On the Total Variation Wasserstein Gradient Flow

Guillaume Carlier
Université Paris-Dauphine

Clarice Poon
University of Cambridge

May 2, 2017

Total variation gradient flows

Rudin, Osher and Fatemi (1992): Given $u_{0} \in L^{2}(\Omega) \cap B V(\Omega)$, let

$$
u_{1} \in \underset{u \in B V(\Omega)}{\operatorname{argmin}}|D u|(\Omega)+\frac{1}{2 \tau}\left\|u-u_{0}\right\|_{L^{2}}^{2} .
$$

The Euler-Lagrange equation is

$$
\frac{u_{1}-u_{0}}{\tau} \in-\partial\left|D u_{1}\right|=\operatorname{div}\left(\frac{D u_{1}}{\left|D u_{1}\right|}\right) .
$$

Total variation gradient flows

Rudin, Osher and Fatemi (1992): Given $u_{0} \in L^{2}(\Omega) \cap B V(\Omega)$, let

$$
u_{1} \in \underset{u \in B V(\Omega)}{\operatorname{argmin}}|D u|(\Omega)+\frac{1}{2 \tau}\left\|u-u_{0}\right\|_{L^{2}}^{2} .
$$

The Euler-Lagrange equation is

$$
\frac{u_{1}-u_{0}}{\tau} \in-\partial\left|D u_{1}\right|=\operatorname{div}\left(\frac{D u_{1}}{\left|D u_{1}\right|}\right) .
$$

The PDE associated with the L^{2} gradient descent of the functional $u \mapsto|D u|$ is

$$
\partial_{t} u=\operatorname{div}\left(\frac{D u}{|D u|}\right), \quad \text { on }(0, T) \times \Omega,\left.\quad u\right|_{t=0}=u_{0}
$$

with boundary condition

$$
\nabla u \cdot \nu=0 \text { on } \partial \Omega \text {. }
$$

Studied by Andreu, Ballester, Caselles and Mazón (2001), Bellettini, Caselles and Novaga (2002), Evans and Spruck (1992), ...

Total variation gradient flows

Rudin, Osher and Fatemi (1992): Given $u_{0} \in L^{2}(\Omega) \cap B V(\Omega)$, let

$$
u_{1} \in \underset{u \in B V(\Omega)}{\operatorname{argmin}}|D u|(\Omega)+\frac{1}{2 \tau}\left\|u-u_{0}\right\|_{H}^{2} .
$$

The Euler-Lagrange equation is

$$
\frac{u_{1}-u_{0}}{\tau} \in-\partial\left|D u_{1}\right|=\operatorname{div}\left(\frac{D u_{1}}{\left|D u_{1}\right|}\right) .
$$

The PDE associated with the L^{2} gradient descent of the functional $u \mapsto|D u|$ is

$$
\partial_{t} u=\operatorname{div}\left(\frac{D u}{|D u|}\right), \quad \text { on }(0, T) \times \Omega,\left.\quad u\right|_{t=0}=u_{0}
$$

with boundary condition

$$
\nabla u \cdot \nu=0 \text { on } \partial \Omega \text {. }
$$

Studied by Andreu, Ballester, Caselles and Mazón (2001), Bellettini, Caselles and Novaga (2002), Evans and Spruck (1992), ...

Studies of the TV gradient flow with other Hilbertian norms have been popular, in particular, the H^{-1} norm (Giga and Giga, 2010).

The total variation Wasserstein gradient flow

We consider the fourth-order nonlinear evolution equation

$$
\partial_{t} \rho+\operatorname{div}\left(\rho \nabla \operatorname{div}\left(\frac{\nabla \rho}{|\nabla \rho|}\right)\right)=0, \text { on }(0, T) \times \Omega, \quad \rho_{\mid t=0}=\rho_{0},
$$

supplemented by the zero-flux boundary condition

$$
\rho \nabla \operatorname{div}\left(\frac{\nabla \rho}{|\nabla \rho|}\right) \cdot \nu=0 \text { on } \partial \Omega,
$$

The total variation Wasserstein gradient flow

We consider the fourth-order nonlinear evolution equation

$$
\partial_{t} \rho+\operatorname{div}\left(\rho \nabla \operatorname{div}\left(\frac{\nabla \rho}{|\nabla \rho|}\right)\right)=0, \text { on }(0, T) \times \Omega, \quad \rho_{\mid t=0}=\rho_{0},
$$

supplemented by the zero-flux boundary condition

$$
\rho \nabla \operatorname{div}\left(\frac{\nabla \rho}{|\nabla \rho|}\right) \cdot \nu=0 \text { on } \partial \Omega,
$$

Applications and numerical solvers:

- Burger, Franek \& Schönlieb. Regularized regression and density estimation based on optimal transport. 2012.
- Düring \& Schönlieb. A high-contrast 4th order PDE from imaging: numerical solution by ADI splitting. 2012.
- Benning \& Calatroni \& Düring \& Schönlieb. A primal-dual approach for a total variation Wasserstein flow. 2013.

Relation to the TV Wasserstein variational problem: JKO scheme

Due to the work of Jordan, Kinderlehrer and Otto for the Fokker-Planck equation,

$$
\partial_{t} \rho+\operatorname{div}\left(\rho \nabla\left(-E^{\prime}(\rho)\right)\right)=0, \text { on }(0, T) \times \Omega, \quad \rho_{\left.\right|_{t=0}}=\rho_{0}
$$

with zero-flux boundary condition can be obtained, at the limit $\tau \rightarrow 0^{+}$, of the JKO Euler implicit scheme:

$$
\rho_{0}^{\tau}=\rho_{0}, \rho_{k+1}^{\tau} \in \operatorname{argmin}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{k}^{\tau}, \rho\right)+E(\rho), \rho \in \operatorname{BV}(\Omega) \cap \mathcal{P}_{2}(\bar{\Omega})\right\}
$$

where $\mathcal{P}_{2}(\bar{\Omega})$ is the space of Borel probability measures $\bar{\Omega}$ with finite second moment and W_{2} is the quadratic Wasserstein distance:

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right):=\inf _{\gamma \in \Pi\left(\rho_{0}, \rho_{1}\right)}\left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \mathrm{~d} \gamma(x, y)\right\},
$$

$\Pi\left(\rho_{0}, \rho_{1}\right)$ denoting the set of transport plans between ρ_{0} and ρ_{1} i.e. the set of probability measures on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ having ρ_{0} and ρ_{1} as marginals.

