Optimal Mass Transport

and (matrix) density flows

Yongxin Chen (MSKCC & soon ISU) Tryphon Georgiou (Univ. of California, Irvine) Allen Tannenbaum (Stony Brook)

Optimal Transport meets Probability, Statistics and Machine Learning BIRS, Oaxaca

1 May - 5 May 2017

Arithmetic mean

Motivation interpolation of densities

- push/pop?
- artifacts?
- etc

Transportation mean

Time-series

pertensi olehinda katalahin permetensi tertensi permetensi pertensi pertensi pertensi pertensi pertensi pertensi

positioning via relative intensity & doppler shift

Physical arrangement

Matrix-valued power spectra

Kantorovich-like formulation in product-space:

Ning, Georgiou, Tannenbaum, On matrix-valued Monge-Kantorovich OMT, 2015

OMT in quantum theory

Eric Carlen & Jan Maas "An Analog of the 2-Wasserstein Metric..Fermionic Fokker-Planck.. Gradient Flow for the Entropy," Comm. Math. Phys. 2014

arXiv: Eric Carlen & Jan Maas

"Gradient flow and entropic inequalities...," Sept 2016

Markus Mittnenzweig & Alexander Mielke

"An entropic gradient structure for Lindblad...," Sept 2016.

Yongxin Chen, TTG & Allen Tannenbaum

"Matrix OMT: a Quantum Mechanical approach," Oct 2016

Our goal

- extend the **Benamou-Brenier** framework to transport of
 - Hermitian matrices (Quantum density matrices)
 - matrix-valued distributions
- I.e., formulate for matrices...

$$egin{aligned} &\inf \int \int_0^1
ho(t,x) \|v(t,x)\|^2 \, dt \, dx \ & rac{\partial
ho}{\partial t} +
abla \cdot (
ho v) \; = \; 0, \ &
ho(0,\cdot) =
ho_0, \;
ho(1,\cdot) =
ho_1 \end{aligned}$$

Quantum continuity equation

Starting point: Lindblad equation (in "diagonal form" $L_k = L_k^*$)

$$egin{aligned} \dot{
ho}&=-[iH,
ho]\ &+\sum_{k=1}^N(L_k
ho L_k-rac{1}{2}
ho L_kL_k-rac{1}{2}L_kL_k
ho), \end{aligned}$$

Notation:

 ${\mathcal H}$ and ${\mathcal S}$ the set of n imes n Hermitian and skew-Hermitian matrices

 \mathcal{H}_+ and \mathcal{H}_{++} nonnegative and positive-definite matrices

 $\mathcal{D}_+ := \{
ho \in \mathcal{H}_{++} \mid \operatorname{tr}(
ho) = 1 \}$ "density matrices"

 \mathcal{S}^N , \mathcal{H}^N block-column vectors with matrix-entries

Notation

$$\langle X, Y \rangle = \operatorname{tr}(X^*Y), \ X, Y \in \mathcal{H} \text{ (or } \mathcal{S})$$

$$\langle X, Y \rangle = \sum_{k=1}^{N} \operatorname{tr}(X_k^*Y_k) \text{ for } X, Y \in \mathcal{H}^N \ (\mathcal{S}^N)$$
For $X \in \mathcal{H}^N$ (or \mathcal{S}^N), $Y \in \mathcal{H}$ (or \mathcal{S}),

$$XY = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} Y := \begin{bmatrix} X_1Y \\ \vdots \\ X_NY \end{bmatrix},$$
and

$$YX = Y \left[egin{array}{c} X_1 \ dots \ X_N \end{array}
ight] := \left[egin{array}{c} YX_1 \ dots \ YX_N \ dots \ YX_N \end{array}
ight].$$

Some calculus

Note for functions:

$$\begin{split} f(x) &: g(x) \mapsto f(x)g(x) \\ \partial_x &: g(x) \mapsto \partial_x g(x) \\ [\partial_x, f(x)] &: g(x) \mapsto \partial_x f(x)g(x) - f(x)\partial_x g(x) = (\partial_x f(x))g(x) \end{split}$$

For matrices:

 $\partial_{L_i} X = [L_i, X] = [L_i X - X L_i]$

define the gradient operator for $L \in \mathcal{H}^N$

$$abla_L:\mathcal{H} o \mathcal{S}^N, \hspace{0.2cm} X\mapsto egin{bmatrix} L_1X-XL_1\ dots\ L_NX-XL_N\ \end{bmatrix}$$

Some calculus

$abla_L$ is a derivation

$$egin{aligned}
abla_L(XY+YX) &= (
abla_LX)Y + X(
abla_LY) \ &+ (
abla_LY)X + Y(
abla_LX), \ \ orall X, Y \in \mathcal{H}. \end{aligned}$$

dual is an analogue of the (negative) divergence operator:

$$abla_L^*: \mathcal{S}^N o \mathcal{H}, \,\, Y = \left[egin{array}{c} Y_1 \ dots \ Y_N \end{array}
ight] \mapsto \sum\limits_k^N L_k Y_k - Y_k L_k.$$

$$\langle
abla_L X, Y
angle = \langle X,
abla_L^* Y
angle$$

Lindblad term

Laplacian:

$$egin{aligned} &\Delta_L X := -
abla_L^*
abla_L X \ &= \sum_{k=1}^N (2L_k X L_k - X L_k L_k - L_k L_k X), \ X \in \mathcal{H}, \end{aligned}$$

Lindblad's equation:

$$\dot{
ho} + [iH,
ho] = \sum_{k=1}^{N} (L_k
ho L_k - rac{1}{2}
ho L_k L_k - rac{1}{2} L_k L_k
ho),$$

becomes

$$\dot{
ho}+
abla_{iH}
ho=rac{1}{2}\Delta_L
ho.$$

Continuity equation

 $\dot{
ho}=
abla_{L}^{*}M_{
ho}(v),$

with $M_{
ho}(v)$ a "multiplication" between ho and v momentum field "ho v" $= M_{
ho}(v) \in \mathcal{S}^N$.

choices of non-commutative multiplication:

- i) $\frac{1}{2}(
 ho v + v
 ho)$ ("anti-commutator")
- ii) $\int_0^1
 ho^s v
 ho^{1-s} ds$ (Kubo-Mori)

iii) $ho^{1/2}v
ho^{1/2}$

Case i) "anti-commutator"

Problem i):

$$egin{aligned} W_{2,a}(
ho_0,
ho_1)^2 &:= \min_{
ho\in\mathcal{D}_+,v\in\mathcal{S}^N} \int_0^1 \mathrm{tr}(
ho v^*v) dt, \ \dot{
ho} &= rac{1}{2}
abla^*_L (
ho v + v
ho), \
ho(0) &=
ho_0, \ \
ho(1) &=
ho_1, \end{aligned}$$

Note: $v^*v = \sum_{k=1}^N v_k^*v_k$ and $v \in \mathcal{S}^N$.

Duality

 $\lambda(\cdot)\in\mathcal{H}$ Lagrangian multiplier

$$\mathcal{L}(
ho,v,\lambda) = \int_0^1 \left\{ rac{1}{2} \operatorname{tr}(
ho v^* v) - \operatorname{tr}(\lambda(\dot{
ho} - rac{1}{2}
abla^*_L(
ho v + v
ho)))
ight\} dt$$

Point-wise minimization \Rightarrow

$$v_{opt}(t) = -\nabla_L \lambda(t).$$

Duality

If $\lambda(\cdot) \in \mathcal{H}$:

$$\dot{\lambda} = rac{1}{2} (
abla_L \lambda)^* (
abla_L \lambda) = rac{1}{2} \sum_{k=1}^N (
abla_L \lambda)^*_k (
abla_L \lambda)_k$$

and

$$\dot{
ho} = -rac{1}{2}
abla^*_L (
ho
abla_L \lambda +
abla_L \lambda
ho)$$

matches the marginals $ho(0)=
ho_0,
ho(1)=
ho_1$, then (
ho,v) with $v=abla_L\lambda$ solves Problem i)

Riemannian structure

$$\delta_j \in \mathrm{TangentSpace}_{
ho} = \{\delta \in \mathcal{H} \mid \mathrm{tr}(\delta) = 0\}, \,\, ext{for} \,\, j = 1,2$$

