimal proposal steps** of all flavors.
- Approach is applicable to any problem which requires coupling of samples from different distributions (e.g. multi-level MC, pseudo-marginal MCMC, approximation of the Barycenters in the Wasserstein space etc.)

Chustagulprom, N., Reich, S., and Reinhardt, M. (2016).

A hybrid ensemble transform filter for nonlinear and spatially extended dynamical systems.

SIAM/ASA | Uncertainty Quantification, 4:592–608.

📄 Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors, Advances in Neural Information Processing Systems 26, pages 2292–2300. Curran Associates. Inc.

de Wiljes, J., Acevedo, W., and Reich, S. (2016).

A second-order accurate ensemble transform particle filter. Technical Report ArXiv:1608.08179, University of Potsdam.

Reich, S. (2013).

A non-parametric ensemble transform method for Bayesian inference. SIAM I Sci Comput. 35:A2013–A2014.

Reich, S. and Cotter, C. (2015).

Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press.

Tödter, J. and Ahrens, B. (2015).

A second-order exact ensemble square root filter for nonlinear data assimilation.

```
Mon. Wea. Rev., 143:1347-1367.
```


Xiong, X., Navon, I., and Uzungoglu, B. (2006).

A note on the particle filter with posterior Gaussian resampling. *Tellus*, 85A:456–460.