Relation to the TV Wasserstein variational problem: JKO scheme

Due to the work of Jordan, Kinderlehrer and Otto for the Fokker-Planck equation,

$$
\partial_{t} \rho+\operatorname{div}\left(\rho \nabla \operatorname{div}\left(\frac{\nabla \rho}{|\nabla \rho|}\right)\right)=0, \text { on }(0, T) \times \Omega, \quad \rho_{\mid t=0}=\rho_{0}
$$

with zero-flux boundary condition can be obtained, at the limit $\tau \rightarrow 0^{+}$, of the JKO Euler implicit scheme:

$$
\rho_{0}^{\tau}=\rho_{0}, \rho_{k+1}^{\tau} \in \operatorname{argmin}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{k}^{\tau}, \rho\right)+|D \rho|(\Omega), \rho \in \operatorname{BV}(\Omega) \cap \mathcal{P}_{2}(\bar{\Omega})\right\}
$$

where $\mathcal{P}_{2}(\bar{\Omega})$ is the space of Borel probability measures $\bar{\Omega}$ with finite second moment and W_{2} is the quadratic Wasserstein distance:

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right):=\inf _{\gamma \in \Pi\left(\rho_{0}, \rho_{1}\right)}\left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \mathrm{~d} \gamma(x, y)\right\}
$$

$\Pi\left(\rho_{0}, \rho_{1}\right)$ denoting the set of transport plans between ρ_{0} and ρ_{1} i.e. the set of probability measures on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ having ρ_{0} and ρ_{1} as marginals.

This talk

In this talk, we present a study of solutions to the variational problem and its gradient flow.
(1) Properties of the JKO iterates:
(1) a maximum principle.
(2) establish the optimality conditions.
(3) regularity of the level sets.
(1) analysis for step function initial data.
(2) Convergence of the JKO scheme as $\tau \rightarrow 0$ in 1D, for strictly positive initial density ρ_{0}.

Some notation and definitions

Given an open subset Ω of \mathbb{R}^{d} and $\rho \in L^{1}(\Omega)$,

- the total variation of ρ is given by

$$
J(\rho):=|D \rho|(\Omega)=\sup \left\{\int_{\Omega} \operatorname{div}(z) \rho: z \in C_{c}^{1}(\Omega),\|z\|_{L^{\infty}} \leq 1\right\}
$$

and $\operatorname{BV}(\Omega)$ is by definition the subspace of $L^{1}(\Omega)$ consisting of those ρ^{\prime} s in $L^{1}(\Omega)$ such that $J(\rho)$ is finite.

- By defining

$$
\Gamma_{d}:=\left\{\xi \in L^{d}(\Omega): \exists z \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right),\|z\|_{L \infty} \leq 1, \operatorname{div}(z)=\xi, \quad z \cdot \nu=0 \text { on } \partial \Omega\right\}
$$

we have that Γ_{d} is closed and convex in $L^{d}(\Omega)$ and $J: L^{d /(d-1)} \rightarrow[0, \infty)$ is its support function:

$$
J(\mu)=\sup _{\xi \in \Gamma_{d}} \int_{\Omega} \xi \mu, \quad \forall \mu \in L^{\frac{d}{d-1}}(\Omega) .
$$

- the subdifferential of J at ρ is

$$
\partial J(\rho)=\left\{\xi \in \Gamma_{d}: \int_{\Omega} \xi \rho=J(\rho)\right\}
$$

Some examples in 1D

Let

$$
\Phi(\rho):=\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{0}, \rho\right)+J(\rho), \quad \forall \rho \in \mathrm{BV}\left(\mathbb{R}^{d}\right) \cap \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

A sufficient optimality condition: ρ_{1} is the minimizing solution if there exists $z \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ with $\|z\|_{L^{\infty}} \leq 1, \operatorname{div}(z) \in L^{d}$ and $J\left(\rho_{1}\right)=\int_{\mathbb{R}^{d}} \operatorname{div}(z) \rho_{1}$ such that

$$
\frac{\varphi}{\tau} \geq-\operatorname{div}(z), \quad \text { with equality } \rho_{1} \text {-a.e. }
$$

where φ is a Kantorovich potential from ρ_{1} to ρ_{0}.

Characteristic function

Let $\rho_{0}:=\frac{1}{2 \alpha_{0}} \chi_{\left[-\alpha_{0}, \alpha_{0}\right]}$. Then, $\rho_{1}:=\frac{1}{2 \alpha_{1}} \chi_{\left[-\alpha_{1}, \alpha_{1}\right]}$ where $\frac{\alpha_{1}^{2}\left(\alpha_{1}-\alpha_{0}\right)}{\tau}=3$.

Setting $\rho^{\tau}(t)=\rho_{k+1}^{\tau}$ for $t \in(k \tau,(k+1) \tau]$,

- ρ^{τ} converges to $\rho(t,)=.\frac{1}{2 \alpha(t)} \chi_{[-\alpha(t), \alpha(t)]}$ with $\alpha(t)=\left(\alpha_{0}^{3}+9 t\right)^{1 / 3}$ in $L^{\infty}\left((0, T),\left(\mathcal{P}_{2}(\mathbb{R}), W_{2}\right)\right)$ and in $L^{p}((0, T) \times \mathbb{R})$ for any $p \in(1, \infty)$.
- Moreover, ρ solves the continuity equation $\partial_{t} \rho+\left(-\rho z_{x x}\right)_{x}=0$ where

$$
z(t, x)=-\frac{\alpha^{\prime}(t)}{6 \alpha(t)} x^{3}+\frac{3}{2 \alpha(t)} x, \quad x \in[-\alpha(t), \alpha(t)]
$$

Instantaneous creation of discontinuities

Let $\rho_{0}=(1-|x|)_{+}$. Then one can show that

$$
\rho_{1}(x)= \begin{cases}1-\beta / 2 & \text { if }|x|<\beta \\ (1-|x|)_{+} & \text {if }|x| \geq \beta\end{cases}
$$

for $\beta \in(0,1)$.

