Numerical Computation of Martingale Optimal Transport on Real Line

Gaoyue Guo, University of Oxford

joint work with Jan Obłój

May 1, 2017 @ Oaxaca

Outline

Introduction

Numerical Counterpart Numerical Computation: Primal Problem Numerical Computation: Dual Problem (partial results)

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$\begin{aligned} \mathsf{P}(\mu,\nu) &:= \sup_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}_{\pi}\big[c(X,Y)\big] \\ \mathsf{D}(\mu,\nu) &:= \inf_{(\varphi,\psi,h) \in \mathcal{D}} \left\{ \int \varphi d\mu + \int \psi d\nu \right\} \end{aligned}$$

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$\begin{aligned} \mathsf{P}(\mu,\nu) &:= \sup_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}_{\pi}\big[\mathsf{c}(X,Y)\big] \\ \mathsf{D}(\mu,\nu) &:= \inf_{(\varphi,\psi,h) \in \mathcal{D}} \left\{ \int \varphi d\mu + \int \psi d\nu \right\} \end{aligned}$$

- The first scheme considers the approximation of marginal distributions, *i.e.* $P(\mu, \nu) \rightsquigarrow P(\mu', \nu')$;

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$\begin{aligned} \mathsf{P}(\mu,\nu) &:= \sup_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}_{\pi}\big[\mathsf{c}(X,Y)\big] \\ \mathsf{D}(\mu,\nu) &:= \inf_{(\varphi,\psi,h) \in \mathcal{D}} \left\{ \int \varphi d\mu + \int \psi d\nu \right\} \end{aligned}$$

- The first scheme considers the approximation of marginal distributions, *i.e.* $P(\mu, \nu) \rightsquigarrow P(\mu', \nu')$;
- The second one consists of solving $D(\mu, \nu) = \inf_{\psi} J(\psi)$.

Primal problem

Let X(x,y) := x and Y(x,y) := y for all $(x,y) \in \mathbb{R}^2$. For (suitable) probability measures μ and ν , define

$$\mathsf{P}(\mu,\nu) := \sup_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}_{\pi}[c(X,Y)],$$

where

$$\mathcal{M}(\mu, \nu) \quad := \quad \left\{ \pi : \quad X \stackrel{\pi}{\sim} \mu, \ Y \stackrel{\pi}{\sim} \nu \text{ and } (X, Y) \text{ is } \pi - \text{martingale}
ight\}.$$

Primal problem

Let X(x,y) := x and Y(x,y) := y for all $(x,y) \in \mathbb{R}^2$. For (suitable) probability measures μ and ν , define

$$\mathsf{P}(\mu,\nu) := \sup_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}_{\pi}[c(X,Y)],$$

where

$$\mathcal{M}(\mu, \nu) \quad := \quad \left\{ \pi : \quad X \stackrel{\pi}{\sim} \mu, \ Y \stackrel{\pi}{\sim} \nu \text{ and } (X, Y) \text{ is } \pi - \text{martingale}
ight\}.$$

 $\mathcal{M}(\mu,\nu) \neq \emptyset$ iff $\int |\mathbf{x}| d\mu$, $\int |\mathbf{y}| d\nu < +\infty$ and $\int \psi d\mu \leq \int \psi d\nu$ for all convex ψ . Such a pair (μ,ν) is called PCOC.

Dual problem

Let Λ be the space of Lipschitz functions on \mathbb{R} , and $\mathcal{D} \subset \Lambda \times \Lambda \times \mathbb{L}^0(\mathbb{R})$ be the collection of triplets (φ, ψ, h) s.t.

 $\underbrace{\varphi(x) + \psi(y)}_{\text{static trading}} + \underbrace{h(x)(y-x)}_{\text{dynamic trading}} \ge c(x,y), \text{ for all } (x,y) \in \mathbb{R}^2.$

Define

$$\mathsf{D}(\mu,
u) \hspace{.1in}:= \hspace{.1in} \inf_{(arphi, \psi, h) \in \mathcal{D}} \hspace{.1in} \left[\int arphi \mathsf{d} \mu \hspace{.1in} + \hspace{.1in} \int \psi \mathsf{d}
u
ight].$$

Duality

Theorem (Beiglböeck, Henry-Labordère and Penkner) Let $c : \mathbb{R}^2 \to \mathbb{R}$ be u.s.c. and dominated from above by some affine function, i.e.

$$\sup_{(x,y)\in\mathbb{R}^2} \frac{\mathsf{c}(x,y)}{1+|x|+|y|} < +\infty$$

Then

(i) there exists π* ∈ M(μ, ν) s.t. P(μ, ν) = E_{π*}[c];
 (ii) the duality P(μ, ν) = D(μ, ν) holds.

