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Problem setting

Given:
É M samples zf

i from a RV Zf with PDF πf(z) (prior)

É normalized importance weights wi ∝ π(yobs|zf
i) (likelihood)

Desired:
É M samples za

i from a RV Za with PDF (posterior)

πa(z) ∝ π(yobs|z)πf(z).

É typically achieved by sampling from a discrete RV

bZa(ω) ∈ {zf
i
}i=1,...,M

with P[bZa(ω) = zf
i ] = wi (resampling with replacement).

Q: How to make this work for high-dimensional problems and relatively
small sample sizes M.
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Numerical Weather Prediction

É Model: highly nonlinear discretized partial differential equations
É Data: heterogeneous mix of ground-, airborne-, satellite-based and

radar data
É 24/7 data assimilation service for optimal weather prediction
É non-traditional particle filters (PF) with M = O(102) particles for

models with dimension of state space N = O(107) being used
operationally
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Key idea: Localization

State variable on  
grid points

Observations outside 
localization radius

Gridpoint being 
updated

Observations inside  
localization radius
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Classic PF: Resampling with replacement

Resampling interpreted as discrete Markov chain

P ∈ RM×M

s.t. pij ≥ 0 and
∑

i

pij = 1,
1

M

∑

j

pij = wi.

and
za

j
= zf

i
with probability pij .

Example. Monomial resampling

P0 := w⊗ 1 =









w1 w1 · · · w1
w2 w2 · · · w2
...

...
. . .

...
wM wM · · · wM









.
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Sinkhorn approximation I

Define resampling Markov chain Pλ:

Pλ = argmin
∑

ij

pij

(

‖zf
i
− zf

j
‖2 +

1

λ
ln

pij

p0
ij

)

for given λ > 0 subject to

pij ≥ 0,
∑

i

pij = 1,
1

M

∑

j

pij = wi.

Remark.
É λ→ 0: P0 = w⊗ 1 (monomial resampling).
É λ→∞: P∞ solves the optimal coupling/transport problem.
É Effective iterative solvers are available [Cuturi, 2013].
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Sinkhorn approximation II

Prior and posterior means:

zf
=

1

M

∑

i

zf
i
, za

=
∑

i

wizf
i

Mean value for each column of the resampling Markov chain:

za
j

=
∑

i

zf
i
pij

Reformulated Sinkhorn cost:

J(P) = −2
∑

j

(za
j
− za

) · (zf
j
− zf

) +
1

λ

∑

ij

pij ln
pij

p0
ij

+ constant

Remark. Monomial resampling:

−2
∑

j

(za
j
− za

) · (zf
j
− zf

) = 0.
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Non-classic PF: Transformation approach

Non-classic particle filters (PFs) [Reich and Cotter, 2015]:

za
j

=
∑

i

zf
i
dij

with transformation matrix D = {dij} subject to

M
∑

i=1

dij = 1
1

M

M
∑

j=1

dij = Òwi.

Remark.
É Non-classic PFs been pioneered in the EnKF community.
É Mostly developed for Gaussian likelihood functions and Gaussian

approximations to the prior distribution.
É Entries dij can take negative values.
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First-order accuracy

Definition. A LETF is called first-order if

1

M

∑

i

za
i

= za

i.e.
1

M

∑

j

dij = wi ⇐⇒ D1 = Mw

Result.
D = Pλ

is first-order for any λ ≥ 0.
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Second-order accuracy

Definition A first-order LETF is called second-order if

D = w⊗ 1 + S = P0 + S

with S such that S1 = 0 and

SST = M(W−w⊗w)

where W = diag (w).

Remark.
É The posterior samples reproduce the covariance matrix defined

through the importance weights.
É D = Pλ is not second-order accurate for any λ. In fact, the posterior

samples underestimate the covariance.
É But the first-order D = P∞ leads to bπa → πa as M→∞ (ETPF,

[Reich, 2013]) with

bπa(z) =
1

M

∑

i

δ(za
i
− z).
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General form of second-order LETFs

Result. Any second-order accurate LETF is of the form

D = P0 + SQ, S :=
p

M(W−w⊗w)1/2,

with Q being an orthogonal matrix s.t. Q1 = 1.

Remark.
É Second-order accurate LETFs have been proposed by

[Xiong et al., 2006] and [Tödter and Ahrens, 2015] corresponding to
Q = I or Q randomly chosen.

É D satisfies
∑

i

dij = 1,
1

M

∑

j

dij = wi

but entries can take negative values contrary to the resampling
Markov chains Pλ.
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Optimal second-order LETF

Find Q in
P = P0 + SQ, S :=

p

M(W−w⊗w)1/2,

such that the Sinkhorn cost (λ = ∞)

J(Q) = −2
∑

j

(za
j
− za

) · (zf
j
− zf

)

is minimized.

Proposition [de Wiljes et al., 2016]

The optimal Q is given by
Q = UVT

with orthogonal matrices U and V obtained from the SVD of

S(Zf)TZf = UΛVT.

with
Zf =
�

zf
1 − zf,zf

2 − zf, . . . ,zf
M
− zf
�

∈ RNz×M.
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Second-order corrected LETF

Alternatively: Second-order accurate LETF through a correction to the
Sinkhorn approximation [de Wiljes et al., 2016]:

D = Pλ + C = P0 + B + C

with
B = Pλ − P0.

and symmetric C subject to C1 = 0.

Requires solution of a continuous-time algebraic Riccati equation in
C:

M(W−w⊗w)− BBT = CC + BC + CBT

Remark. Fully “observable”, hence solutions exist.
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Numerical example I

Gaussian prior, non-Gaussian likelihood:

Figure: Prior and posterior distribution for the single Bayesian inference step
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Numerical example I

Figure: Absolute errors in the first four moments of the posterior distribution as
obtained from the standard Sinkhorn LETF (λ =∞) (left panel) and the
second-order corrected Sinkhorn LETF (right panel).
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Numerical example II

Lorenz-63 model, first component observed infrequently (∆t = 0.12) and
with large measurement noise (R = 8):

Figure: RMSEs for various second-order accurate LETFs compared to the ETPF, the
ESRF, and the SIR PF as a function of the sample size, M.
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Numerical example II

Hybrid filter: P := PESRF(α) PETPF(1− α).

Figure: RMSEs for hybrid ESRF (α = 0) and 2nd-order corrected LETF/ETPF (α = 1)
as a function of the sample size, M.
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Numerical example III

Lorenz-96 model, discretized nonlinear advection equation, 40 grid
points, every second observed.
Hybrid filter P := PLETKF(α) PETPF(1− α) + localization.

Figure: RMSE for hybrid LETKF (α = 0) and 2nd-order corrected LETF/ETPF (α = 1).
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Conclusions

É The resampling step of a SIR particle filter can be replaced by a
deterministic transformation step – variance reduction, increase
in bias.

É There is a systematic family of options: ETPF, NETF, Sinkhorn +
2nd order correction, ... all with pros and cons; currently being
implemented into DWD DA test system

É All these methods allow for localization and hybridization with an
EnKF [Chustagulprom et al., 2016] and, hence, application to
spatially extended systems.

É All these methods can be applied to non-Gaussian likelihoods and
combined with optimal proposal steps of all flavors.

É Approach is applicable to any problem which requires coupling of
samples from different distributions (e.g. multi-level MC,
pseudo-marginal MCMC, approximation of the Barycenters in the
Wasserstein space etc.)
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