This example shows that discontinuities may appear at the very first iteration of the TV-JKO scheme.

Instantaneous creation of discontinuities

Let $\rho_{0}=(1-|x|)_{+}$. Then one can show that

$$
\rho_{1}(x)= \begin{cases}1-\beta / 2 & \text { if }|x|<\beta \\ (1-|x|)_{+} & \text {if }|x| \geq \beta\end{cases}
$$

for $\beta \in(0,1)$.

This example shows that discontinuities may appear at the very first iteration of the TV-JKO scheme.

One step of the JKO flow

- Let $\Omega \subset \mathbb{R}^{d}$ be a convex open bounded subset.
- $\mathcal{P}_{\mathrm{ac}}(\Omega)$ the set of Borel probability measures on Ω that are absolutely continuous with respect to the Lebesgue measure

Given $\rho_{0} \in \mathcal{P}_{\mathrm{ac}}(\Omega)$ and $\tau>0$, we consider one step of the TV-JKO scheme:

$$
\inf _{\rho \in \mathcal{P}_{\mathrm{ac}}(\Omega)}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{0}, \rho\right)+J(\rho)\right\} .
$$

- Existence of solutions follows by the direct method of the calculus of variations.
- Since J is convex and $\rho \mapsto W_{2}^{2}\left(\rho, \rho_{0}\right)$ is strictly convex whenever $\rho_{0} \in \mathcal{P}_{\text {ac }}(\Omega)$ (Santambrogio, 2015), the minimizer is in fact unique, and in the sequel we denote it by ρ_{1}.

Maximum principle

Theorem (Carlier \& P. 2017)
Let $\rho_{0} \in \mathcal{P}_{\mathrm{ac}}(\Omega) \cap L^{\infty}(\Omega)$ and let ρ_{1} be the solution of $\left(\mathcal{P}_{\tau}\right)$, then $\rho_{1} \in L^{\infty}(\Omega)$ with

$$
\left\|\rho_{1}\right\|_{L^{\infty}(\Omega)} \leq\left\|\rho_{0}\right\|_{L^{\infty}(\Omega)}
$$

Maximum principle

Theorem (Carlier \& P. 2017)

Let $\rho_{0} \in \mathcal{P}_{\mathrm{ac}}(\Omega) \cap L^{\infty}(\Omega)$ and let ρ_{1} be the solution of $\left(\mathcal{P}_{\tau}\right)$, then $\rho_{1} \in L^{\infty}(\Omega)$ with

$$
\left\|\rho_{1}\right\|_{L^{\infty}(\Omega)} \leq\left\|\rho_{0}\right\|_{L^{\infty}(\Omega)} .
$$

TOOL 1 - BV estimate by De Philippis, Mészáros, Santambrogio \& Velichkov (2016): given $\mu \in \mathcal{P}_{\mathrm{ac}}(\Omega) \cap \mathrm{BV}(\Omega)$, and $G: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{+\infty\}$, proper convex l.s.c., the solution of

$$
\hat{\rho} \in \operatorname{argmin}_{\rho \in \mathcal{P}_{\mathrm{ac}}(\Omega)}\left\{\frac{1}{2} W_{2}^{2}(\mu, \rho)+\int_{\Omega} G(\rho(x)) \mathrm{d} x\right\}
$$

is BV with the bound $J(\hat{\rho}) \leq J(\mu)$.

Maximum principle

Theorem (Carlier \& P. 2017)

Let $\rho_{0} \in \mathcal{P}_{\mathrm{ac}}(\Omega) \cap L^{\infty}(\Omega)$ and let ρ_{1} be the solution of $\left(\mathcal{P}_{\tau}\right)$, then $\rho_{1} \in L^{\infty}(\Omega)$ with

$$
\left\|\rho_{1}\right\|_{L^{\infty}(\Omega)} \leq\left\|\rho_{0}\right\|_{L^{\infty}(\Omega)} .
$$

TOOL 1 - BV estimate by De Philippis, Mészáros, Santambrogio \& Velichkov (2016): given $\mu \in \mathcal{P}_{\text {ac }}(\Omega) \cap \operatorname{BV}(\Omega)$, and $G: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{+\infty\}$, proper convex l.s.c., the solution of

$$
\hat{\rho} \in \operatorname{argmin}_{\rho \in \mathcal{P}_{\mathrm{ac}}(\Omega)}\left\{\frac{1}{2} W_{2}^{2}(\mu, \rho)+\int_{\Omega} G(\rho(x)) \mathrm{d} x\right\}
$$

is BV with the bound $J(\hat{\rho}) \leq J(\mu)$.

Choose

$$
G(\rho):=\left\{\begin{array}{ll}
0 & \text { if } \rho \in K, \\
+\infty & \text { otherwise, }
\end{array} \quad K:=\left\{\rho \in \mathcal{P}_{\mathrm{ac}}(\Omega): \rho \leq\left\|\rho_{0}\right\|_{L \infty(\Omega)}\right\}\right.
$$

Let $\hat{\rho}_{1}=\operatorname{argmin}_{\rho \in K} W_{2}^{2}\left(\rho_{1}, \rho\right)$. Then, $J\left(\hat{\rho}_{1}\right) \leq J\left(\rho_{1}\right)$. Is $W_{2}\left(\hat{\rho}_{1}, \rho_{0}\right) \leq W_{2}\left(\rho_{1}, \rho_{0}\right)$?