"Poisson" equation: δ 's $\Leftrightarrow \lambda$'s

$$\delta_j = -rac{1}{2}
abla^*_L (
ho
abla_L \lambda_j +
abla_L \lambda_j
ho)$$

and

$$\langle \delta_1, \delta_2
angle_
ho = rac{1}{2} \operatorname{tr}(
ho
abla \lambda_1^*
abla \lambda_2 +
ho
abla \lambda_2^*
abla \lambda_1)$$

Note: given $\delta,$ then $-\nabla_L\lambda$ is the unique minimizer of $\mathrm{tr}(\rho v^*v)$ over $v\in\mathcal{S}^N$ satisfying

$$\delta = rac{1}{2}
abla^*_L (
ho v + v
ho).$$

Riemannian metric

 $W_{2,a}(\cdot, \cdot)$ is a metric on \mathcal{D}_+

$$W_{2,a}(
ho_0,
ho_1)=\min_
ho\int_0^1\sqrt{\langle\dot
ho(t),\dot
ho(t)
angle_{
ho(t)}}dt,$$

over piecewise smooth path on \mathcal{D}_+

Computation – convex problem

momentum field u=
ho v, i.e. $u_i=
ho v_i$

$$\operatorname{tr}(
ho v^*v) = \sum_{k=1}^N \operatorname{tr}(
ho v_k^*v_k) = \operatorname{tr}(u^*
ho^{-1}u),$$

define $u_*:=[u_1,\ldots,u_N]^*$, then

$$egin{aligned} W_{2,a}(
ho_0,
ho_1)^2 &=& \min_{
ho,u} \int_0^1 \mathrm{tr}(u^*
ho^{-1}u) dt, \ \dot{
ho} &= rac{1}{2}
abla^*_L(u-u_*), \
ho(0) &=
ho_0, \
ho(1) &=
ho_1 \end{aligned}$$

Note: optimal u automatically satisfies u =
ho v for some $v \in \mathcal{S}^N$ no need for a constraint

Matrix transport with added spatial component

$$\mathcal{D}=\{
ho(\cdot)\mid
ho(x)\in\mathcal{H}_+ ext{ such that }\int_{\mathbb{R}^m} ext{tr}(
ho(x))dx=1\}.$$

Continuity equation: $w \in \mathcal{H}$ along space dimension

$$rac{\partial
ho}{\partial t}+rac{1}{2}
abla_x\cdot(
ho w+w
ho)-rac{1}{2}
abla_L^*(
ho v+v
ho)=0.$$

Metric:

$$egin{aligned} W_{2,a}(
ho_0,
ho_1)^2 &:= \min \int_0^1\!\!\int_{\mathbb{R}^m} \left\{ ext{tr}(
ho w^*w) + \gamma \operatorname{tr}(
ho v^*v)
ight\} dx dt, \ &
ho \in \mathcal{D}_+, w \in \mathcal{H}^m, v \in \mathcal{S}^N \ &rac{\partial
ho}{\partial t} + rac{1}{2}
abla_x \cdot (
ho w + w
ho) - rac{1}{2}
abla^*_L (
ho v + v
ho) = 0, \ &
ho(0,\cdot) =
ho_0, \ &
ho(1,\cdot) =
ho_1 \end{aligned}$$

Metric, computation, etc.

Same as before:

duality..

$$w_{\mathrm{opt}}(t,x) = -\nabla_x \lambda(t,x), \ v_{\mathrm{opt}} = -\frac{1}{\gamma} \nabla_L \lambda(t,x)$$

 $\delta_j \xrightarrow[\text{Poisson}]{} \lambda_j$'s

and then $\langle \delta_1, \delta_2
angle = \int$ "symmetrized kinetic energy" dx

metric computed via convex optimization, with q=
ho w, u=
ho v:

$$egin{aligned} &\min_{
ho,q,u} \int_0^1 \int_{\mathbb{R}^m} \left\{ \mathrm{tr}(q^*
ho^{-1}q) + \gamma\,\mathrm{tr}(u^*
ho^{-1}u)
ight\} dxdt \ &rac{\partial
ho}{\partial t} + rac{1}{2}
abla_x \cdot (q+q_*) - rac{1}{2}
abla_L^*(u-u_*) = 0, \ &
ho(0,\cdot) =
ho_0, \ \
ho(1,\cdot) =
ho_1 \end{aligned}$$