Questions

• Dependency $(\mu, \nu) \mapsto \mathsf{P}(\mu, \nu)$. Continuous? Lipschitz?

Questions

- Dependency $(\mu, \nu) \mapsto \mathsf{P}(\mu, \nu)$. Continuous? Lipschitz?
- Existence and characterization of the dual optimizer $(\varphi^*,\psi^*,h^*).$ Monge-Ampère equation?

Questions

- Dependency $(\mu, \nu) \mapsto \mathsf{P}(\mu, \nu)$. Continuous? Lipschitz?
- Existence and characterization of the dual optimizer $(\varphi^*,\psi^*,h^*).$ Monge-Ampère equation?
- Numerical computation of $P(\mu, \nu) = D(\mu, \nu)$.

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

How to estimate $|P(\mu, \nu) - P(\mu', \nu')|$?

• Take an arbitrary $\pi \in \mathcal{M}(\mu,
u)$;

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

How to estimate $|P(\mu, \nu) - P(\mu', \nu')|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu'$ and $S: \nu \rightsquigarrow \nu'$;

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

How to estimate $|P(\mu, \nu) - P(\mu', \nu')|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu'$ and $S: \nu \rightsquigarrow \nu'$;
- Construct π' by means of π , *T* and *S*;

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

How to estimate $|P(\mu, \nu) - P(\mu', \nu')|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu'$ and $S: \nu \rightsquigarrow \nu'$;
- Construct π' by means of π , *T* and *S*;
- $|\mathbb{E}_{\pi}[c] \mathbb{E}_{\pi'}[c]|$ is "small" if (μ, ν) is "close" to (μ', ν') ;

 $\mathsf{P}(\mu,\nu)$ reduces to be a linear optimization problem if $\mathrm{supp}(\mu)$ and $\mathrm{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC (μ', ν') ?

How to estimate $|P(\mu, \nu) - P(\mu', \nu')|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu'$ and $S: \nu \rightsquigarrow \nu'$;
- Construct π' by means of π , *T* and *S*;
- $|\mathbb{E}_{\pi}[c] \mathbb{E}_{\pi'}[c]|$ is "small" if (μ, ν) is "close" to (μ', ν') ;
- In general $\pi' \notin \mathcal{M}(\mu', \nu')$.

A relaxed optimization problem

For $\varepsilon \in \mathbb{R}_+$, define

$$\mathcal{M}_{\varepsilon}(\mu,\nu) \quad := \quad \left\{ \pi: \quad X \stackrel{\pi}{\sim} \mu, \ Y \stackrel{\pi}{\sim} \nu \text{ and } \sup_{\|h\|_{\infty} \leq 1} \mathbb{E}_{\pi} \big[h(X)(Y-X) \big] \leq \varepsilon \right\},$$

and consider the corresponding optimization problem

$$\mathsf{P}_{\varepsilon}(\mu,\nu) := \sup_{\pi \in \mathcal{M}_{\varepsilon}(\mu,\nu)} \mathbb{E}_{\pi}[\mathsf{c}(X,Y)].$$

A relaxed optimization problem

For $\varepsilon \in \mathbb{R}_+$, define

$$\mathcal{M}_{\varepsilon}(\mu,\nu) := \left\{ \pi : X \stackrel{\pi}{\sim} \mu, Y \stackrel{\pi}{\sim} \nu \text{ and } \sup_{\|h\|_{\infty} \leq 1} \mathbb{E}_{\pi} \big[h(X)(Y-X) \big] \leq \varepsilon \right\},$$

and consider the corresponding optimization problem

$$\mathsf{P}_{\varepsilon}(\mu,\nu) := \sup_{\pi \in \mathcal{M}_{\varepsilon}(\mu,\nu)} \mathbb{E}_{\pi}[c(X,Y)].$$

 $\text{Denote } \mathcal{W}_1^\oplus \big((\mu,\nu),(\mu',\nu')\big) \quad := \quad \mathcal{W}_1(\mu,\mu') \ + \ \mathcal{W}_1(\nu,\nu').$

A stability result

Proposition

Let (μ',ν') be another PCOC. If c is Lipschitz, then one has C > 0 s.t.