Maximum principle

Tool II: generalized geodesics
Given $\bar{\mu}, \mu_{0}$ and μ_{1} in $\mathcal{P}_{\mathrm{ac}}(\Omega)$, and denoting by T_{0} (respectively T_{1}) the optimal transport
(Brenier) map between $\bar{\mu}$ and μ_{0} (respectively μ_{1}), the generalized geodesic with base $\bar{\mu}$ joining μ_{0} to μ_{1} is by definition the curve of measures:

$$
\mu_{t}:=\left((1-t) T_{0}+t T_{1}\right)_{\#} \bar{\mu}, t \in[0,1]
$$

Lemma (Ambrosio, Gigli \& Savaré (2008))

Suppose that K is a nonempty subset of $\mathcal{P}_{\mathrm{ac}}(\Omega)$ such that: for $\mu_{0} \in K, \mu_{1} \in \mathcal{P}_{\mathrm{ac}}(\Omega)$, $\hat{\mu}_{1} \in \operatorname{argmin}_{\mu \in K} W_{2}^{2}\left(\mu_{1}, \mu\right)$ implies that the generalized geodesic joining μ_{0} to $\hat{\mu}_{1}$ with base μ_{1} remains in K. Then,

$$
W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{1}\right)+W_{2}^{2}\left(\mu_{1}, \hat{\mu}_{1}\right) \leq W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)
$$

Maximum principle

Tool II: generalized geodesics
Given $\bar{\mu}, \mu_{0}$ and μ_{1} in $\mathcal{P}_{\mathrm{ac}}(\Omega)$, and denoting by T_{0} (respectively T_{1}) the optimal transport (Brenier) map between $\bar{\mu}$ and μ_{0} (respectively μ_{1}), the generalized geodesic with base $\bar{\mu}$ joining μ_{0} to μ_{1} is by definition the curve of measures:

$$
\mu_{t}:=\left((1-t) T_{0}+t T_{1}\right)_{\#} \bar{\mu}, t \in[0,1] .
$$

Lemma (Ambrosio, Gigli \& Savaré (2008))

Suppose that K is a nonempty subset of $\mathcal{P}_{\mathrm{ac}}(\Omega)$ such that: for $\mu_{0} \in K, \mu_{1} \in \mathcal{P}_{\mathrm{ac}}(\Omega)$, $\hat{\mu}_{1} \in \operatorname{argmin}_{\mu \in K} W_{2}^{2}\left(\mu_{1}, \mu\right)$ implies that the generalized geodesic joining μ_{0} to $\hat{\mu}_{1}$ with base μ_{1} remains in K.
Then,

$$
W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{1}\right)+W_{2}^{2}\left(\mu_{1}, \hat{\mu}_{1}\right) \leq W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) .
$$

Valid choices:

- $K=\left\{\mu ;\|\mu\|_{L^{p}} \leq C\right\}$ for any $p \in[1, \infty]$.

Maximum principle

Tool II: generalized geodesics
Given $\bar{\mu}, \mu_{0}$ and μ_{1} in $\mathcal{P}_{\mathrm{ac}}(\Omega)$, and denoting by T_{0} (respectively T_{1}) the optimal transport (Brenier) map between $\bar{\mu}$ and μ_{0} (respectively μ_{1}), the generalized geodesic with base $\bar{\mu}$ joining μ_{0} to μ_{1} is by definition the curve of measures:

$$
\mu_{t}:=\left((1-t) T_{0}+t T_{1}\right)_{\#} \bar{\mu}, t \in[0,1] .
$$

Lemma (Ambrosio, Gigli \& Savaré (2008))

Suppose that K is a nonempty subset of $\mathcal{P}_{\mathrm{ac}}(\Omega)$ such that: for $\mu_{0} \in K, \mu_{1} \in \mathcal{P}_{\mathrm{ac}}(\Omega)$, $\hat{\mu}_{1} \in \operatorname{argmin}_{\mu \in K} W_{2}^{2}\left(\mu_{1}, \mu\right)$ implies that the generalized geodesic joining μ_{0} to $\hat{\mu}_{1}$ with base μ_{1} remains in K.
Then,

$$
W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{1}\right)+W_{2}^{2}\left(\mu_{1}, \hat{\mu}_{1}\right) \leq W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) .
$$

Valid choices:

- $K=\left\{\mu ;\|\mu\|_{L^{p}} \leq C\right\}$ for any $p \in[1, \infty]$.
- In 1D, $K:=\{\rho \in \mathcal{P} \mathrm{ac}(\Omega): \rho \geq \alpha\}$.

Proposition (Minimum principle in 1D, Carlier \& P. 2017)

Assume that $d=1$, that Ω is a bounded interval and that $\rho_{0} \geq \alpha>0$ a.e. on Ω then the solution ρ_{1} of $\left(\mathcal{P}_{\tau}\right)$ also satifies $\rho_{1} \geq \alpha>0$ a.e. on Ω.

Optimality condition

By considering directly the first order condition of Φ, one can see that there exists a Kantorovich potential φ from ρ_{1} to ρ_{0} such that

$$
\tau^{-1} \int \varphi \mu \leq J(\mu)
$$

for all $\mu \in \mathcal{M}(X)$ such that $\operatorname{Supp}(\mu) \subset \operatorname{Supp}\left(\rho_{1}\right)=: \Omega_{1}$, and with equality when $\mu=\rho_{1}$.

Problems:

- Assuming that $\partial \Omega_{1}$ is Lipschitz, one deduce that on $\Omega_{1}, \tau^{-1} \varphi=\operatorname{div}(z)$ with $\|z\|_{L \infty} \leq 1$.
- How should we define $\operatorname{div}(z)$ outside of Ω_{1} ? Which function space does it belong to?

