Numerical Computation of Martingale Optimal Transport on Real Line

Gaoyue Guo, University of Oxford
joint work with Jan Obłój
May 1,2017 @ Oaxaca

Outline

Introduction

Numerical Counterpart
Numerical Computation: Primal Problem Numerical Computation: Dual Problem (partial results)

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$
\begin{aligned}
\mathrm{P}(\mu, \nu) & :=\sup _{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)] \\
\mathrm{D}(\mu, \nu) & :=\inf _{(\varphi, \psi, h) \in \mathcal{D}}\left\{\int \varphi d \mu+\int \psi d \nu\right\}
\end{aligned}
$$

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$
\begin{aligned}
\mathrm{P}(\mu, \nu) & :=\sup _{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)] \\
\mathrm{D}(\mu, \nu) & :=\inf _{(\varphi, \psi, h) \in \mathcal{D}}\left\{\int \varphi d \mu+\int \psi d \nu\right\}
\end{aligned}
$$

- The first scheme considers the approximation of marginal distributions, i.e. $\mathrm{P}(\mu, \nu) \rightsquigarrow \mathrm{P}\left(\mu^{\prime}, \nu^{\prime}\right)$;

Objective

We aim to solve the martingale optimal transport (MOT) problem:

$$
\begin{aligned}
\mathrm{P}(\mu, \nu) & :=\sup _{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)] \\
\mathrm{D}(\mu, \nu) & :=\inf _{(\varphi, \psi, h) \in \mathcal{D}}\left\{\int \varphi d \mu+\int \psi d \nu\right\}
\end{aligned}
$$

- The first scheme considers the approximation of marginal distributions, i.e. $\mathrm{P}(\mu, \nu) \rightsquigarrow \mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)$;
- The second one consists of solving $\mathbf{D}(\mu, \nu)=\inf _{\psi} J(\psi)$.

Primal problem

Let $X(x, y):=x$ and $Y(x, y):=y$ for all $(x, y) \in \mathbb{R}^{2}$. For (suitable) probability measures μ and ν, define

$$
\mathrm{P}(\mu, \nu):=\sup _{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)],
$$

where

$$
\mathcal{M}(\mu, \nu):=\{\pi: \quad X \stackrel{\pi}{\sim} \mu, Y \stackrel{\pi}{\sim} \nu \text { and }(X, Y) \text { is } \pi \text { - martingale }\} .
$$

Primal problem

Let $X(x, y):=x$ and $Y(x, y):=y$ for all $(x, y) \in \mathbb{R}^{2}$. For (suitable) probability measures μ and ν, define

$$
\mathrm{P}(\mu, \nu):=\sup _{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)],
$$

where

$$
\mathcal{M}(\mu, \nu):=\{\pi: \quad X \stackrel{\pi}{\sim} \mu, Y \stackrel{\pi}{\sim} \nu \text { and }(X, Y) \text { is } \pi \text { - martingale }\} .
$$

$\mathcal{M}(\mu, \nu) \neq \emptyset$ iff $\int|x| d \mu, \int|y| d \nu<+\infty$ and $\int \psi d \mu \leq \int \psi d \nu$ for all convex ψ. Such a pair (μ, ν) is called PCOC.

Dual problem

Let Λ be the space of Lipschitz functions on \mathbb{R}, and $\mathcal{D} \subset \Lambda \times \Lambda \times \mathbb{L}^{0}(\mathbb{R})$ be the collection of triplets (φ, ψ, h) s.t.

Define

$$
\mathrm{D}(\mu, \nu):=\inf _{(\varphi, \psi, h) \in \mathcal{D}}\left[\int \varphi d \mu+\int \psi d \nu\right] .
$$

Duality

Theorem (Beiglböeck, Henry-Labordère and Penkner)

Let $c: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be u.s.c. and dominated from above by some affine function, i.e.

$$
\sup _{(x, y) \in \mathbb{R}^{2}} \frac{c(x, y)}{1+|x|+|y|}<+\infty .
$$

Then
(i) there exists $\pi^{*} \in \mathcal{M}(\mu, \nu)$ s.t. $\mathbf{P}(\mu, \nu)=\mathbb{E}_{\pi^{*}}[c]$;
(ii) the duality $\mathrm{P}(\mu, \nu)=\mathrm{D}(\mu, \nu)$ holds.

Questions

- Dependency $(\mu, \nu) \mapsto \mathbf{P}(\mu, \nu)$. Continuous? Lipschitz?