 $\mathsf{P}_{\varepsilon}(\mu,\nu) \quad \leq \quad \mathsf{P}_{\varepsilon+\mathsf{d}}(\mu',\nu') \ + \ \mathsf{C}\mathsf{d}, \quad \textit{with } \mathsf{d} \ := \ \mathcal{W}_1^{\oplus}\big((\mu,\nu),(\mu',\nu')\big).$

A stability result

Proposition

Let (μ',ν') be another PCOC. If c is Lipschitz, then one has C > 0 s.t.

 $\mathsf{P}_{\varepsilon}(\mu,\nu) \quad \leq \quad \mathsf{P}_{\varepsilon+\mathsf{d}}(\mu',\nu') \ + \ \mathsf{C}\mathsf{d}, \quad \textit{with } \mathsf{d} \ := \ \mathcal{W}_1^{\oplus}\big((\mu,\nu),(\mu',\nu')\big).$

Corollary

Let $((\mu_n, \nu_n))_{n \ge 1}$ be a sequence of PCOCs converging to (μ, ν) under W_1^{\oplus} . Set $d_n := W_1^{\oplus}((\mu_n, \nu_n), (\mu, \nu))$, then one has C > 0 s.t.

 $\mathsf{P}(\mu,\nu) \leq \mathsf{P}_{d_n}(\mu_n,\nu_n) + \mathsf{C} d_n \leq \mathsf{P}_{2d_n}(\mu,\nu) + 2\mathsf{C} d_n.$

Stability: continuation...

Proposition

(i) Let c be u.s.c. Then $\lim_{\epsilon \to 0} \mathsf{P}_{\epsilon}(\mu, \nu) = \mathsf{P}(\mu, \nu)$.

(ii) Let (μ, ν) be boundedly supported, with $a = \inf(\operatorname{supp}(\mu))$ and $b = \sup(\operatorname{supp}(\mu))$. Assume further $c \in C^2(\mathbb{R}^2)$ and

$$\int_{[a,b]} \left(\frac{1}{x-a} + \frac{1}{b-x}\right) d\mu \quad < \quad +\infty.$$

Then one has C > 0 s.t. $0 \le \mathsf{P}_{\varepsilon}(\mu, \nu) - \mathsf{P}(\mu, \nu) \le C\varepsilon$ and

 $|\mathsf{P}(\mu,\nu)-\mathsf{P}_{d_n}(\mu_n,\nu_n)| \leq Cd_n.$

An explicit construction

Define

$$\mu_n(\{k/n\}) := \int_{[(k-1)/n,k/n]} (nx+1-k)d\mu + \int_{[k/n,(k+1)/n]} (1+k-nx)d\mu,$$

$$\nu_n(\{k/n\}) := \int_{[(k-1)/n,k/n]} (nx+1-k)d\nu + \int_{[k/n,(k+1)/n]} (1+k-nx)d\nu.$$

An explicit construction

Define

$$\mu_n(\{k/n\}) := \int_{[(k-1)/n,k/n]} (nx+1-k)d\mu + \int_{[k/n,(k+1)/n]} (1+k-nx)d\mu,$$

$$\nu_n(\{k/n\}) := \int_{[(k-1)/n,k/n]} (nx+1-k)d\nu + \int_{[k/n,(k+1)/n]} (1+k-nx)d\nu.$$

Lemma (i) μ_n and ν_n are probability measures. (ii) (μ_n, ν_n) are PCOCs and $d_n \leq 2/n$.

A linear optimization problem

Set $\alpha_k := \mu_n(\{k/n\})$ and $\beta_k := \nu_n(\{k/n\})$. Then

A linear optimization problem

Set $\alpha_k := \mu_n(\{k/n\})$ and $\beta_k := \nu_n(\{k/n\})$. Then

$$\begin{split} \mathsf{P}_{d_n}(\mu_n,\nu_n) &= \sup_{p=(p_{i,j})_{i,j\in\mathbb{Z}}} \sum_{i,j\in\mathbb{Z}} p_{i,j} c(i/n,j/n) \\ \text{s.t.} &\sum_{i,j\in\mathbb{Z}} p_{i,j} = 1 \text{ and } p_{i,j} \geq 0, \text{ for all } i,j\in\mathbb{Z}, \\ &\sum_{j\in\mathbb{Z}} p_{k,j} = \alpha_k \text{ and } \sum_{i\in\mathbb{Z}} p_{i,k} = \beta_k, \text{ for all } k\in\mathbb{Z}, \\ &\sum_{j\in\mathbb{Z}} p_{k,j}j/n \leq (\geq) \left(\sum_{j\in\mathbb{Z}} p_{k,j}\right) (k/n \pm d_n), \text{ for all } k\in\mathbb{Z}. \end{split}$$