Entropic approximation

Given $h>0$ we consider the following approximation of $\left(\mathcal{P}_{\tau}\right)$:

$$
\begin{equation*}
\inf _{\rho \in \mathcal{P}(\Omega)}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{0}, \rho\right)+J(\rho)+h E(\rho)\right\} \tag{h}
\end{equation*}
$$

where

$$
E(\rho):=\int_{\Omega} \rho(x) \log (\rho(x)) \mathrm{d} x .
$$

$\left(\mathcal{E}_{h}\right)$ admits a unique solution ρ_{h} and since $J\left(\rho_{h}\right)$ is bounded, up to a subsequence, ρ_{h} converges as $h \rightarrow 0$ a.e. and strongly in $L^{p}(\Omega)$ for every $p \in\left[1, \frac{d}{d-1}\right)$ to ρ_{1} the solution of $\left(\mathcal{P}_{\tau}\right)$.

Entropic approximation

Given $h>0$ we consider the following approximation of $\left(\mathcal{P}_{\tau}\right)$:

$$
\begin{equation*}
\inf _{\rho \in \mathcal{P}(\Omega)}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{0}, \rho\right)+J(\rho)+h E(\rho)\right\} \tag{h}
\end{equation*}
$$

where

$$
E(\rho):=\int_{\Omega} \rho(x) \log (\rho(x)) \mathrm{d} x
$$

$\left(\mathcal{E}_{h}\right)$ admits a unique solution ρ_{h} and since $J\left(\rho_{h}\right)$ is bounded, up to a subsequence, ρ_{h} converges as $h \rightarrow 0$ a.e. and strongly in $L^{p}(\Omega)$ for every $p \in\left[1, \frac{d}{d-1}\right)$ to ρ_{1} the solution of $\left(\mathcal{P}_{\tau}\right)$.

Lemma

There is an $\alpha_{h}>0$ such that $\rho_{h} \geq \alpha_{h}$ a.e.. In particular, $\beta_{h}:=h \log \left(\rho_{h}\right)$ is uniformly bounded from below and is bounded in $L^{p}(\Omega)$ for any $p \geq 1$. Moreover, $\max \left(0, \beta_{h}\right)$ converges to 0 strongly in L^{p}.

The optimality condition

We then have the following characterization for ρ_{h} :

Proposition (Carlier \& P. 2017)

There exists $z_{h} \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ such that $\operatorname{div}\left(z_{h}\right) \in L^{p}(\Omega)$ for every $p \in[1,+\infty),\left\|z_{h}\right\|_{L \infty} \leq 1$, $z_{h} \cdot \nu=0$ on $\partial \Omega, J\left(\rho_{h}\right)=\int_{\Omega} \operatorname{div}\left(z_{h}\right) \rho_{h}$ and

$$
\frac{\varphi_{h}}{\tau}+\operatorname{div}\left(z_{h}\right)=-h \log \left(\rho_{h}\right), \text { a.e. in } \Omega
$$

where φ_{h} is the Kantorovich potential between ρ_{h} and ρ_{0}.

The optimality condition

We then have the following characterization for ρ_{h} :

Proposition (Carlier \& P. 2017)

There exists $z_{h} \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ such that $\operatorname{div}\left(z_{h}\right) \in L^{p}(\Omega)$ for every $p \in[1,+\infty),\left\|z_{h}\right\|_{L^{\infty}} \leq 1$, $z_{h} \cdot \nu=0$ on $\partial \Omega, J\left(\rho_{h}\right)=\int_{\Omega} \operatorname{div}\left(z_{h}\right) \rho_{h}$ and

$$
\frac{\varphi_{h}}{\tau}+\operatorname{div}\left(z_{h}\right)=-h \log \left(\rho_{h}\right), \text { a.e. in } \Omega
$$

where φ_{h} is the Kantorovich potential between ρ_{h} and ρ_{0}.

By taking the limit as $h \rightarrow 0$:

Theorem (Carlier \& P. 2017)

If ρ_{1} solves $\left(\mathcal{P}_{\tau}\right)$, there exists φ a Kantorovich potential between ρ_{0} and ρ_{1} (in particular id $-\nabla \varphi$ is the optimal transport between ρ_{1} and $\left.\rho_{0}\right), \beta \in L^{\infty}(\Omega), \beta \geq 0$ and $z \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ such that

$$
\frac{\varphi}{\tau}+\operatorname{div}(z)=\beta
$$

and

$$
\beta \rho_{1}=0, \quad\|z\|_{L \infty} \leq 1, J\left(\rho_{1}\right)=\int_{\Omega} \operatorname{div}(z) \rho_{1}, z \cdot \nu=0 \text { on } \partial \Omega .
$$

Variational curvatures and regularity of level sets $\operatorname{div}(z) \in L^{\infty}$ implies boundary regularity of the level sets of ρ_{1} :

Variational curvatures and regularity of level sets

 $\operatorname{div}(z) \in L^{\infty}$ implies boundary regularity of the level sets of ρ_{1} :- Anzellotti (1983): We can interpret $z \cdot D \rho_{1}$ as a Radon measure and $\left|D \rho_{1}\right|=-z \cdot D \rho_{1}$.

Variational curvatures and regularity of level sets

 $\operatorname{div}(z) \in L^{\infty}$ implies boundary regularity of the level sets of ρ_{1} :- Anzellotti (1983): We can interpret $z \cdot D \rho_{1}$ as a Radon measure and $\left|D \rho_{1}\right|=-z \cdot D \rho_{1}$.
- Barozzi, Massari, Tamanini (1975-1995): A set of finite perimeter $E \subset \Omega \subset \mathbb{R}^{d}$ is said to have variational mean curvature $g \in L^{1}(\Omega)$ precisely when E minimizes

$$
\min _{F \subset \Omega} \operatorname{Per}(F)+\int_{F} g .
$$

If, in addition, $g \in L^{p}(\Omega)$ with $p \in(d,+\infty]$, then the reduced boundary $\partial^{*} E$ is a (d-1)-dimensional manifold of class $C^{1, \alpha}$ with $\alpha \geq \frac{p-d}{2 p}$ and $\mathcal{H}^{s}\left(\left(\partial E \backslash \partial^{*} E\right) \cap \Omega\right)=0$ for all $s>d-8$.