Gradient flow of Entropy

$$S(
ho) = -\operatorname{tr}(
ho\log
ho).$$

then

$$egin{array}{rll} \displaystyle rac{dS(
ho(t))}{dt} &=& \ldots \ &=& \displaystyle -rac{1}{2} {
m tr} (
ho v^*
abla_L \log
ho +
ho (
abla_L \log
ho)^* v), \end{array}$$

 \Rightarrow steepest ascent

$$v = -
abla_L \log
ho$$

 \Rightarrow gradient flow

$$\dot{
ho} = -rac{1}{2}
abla^{st}_L \left\{
ho,
abla_L \log
ho
ight\}$$

Note: this is nonlinear, different from Lindblad

Note: similar with space component..

Case ii) "logarithmic"

Problem ii):

$$egin{aligned} W_{2,b}(
ho_0,
ho_1)^2 &:= \min_{
ho\in\mathcal{D}_+,v\in\mathcal{S}^N} \int_0^1 \int_0^1 \mathrm{tr}(v^*
ho^s v
ho^{1-s}) ds dt \ \dot{
ho} &=
abla_L^* \int_0^1
ho^s v
ho^{1-s} ds, \
ho(0) &=
ho_0, \ \
ho(1) &=
ho_1. \end{aligned}$$

Note: computations?

duality

If $\lambda(\cdot) \in \mathcal{H}$, ρ satisfy $\dot{\lambda} = \int_0^1 \int_0^1 \int_0^{\alpha} \left\{ \frac{\rho^{\alpha-\beta}}{(1-s)I + s\rho} (\nabla_L \lambda)^* \rho^{1-\alpha} \nabla_L \lambda \frac{\rho^{\beta}}{(1-s)I + s\rho} \right\} d\beta d\alpha ds$ $\dot{\rho} + \nabla_L^* \int_0^1 \rho^s \nabla_L(\lambda)) \rho^{1-s} ds = 0,$ $\rho(0) = \rho_0, \quad \rho(1) = \rho_1.$

then $(
ho, abla_L(\lambda))$ is optimal.

Gradient flow of Entropy

$$egin{array}{ll} \displaystyle rac{dS(
ho(t))}{dt} &=& ... \ &=& -\operatorname{tr}((
abla_L\log
ho)^*\int_0^1
ho^s v
ho^{1-s}ds), \end{array}$$

 \Rightarrow greatest ascent direction $v = -\nabla_L \log \rho$.

non-commutative analog of: $\partial_x \rho = \rho \; \partial_x (\log \rho)$):

$$abla_L
ho = \int_0^1
ho^s (
abla_L \log
ho)
ho^{1-s} ds$$

Gradient flow:

$$\dot{
ho} = -
abla_L^* \int_0^1
ho^s (
abla_L \log
ho)
ho^{1-s} ds = -
abla_L^*
abla_L
ho = \Delta_L
ho,$$

Linear heat equation (now Lindblad) just as in the scalar case!

Recap

With $M_
ho(v)=
ho v+v
ho$:

metric computable via convex optimization gradient flow of entropy: nonlinear

With $M_
ho(v)=\int_0^1
ho^s v
ho^{1-s}ds$:

metric computability questionable gradient flow of entropy: linear, Lindblad

Strong duality & conservation of Hamiltonian

Y. Chen, Wilfrid Gangbo, TTG & A. Tannenbaum

"On the Matrix Monge-Kantorovich Problem, arXiv 2017

Strong duality: define $F(
ho,m):=rac{1}{2}\langle m,m
ho^{-1}
angle$

Let
$$\rho_0, \rho_1 \in \mathcal{D}_+$$
. Then

$$\min_{(\rho,m)\in\mathcal{A}} \left\{ \int_0^1 F(\rho,m) dt \mid \rho(0) = \rho_0, \ \rho(1) = \rho_1, \quad \text{and} \quad \dot{\rho} = \frac{1}{2} \nabla_L^* (m - m_*) \right\}$$

$$= \sup_{\lambda \in \mathcal{B}} \left\{ \langle \lambda(1); \rho_1 \rangle - \langle \lambda(0); \rho_0 \rangle \mid \dot{\lambda} + \frac{1}{2} (\nabla_L \lambda)^* (\nabla_L \lambda) \leq 0 \quad \text{a.e. on} \quad (0,1) \right\}.$$