$$\mu = \mathcal{U}([-1,1]), \nu = \mathcal{U}([-2,2]), c(x,y) = |x-y|.$$
 Then $\mathsf{P}(\mu, \nu) = 1$

$$\mu = \mathcal{U}([-1,1]), \nu = \mathcal{U}([-2,2]), \mathsf{c}(x,y) = |x-y|.$$
 Then $\mathsf{P}(\mu,\nu) = 1.$

•
$$\alpha_{-n} = \alpha_n = 1/4n$$
, $\alpha_k = 1/2n$, for $-n < k < n$;

- $\beta_{-2n} = \beta_{2n} = 1/8n$, $\beta_k = 1/4n$, for -2n < k < 2n;
- $d_n \le 2/n$ (set w.l.o.g. $d_n = 2/n$).

$$\mu = \mathcal{U}([-1,1]), \nu = \mathcal{U}([-2,2]), c(x,y) = |x - y|.$$
 Then $\mathsf{P}(\mu, \nu) = 1.$

•
$$\alpha_{-n} = \alpha_n = 1/4n$$
, $\alpha_k = 1/2n$, for $-n < k < n$;

• $\beta_{-2n} = \beta_{2n} = 1/8n$, $\beta_k = 1/4n$, for -2n < k < 2n;

• Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu,\nu) \supset \mathcal{M}(\mu,\nu) \neq \emptyset$;

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu,\nu) \supset \mathcal{M}(\mu,\nu) \neq \emptyset$;
- · Generalize the numerical solver for optimal transport;

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu,\nu) \supset \mathcal{M}(\mu,\nu) \neq \emptyset$;
- · Generalize the numerical solver for optimal transport;
- Estimate the convergence rate $\mathsf{P}_{\varepsilon}(\mu,\nu)-\mathsf{P}(\mu,\nu)$ under more general conditions;

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu,\nu) \supset \mathcal{M}(\mu,\nu) \neq \emptyset$;
- · Generalize the numerical solver for optimal transport;
- Estimate the convergence rate $\mathsf{P}_{\varepsilon}(\mu,\nu)-\mathsf{P}(\mu,\nu)$ under more general conditions;
- This approach can apply for the multi-dimensional case.

An alternative formulation

Proposition

One has

$$\mathsf{D}(\mu,\nu) = \inf_{\psi\in\Lambda} \left\{ \int \mathsf{v}_{\psi}\mathsf{d}\mu + \int \psi\mathsf{d}\nu \right\}, \quad \text{with } \mathsf{v}_{\psi}(\mathsf{x}) := \left(\mathsf{c}(\mathsf{x},\cdot) - \psi\right)^{\mathsf{c}}(\mathsf{x}).$$

Here $(c(x, \cdot) - \psi)^{c}$ denotes the concave envelope of $y \mapsto c(x, y) - \psi(y)$. In addition, see Obermann, $(c(x, \cdot) - \psi)^{c}$ is the viscosity solution of

$$\max\left(c(x,y) - \psi(y) - u(y), \quad u''(y)\right) = 0.$$

First approximation

Define

$$J(\psi) := \int v_{\psi} d\mu + \int \psi d\nu,$$

Set $D_L(\mu, \nu) := \inf_{\psi \in \Lambda_L} J(\psi)$, where $\Lambda_L \subset \Lambda$ consists of L-Lipschitz functions ψ with $\psi(0) = 0$. Then

Proposition

 $J:\Lambda
ightarrow \mathbb{R}$ is convex and

$$\mathsf{D}(\mu,
u) = \lim_{L \to +\infty} \mathsf{D}_L(\mu,
u).$$

Further approximation

Let (μ, ν) be supported on a finite interval, *e.g.* [0, 1]. Consider the set $\Lambda_L(n) \subset \Lambda_L$ of functions ψ which are affine on [(k-1)/n, k/n] for $k = 1, \dots n$.