Variational curvatures and regularity of level sets

 $\operatorname{div}(z) \in L^{\infty}$ implies boundary regularity of the level sets of ρ_{1} :- Anzellotti (1983): We can interpret $z \cdot D \rho_{1}$ as a Radon measure and $\left|D \rho_{1}\right|=-z \cdot D \rho_{1}$.
- Barozzi, Massari, Tamanini (1975-1995): A set of finite perimeter $E \subset \Omega \subset \mathbb{R}^{d}$ is said to have variational mean curvature $g \in L^{1}(\Omega)$ precisely when E minimizes

$$
\min _{F \subset \Omega} \operatorname{Per}(F)+\int_{F} g .
$$

If, in addition, $g \in L^{p}(\Omega)$ with $p \in(d,+\infty]$, then the reduced boundary $\partial^{*} E$ is a (d-1)-dimensional manifold of class $C^{1, \alpha}$ with $\alpha \geq \frac{p-d}{2 p}$ and $\mathcal{H}^{s}\left(\left(\partial E \backslash \partial^{*} E\right) \cap \Omega\right)=0$ for all $s>d-8$.

- Chambolle, Goldman \& Novaga (2015): pointwise geometric meaning to $z \cdot D \chi_{E}$. If $d=2$ or $d=3$, if $g=-\operatorname{div}(z) \in L^{d}(\Omega)$ is a variational mean curvature for the set E, then any point $x \in \partial^{*} E$ is a Lebesgue point of z and $z(x)=\nu_{\partial E}(x)$.

Regularity of the level set boundaries

For every level set $F_{t}=\left\{\rho_{1}>t\right\}$ with $t \geq 0$,

$$
\operatorname{Per}\left(F_{t}\right)=\int_{F_{t}} \operatorname{div}(z) \text { and } F_{t} \in \underset{G \subset \Omega}{\operatorname{argmin}}\left\{\operatorname{Per}(G)-\int_{G} \operatorname{div}(z)\right\} .
$$

So, $-\operatorname{div}(z)$ is a variational mean curvature of F_{t}.

Theorem (Carlier \& P. 2017)

If ρ_{1} solves $\left(\mathcal{P}_{\tau}\right)$, then for every $t>0$, the level set $F_{t}=\left\{\rho_{1}>t\right\}$ has the property that its reduced boundary, $\partial^{*} F_{t}$ is a $C^{1, \frac{1}{2}}$ hypersurface and $\left(\partial F_{t} \backslash \partial^{*} F_{t}\right) \cap \Omega$ has Hausdorff dimension less than $d-8$.

Step functions remain step functions

Theorem (Carlier \& P. 2017)

Let $d=1, \Omega=(a, b)$ and ρ_{0} be a step function with at most N-discontinuities i.e.:

$$
\rho_{0}:=\sum_{j=0}^{N} \alpha_{j} \chi_{\left[a_{j}, a_{j+1}\right)}, a_{0}=a<a_{1} \cdots<a_{N}<a_{N+1}=b,
$$

then the solution ρ_{1} of $\left(\mathcal{P}_{\tau}\right)$ is also a step function with at most N discontinuities.

Step functions remain step functions

Theorem (Carlier \& P. 2017)

Let $d=1, \Omega=(a, b)$ and ρ_{0} be a step function with at most N-discontinuities i.e.:

$$
\rho_{0}:=\sum_{j=0}^{N} \alpha_{j} \chi_{\left[a_{j}, a_{j+1}\right]}, a_{0}=a<a_{1} \cdots<a_{N}<a_{N+1}=b,
$$

then the solution ρ_{1} of $\left(\mathcal{P}_{\tau}\right)$ is also a step function with at most N discontinuities.

- Reduce the problem to the case $\rho_{0}>\alpha>0$ a.e.
- There exists $z \in W^{3, \infty}$ such that $|z| \leq 1$ such that $J\left(\rho_{1}\right)=\int_{a}^{b} z^{\prime} \rho_{1}=-\int_{a}^{b} z \cdot D \rho_{1}$.

Step functions remain step functions

Step functions remain step functions

- $T(x)=x-\varphi^{\prime}(x)=x+\tau z^{\prime \prime}(x)$ is the optimal transport from ρ_{1} to ρ_{0}. So, $T(x)=x$ whenever $z^{\prime \prime}(x)=0$. Since z achieves its extremal values on $A:=\operatorname{Supp}\left(D \rho_{1}\right), z^{\prime}=0$ on A. So, $z^{\prime \prime}=0$ on the limit points of A.

Step functions remain step functions

- $T(x)=x-\varphi^{\prime}(x)=x+\tau z^{\prime \prime}(x)$ is the optimal transport from ρ_{1} to ρ_{0}. So, $T(x)=x$ whenever $z^{\prime \prime}(x)=0$. Since z achieves its extremal values on $A:=\operatorname{Supp}\left(D \rho_{1}\right), z^{\prime}=0$ on A. So, $z^{\prime \prime}=0$ on the limit points of A.
- Decompose $\mu=D \rho_{1}$ into its atomic and nonatomic parts, then

$$
\mu=\sum_{x \in J} \mu(\{x\}) \delta_{x}+\tilde{\mu}
$$

$\tilde{A}=\operatorname{Supp}(\tilde{\mu})$ is the limit points of $A \Longrightarrow T(x)=x$ on $\tilde{A} \Longrightarrow \rho_{0}=\rho_{1}$ on \tilde{A}.

Convergence of the TV-JKO scheme in 1D

Let $\Omega=(0,1)$ and let $\rho_{0} \in \mathcal{P}_{\mathrm{ac}}(\Omega) \cap B V(\Omega)$ with $\rho_{0} \geq \alpha>0$ a.e. on Ω.