 $egin{aligned} \mathcal{A} &:= \{
ho \in L^2(0,1;\mathcal{H}) \mid \, ext{tr}(
ho) \equiv 1\} imes L^2(0,1;\mathbb{C}^{nN imes n}) \ \mathcal{B} &:= W^{1,2}(0,1;\mathcal{H}) \end{aligned}$

Conservation of the Hamiltonian:

Let $ho_0,
ho_1 \in \mathcal{D}_+$ and (
ho, m) a minimizer as before. Then: (i) $F(
ho(t), m(t)) \equiv F(
ho(0), m(0)).$

(ii) If $0 \le s \le t \le 1$ then $W_2(
ho(s),
ho(t)) = (t-s)\sqrt{2F(
ho(t),m(t))} = (t-s)W_2(
ho_0,
ho_1).$

(iii) If we further assume that $\lambda \in W^{1,1}(0,1;\mathcal{H})$ is a maximizer of the dual, then

$$\langle \lambda(t);
ho(t)
angle = \langle \lambda(0);
ho_0
angle + rac{W_2(
ho_0,
ho(t))^2}{2t}, \ \ t\in(0,1]$$

unbalanced transport

J.-D. Benamou and Y. Brenier "A computational fluid mechanics solution ..." L^2 and Wasserstein

L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard "An interpolating ... optimal transport and Fisher-Rao"

S. Kondratyev, L. Monsaingeon, and D. Vorotnikov "A new optimal trasnport distance...," OMT and Fisher-Rao

M. Liero, A. Mielke, Giuseppe Savaré

"Optimal entropy-transport problems and a new Hellinger-Kantorovich distance.."

unbalanced: trace $\rho_0 \neq$ trace ρ_1

arXiv: Y. Chen, TTG & A. Tannenbaum

"Interpolation of Matrix-Valued Measures: The Unbalanced Case

Interpolation between Wasserstein and Bures:

$$egin{aligned} W_{2,FR}(
ho_0,
ho_1)^2 &:= & \inf_{
ho\in\mathcal{H}_{++},v\in\mathcal{S}^N,r\in\mathcal{H}} \int_0^1 \{ ext{tr}(
ho v^*v)+lpha ext{tr}(
ho r^2)\}dt \ & \dot
ho &= rac{1}{2}
abla^*_L(
ho v+v
ho)+rac{1}{2}(
ho r+r
ho), \ &
ho(0) &=
ho_0, \ \
ho(1) &=
ho_1. \end{aligned}$$

Interpolation between Wasserstein and Frobenius:

$$egin{aligned} W_{2,F}(
ho_0,
ho_1)^2 &:= & \inf_{
ho\in\mathcal{H}_{++},v\in\mathcal{S}^N,s\in\mathcal{H}}\int_0^1\{ ext{tr}(
ho v^*v)+lpha ext{tr}(s^2)\}dt\ &\dot
ho &= rac{1}{2}
abla_L^*(
ho v+v
ho)+s,\ &
ho(0) &=
ho_0, \ \
ho(1) &=
ho_1. \end{aligned}$$

• can be turned into convex problems as usual...

transport of vector-valued distributions

$$ho=[
ho_1,
ho_2,\cdots,
ho_\ell]^T$$
, on \mathbb{R}^N_+ $\sum_{i=1}^\ell\int_{\mathbb{R}^N}
ho_i(x)dx=1,$

continuity equation:

$$rac{\partial
ho_i}{\partial t} +
abla_x \cdot (\underbrace{
ho_i v_i}_{u_i}) - \sum_{j
eq i} (\underbrace{
ho_j w_{ji}}_{p_{ji}} -
ho_i w_{ij}) = 0, \hspace{2mm} orall i = 1, \dots, \ell.$$

$$W_2(\mu,
u)^2 := \inf_{
ho,v,w} \int_0^1 \int_{\mathbb{R}^N} \left\{ \sum_{i=1}^\ell
ho_i(t,x) \|v_i(t,x)\|^2 + \gamma \sum_{i,j=1}^\ell
ho_i w_{ij}^2(t,x)
ight\} dx dt$$

– flows and metrics

for matrix and vector-valued distributions for problems in signal analysis

thank you for your attention