Further approximation

Let (μ, ν) be supported on a finite interval, *e.g.* [0, 1]. Consider the set $\Lambda_L(n) \subset \Lambda_L$ of functions ψ which are affine on [(k-1)/n, k/n] for $k = 1, \dots n$. **Remark** Let $U_L(n) \subset \mathbb{R}^n$ be the set of vectors $(u_k)_{1 \leq k \leq n}$ s.t. $|u_k| \leq L$, then there exists a bijection between $U_L(n)$ and $\Lambda_L(n)$. Denote by $\Phi : U_L(n) \to \Lambda_L(n)$ this bijection.

Further approximation

Let (μ, ν) be supported on a finite interval, *e.g.* [0, 1]. Consider the set $\Lambda_L(n) \subset \Lambda_L$ of functions ψ which are affine on [(k-1)/n, k/n] for $k = 1, \dots n$. **Remark** Let $U_L(n) \subset \mathbb{R}^n$ be the set of vectors $(u_k)_{1 \le k \le n}$ s.t. $|u_k| \le L$, then there exists a bijection between $U_L(n)$ and $\Lambda_L(n)$. Denote by $\Phi : U_L(n) \to \Lambda_L(n)$ this bijection.

Define

 $c_n(x,y) := (1 + \lfloor ny \rfloor - ny)c(\lfloor nx \rfloor/n, \lfloor ny \rfloor/n) + (ny - \lfloor ny \rfloor)c(\lfloor nx \rfloor/n, (1 + \lfloor ny \rfloor)/n)$

Define similarly $J_n(\psi)$ by replacing *c* by c_n .

Define similarly $J_n(\psi)$ by replacing c by c_n .

Lemma *If c is Lipschitz, then one has C* > 0 *s.t.*

$$0 \leq \inf_{\psi \in \Lambda_{L}(n)} J(\psi) - \mathsf{D}_{L}(\mu, \nu) \leq \frac{C}{n},$$
$$\left| \inf_{\psi \in \Lambda_{L}(n)} J_{n}(\psi) - \inf_{\psi \in \Lambda_{L}(n)} J(\psi) \right| \leq \frac{C}{n}.$$

Define similarly $J_n(\psi)$ by replacing *c* by c_n .

Lemma *If c is Lipschitz, then one has C* > 0 *s.t.*

$$0 \leq \inf_{\psi \in \Lambda_{L}(n)} J(\psi) - \mathsf{D}_{L}(\mu, \nu) \leq \frac{\mathsf{C}}{n},$$
$$\left| \inf_{\psi \in \Lambda_{L}(n)} J_{n}(\psi) - \inf_{\psi \in \Lambda_{L}(n)} J(\psi) \right| \leq \frac{\mathsf{C}}{n}.$$

We have

$$\inf_{\psi \in \Lambda_{L}(n)} J_{n}(\psi) = \inf_{u \in U_{L}(n)} \mathcal{J}_{n}(u), \text{ with } \mathcal{J}_{n} := J_{n} \circ \Phi.$$

Notice $U_L(n) \subset \mathbb{R}^n$ is convex and compact, and the map \mathcal{J}_n is convex.

More...

For any numerical solver for $\mathcal{J}_n(u)$, *e.g.* Boyd & Vandenberghe, we may compute $\inf_{u \in U_L(n)} \mathcal{J}_n(u)$ by the following gradient projection algorithm.

More...

For any numerical solver for $\mathcal{J}_n(u)$, *e.g.* Boyd & Vandenberghe, we may compute $\inf_{u \in U_L(n)} \mathcal{J}_n(u)$ by the following gradient projection algorithm.

Letting $(\gamma_i)_{i\geq 0} \subset \mathbb{R}_+$ be a sequence satisfying $\sum_{i>0} \gamma_i = +\infty$:

- 1. Let $u^0 := 0$.
- 2. Given u^i , compute the sub-gradient $\nabla \mathcal{J}_n(u^i)$ of \mathcal{J}_n at u^i .
- 3. Let $u^{i+1} := \operatorname{Proj}_{U_L(n)}(u^i + \gamma_i \nabla \mathcal{J}_n(u^i)).$
- 4. Go back to Step 2.

Remarks

• Estimate the convergence rate $D_L(\mu, \nu) - D(\mu, \nu)$;

Remarks

- Estimate the convergence rate $D_L(\mu, \nu) D(\mu, \nu)$;
- Is there some necessary condition for the optimizer $\operatorname{argmin} J_{\psi \in \Lambda}(\psi)$ (if exists) or $\operatorname{argmin} J_{\psi \in \Lambda_l}(\psi)$?

Thank you very much!