Fix T and for small τ, define

$$
\rho_{0}^{\tau}=\rho_{0}, \rho_{k+1}^{\tau} \in \operatorname{argmin}\left\{\frac{1}{2 \tau} W_{2}^{2}\left(\rho_{k}^{\tau}, \rho\right)+J(\rho), \rho \in \mathrm{BV} \cap \mathcal{P}_{\mathrm{ac}}((0,1))\right\}
$$

for $k=0, \ldots N_{\tau}$ with $N_{\tau}:=\left[\frac{T}{\tau}\right]$.

Since ρ_{0} is uniformly bounded from above (as an element of $B V$) and away from 0 ,

$$
M:=\left\|\rho_{0}\right\|_{L^{\infty}} \geq \rho_{k}^{\tau} \geq \alpha
$$

Define piecewise constant interpolation:

$$
\rho^{\tau}(t, x)=\rho_{k+1}^{\tau}(x), t \in(k \tau,(k+1) \tau], k=0, \ldots N_{\tau}, x \in(0,1) .
$$

Convergence of the TV-JKO scheme in 1D

Definition

A weak solution of

$$
\partial_{t} \rho+\left(\rho\left(\frac{\rho_{x}}{\left|\rho_{x}\right|}\right)_{x x}\right)_{x}=0,(t, x) \in(0, T) \times(0,1), \rho_{\left.\right|_{t=0}}=\rho_{0}
$$

is a $\rho \in L^{\infty}((0, T), \operatorname{BV}((0,1))) \cap C^{0}\left((0, T),\left(\mathcal{P}, W_{2}\right)\right)$ such that there exists $z \in L^{\infty}((0, T) \times(0,1)) \cap L^{2}\left((0, T), H^{2} \cap H_{0}^{1}((0,1))\right)$ with

$$
\|z(t, .)\|_{L \infty} \leq 1 \text { and } J(\rho(t, .))=\int_{0}^{1} z_{x}(t, x) \rho(x) d x, \text { for a.e. } t \in(0, T)
$$

and ρ is a weak solution of

$$
\partial_{t} \rho-\left(\rho z_{x x}\right)_{x}=0, \rho_{\left.\right|_{t=0}}=\rho_{0}, \rho z_{x x}=0 \text { on }(0, T) \times\{0,1\} .
$$

i.e. for every $u \in C_{c}^{1}([0, T) \times[0,1])$

$$
\int_{0}^{T} \int_{0}^{1}\left(\partial_{t} u \rho-\left(\rho z_{x x}\right) u_{x}\right) d x d t=-\int_{0}^{1} u(0, x) \rho_{0}(x) d x
$$

Convergence of the TV-JKO scheme in 1D

Theorem (Carlier \& P. 2017)

There exists a vanishing sequence of time steps $\tau_{n} \rightarrow 0$ such that the sequence $\rho^{\tau_{n}}$ converges strongly in $L^{p}((0, T) \times(0,1))$ for any $p \in[1,+\infty)$ and in $C^{0}\left((0, T),\left(\mathcal{P}([0,1]), W_{2}\right)\right)$ to $\rho \in L^{\infty}((0, T), \operatorname{BV}((0,1))) \cap C^{0}\left((0, T),\left(\mathcal{P}([0,1]), W_{2}\right)\right)$, a weak solution of

$$
\partial_{t} \rho+\left(\rho\left(\frac{\rho_{x}}{\left|\rho_{x}\right|}\right)_{x x}\right)_{x}=0,(t, x) \in(0, T) \times(0,1), \rho_{\mid t=0}=\rho_{0}
$$

The proof is fairly standard, let us make some remarks:

- By construction, one has

$$
\frac{1}{2 \tau} \sum_{k=0}^{N_{\tau}} W_{2}^{2}\left(\rho_{k}^{\tau}, \rho_{k+1}^{\tau}\right) \leq J\left(\rho_{0}\right), \sup _{t \in[0, T]} J\left(\rho^{\tau}(t, .)\right) \leq J\left(\rho_{0}\right)
$$

Using the Aubin-Lions Compactness Theorem of Savaré and Rossi (2003), refinement of Arzèla Ascoli and fact that $B V(0,1)$ compactly embeds into $L^{p}((0,1))$ for all $p \in[1, \infty)$,

$$
\rho^{\tau} \rightarrow \rho \text { a.e. in }(0, T) \times(0,1) \text { and in } L^{p}((0, T) \times(0,1)), \forall p \in[1,+\infty)
$$

and

$$
\sup _{t \in[0, T]} W_{2}\left(\rho^{\tau}(t, .), \rho(t, .)\right) \rightarrow 0 \text { as } \tau \rightarrow 0,
$$

for some limit curve $\rho \in C^{0, \frac{1}{2}}\left((0, T),\left(\mathcal{P}([0,1]), W_{2}\right)\right) \cap L^{p}((0, T) \times(0,1))$. By the uniform bounds on the JKO iterates, $M \geq \rho \geq \alpha$.

Convergence of the TV-JKO scheme in 1D

- for each $k=0, \ldots, N_{\tau}$, there exists $z_{k}^{\tau} \in W^{2, \infty}((0,1))$ such that

$$
\left\|z_{k}^{\tau}\right\|_{L \infty} \leq 1, z_{k}^{\tau}(0)=z_{k}^{\tau}(1)=0, J\left(\rho_{k}^{\tau}\right)=\int_{0}^{1}\left(z_{k}^{\tau}\right)_{x} \rho_{k}^{\tau}
$$

and $T_{k+1}^{\tau}=\operatorname{id}+\tau\left(z_{k+1}^{\tau}\right)_{x x}$ is the optimal transport T_{k+1}^{τ} from ρ_{k+1}^{τ} to ρ_{k}^{τ}.

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{k}^{\tau}, \rho_{k+1}^{\tau}\right) & =\int_{0}^{1}\left(x-T_{k+1}^{\tau}(x)\right)^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \\
& =\tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \geq \alpha \tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \mathrm{~d} x
\end{aligned}
$$

Let z^{τ} be the piecewise constant interpolation of z_{k}^{τ}. We thus get an $L^{2}\left((0, T), H^{2}((0,1))\right.$ bound

$$
C \geq\left\|z^{\tau}\right\|_{L^{2}\left((0, T), H^{2}((0,1))\right)} .
$$

Convergence of the TV-JKO scheme in 1D

- for each $k=0, \ldots, N_{\tau}$, there exists $z_{k}^{\tau} \in W^{2, \infty}((0,1))$ such that

$$
\left\|z_{k}^{\tau}\right\|_{L \infty} \leq 1, z_{k}^{\tau}(0)=z_{k}^{\tau}(1)=0, J\left(\rho_{k}^{\tau}\right)=\int_{0}^{1}\left(z_{k}^{\tau}\right)_{x} \rho_{k}^{\tau}
$$

and $T_{k+1}^{\tau}=\operatorname{id}+\tau\left(z_{k+1}^{\tau}\right)_{x x}$ is the optimal transport T_{k+1}^{τ} from ρ_{k+1}^{τ} to ρ_{k}^{τ}.

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{k}^{\tau}, \rho_{k+1}^{\tau}\right) & =\int_{0}^{1}\left(x-T_{k+1}^{\tau}(x)\right)^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \\
& =\tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \geq \alpha \tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \mathrm{~d} x
\end{aligned}
$$

Let z^{τ} be the piecewise constant interpolation of z_{k}^{τ}. We thus get an $L^{2}\left((0, T), H^{2}((0,1))\right.$ bound

$$
C \geq\left\|z^{\tau}\right\|_{L^{2}\left((0, T), H^{2}((0,1))\right)} .
$$

So, there exists $z \in L^{\infty}((0, T) \times(0,1)) \cap L^{2}\left((0, T), H^{2}((0,1))\right)$ with $\|z\|_{L \infty} \leq 1$ such that

- $\rho^{\tau} z_{x x}^{\tau} \rightharpoonup \rho z_{x x}$ in $L^{1}((0, T) \times(0,1))$.
- $z^{\tau} \longrightarrow z$ in $L^{2}\left((0, T), H^{2}((0,1))\right)$, and weakly $*$ in $L^{\infty}((0, T) \times(0,1))$.
- $J(\rho(t, \cdot))=\int_{0}^{1} z_{x}(t, x) \rho(x) \mathrm{d} x$ for a.e. $t \in(0, T)$.

Convergence of the TV-JKO scheme in 1D

- for each $k=0, \ldots, N_{\tau}$, there exists $z_{k}^{\tau} \in W^{2, \infty}((0,1))$ such that

$$
\left\|z_{k}^{\tau}\right\|_{L \infty} \leq 1, z_{k}^{\tau}(0)=z_{k}^{\tau}(1)=0, J\left(\rho_{k}^{\tau}\right)=\int_{0}^{1}\left(z_{k}^{\tau}\right)_{x} \rho_{k}^{\tau}
$$

and $T_{k+1}^{\tau}=\mathrm{id}+\tau\left(z_{k+1}^{\tau}\right)_{x x}$ is the optimal transport T_{k+1}^{τ} from ρ_{k+1}^{τ} to ρ_{k}^{τ}.

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{k}^{\tau}, \rho_{k+1}^{\tau}\right) & =\int_{0}^{1}\left(x-T_{k+1}^{\tau}(x)\right)^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \\
& =\tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \rho_{k+1}^{\tau}(x) \mathrm{d} x \geq \alpha \tau^{2} \int_{0}^{1}\left(z_{k+1}^{\tau}\right)_{x x}^{2} \mathrm{~d} x
\end{aligned}
$$

Let z^{τ} be the piecewise constant interpolation of z_{k}^{τ}. We thus get an $L^{2}\left((0, T), H^{2}((0,1))\right.$ bound

$$
C \geq\left\|z^{\tau}\right\|_{L^{2}\left((0, T), H^{2}((0,1))\right)} .
$$

So, there exists $z \in L^{\infty}((0, T) \times(0,1)) \cap L^{2}\left((0, T), H^{2}((0,1))\right)$ with $\|z\|_{L \infty} \leq 1$ such that

- $\rho^{\tau} z_{x x}^{\tau} \rightharpoonup \rho z_{x x}$ in $L^{1}((0, T) \times(0,1))$.
- $z^{\tau} \xrightarrow{\sim} z$ in $L^{2}\left((0, T), H^{2}((0,1))\right)$, and weakly $*$ in $L^{\infty}((0, T) \times(0,1))$.
- $J(\rho(t, \cdot))=\int_{0}^{1} z_{x}(t, x) \rho(x) \mathrm{d} x$ for a.e. $t \in(0, T)$.
- By standard computations, let $u \in C_{c}^{1}([0, T) \times[0,1])$ then

$$
\int_{0}^{T} \int_{0}^{1} \partial_{t} u \rho^{\tau}-\left(\rho^{\tau} z_{x x}^{\tau}\right) u_{x} \mathrm{~d} x \mathrm{~d} t=-\int_{0}^{1} u(0, x) \rho_{0}(x) \mathrm{d} x+R_{\tau}(u)
$$

Taking the limit concludes this proof.

Summary

We discussed some properties of the JKO iterates:
(1) a maximum principle (and a minimum principle in 1D).
(2) establish the optimality conditions.
(3) regularity of the level sets.
(9) analysis for step function initial data.

Thanks to the minimum principle, we have convergence of the JKO scheme as $\tau \rightarrow 0$ in 1D, for strictly positive initial density ρ_{0}.

Preprint on arXiv: On the total variation Wasserstein gradient flow and the TV-JKO scheme.

Summary

We discussed some properties of the JKO iterates:
(1) a maximum principle (and a minimum principle in 1D).
(2) establish the optimality conditions.
(3) regularity of the level sets.
(9) analysis for step function initial data.

Thanks to the minimum principle, we have convergence of the JKO scheme as $\tau \rightarrow 0$ in 1D, for strictly positive initial density ρ_{0}.

Preprint on arXiv: On the total variation Wasserstein gradient flow and the TV-JKO scheme.

Thank you for your attention.