$0|x|_{F}|O|_{\mathbf{R}} \mid \mathbf{D}$

Questions

- Dependency $(\mu, \nu) \mapsto \mathbf{P}(\mu, \nu)$. Continuous? Lipschitz?
- Existence and characterization of the dual optimizer ($\varphi^{*}, \psi^{*}, h^{*}$). Monge-Ampère equation?

Questions

- Dependency $(\mu, \nu) \mapsto \mathbf{P}(\mu, \nu)$. Continuous? Lipschitz?
- Existence and characterization of the dual optimizer ($\varphi^{*}, \psi^{*}, h^{*}$). Monge-Ampère equation?
- Numerical computation of $\mathrm{P}(\mu, \nu)=\mathrm{D}(\mu, \nu)$.

A heuristic idea

$\mathbf{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

A heuristic idea

$\mathrm{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?

A heuristic idea

$\mathrm{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?
How to estimate $\left|\mathbf{P}(\mu, \nu)-\mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)\right|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;

A heuristic idea

$\mathrm{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?
How to estimate $\left|\mathbf{P}(\mu, \nu)-\mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)\right|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu^{\prime}$ and $S: \nu \rightsquigarrow \nu^{\prime}$;

A heuristic idea

$\mathrm{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?
How to estimate $\left|\mathbf{P}(\mu, \nu)-\mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)\right|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu^{\prime}$ and $S: \nu \rightsquigarrow \nu^{\prime}$;
- Construct π^{\prime} by means of π, T and S;

A heuristic idea

$\mathbf{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?
How to estimate $\left|\mathbf{P}(\mu, \nu)-\mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)\right|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu^{\prime}$ and $S: \nu \rightsquigarrow \nu^{\prime}$;
- Construct π^{\prime} by means of π, T and S;
- $\left|\mathbb{E}_{\pi}[c]-\mathbb{E}_{\pi^{\prime}}[c]\right|$ is "small" if (μ, ν) is "close" to $\left(\mu^{\prime}, \nu^{\prime}\right)$;

A heuristic idea

$\mathbf{P}(\mu, \nu)$ reduces to be a linear optimization problem if $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\nu)$ are finite.

How to approximate (μ, ν) by another PCOC $\left(\mu^{\prime}, \nu^{\prime}\right)$?
How to estimate $\left|\mathbf{P}(\mu, \nu)-\mathbf{P}\left(\mu^{\prime}, \nu^{\prime}\right)\right|$?

- Take an arbitrary $\pi \in \mathcal{M}(\mu, \nu)$;
- Consider the optimal transport plans $T: \mu \rightsquigarrow \mu^{\prime}$ and $S: \nu \rightsquigarrow \nu^{\prime}$;
- Construct π^{\prime} by means of π, T and S;
- $\left|\mathbb{E}_{\pi}[c]-\mathbb{E}_{\pi^{\prime}}[c]\right|$ is "small" if (μ, ν) is "close" to $\left(\mu^{\prime}, \nu^{\prime}\right)$;
- In general $\pi^{\prime} \notin \mathcal{M}\left(\mu^{\prime}, \nu^{\prime}\right)$.

A relaxed optimization problem

For $\varepsilon \in \mathbb{R}_{+}$, define

$$
\mathcal{M}_{\varepsilon}(\mu, \nu):=\left\{\pi: \quad X \stackrel{\pi}{\sim} \mu, Y \stackrel{\pi}{\sim} \nu \text { and } \sup _{\|h\|_{\infty} \leq 1} \mathbb{E}_{\pi}[h(X)(Y-X)] \leq \varepsilon\right\}
$$

and consider the corresponding optimization problem

$$
\mathrm{P}_{\varepsilon}(\mu, \nu):=\sup _{\pi \in \mathcal{M}_{\varepsilon}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)] .
$$

A relaxed optimization problem

For $\varepsilon \in \mathbb{R}_{+}$, define

$$
\mathcal{M}_{\varepsilon}(\mu, \nu):=\left\{\pi: \quad X \stackrel{\pi}{\sim} \mu, Y \stackrel{\pi}{\sim} \nu \text { and } \sup _{\|h\|_{\infty} \leq 1} \mathbb{E}_{\pi}[h(X)(Y-X)] \leq \varepsilon\right\}
$$

and consider the corresponding optimization problem

$$
\mathrm{P}_{\varepsilon}(\mu, \nu):=\sup _{\pi \in \mathcal{M}_{\varepsilon}(\mu, \nu)} \mathbb{E}_{\pi}[c(X, Y)] .
$$

Denote $\mathcal{W}_{1}^{\oplus}\left((\mu, \nu),\left(\mu^{\prime}, \nu^{\prime}\right)\right) \quad:=\mathcal{W}_{1}\left(\mu, \mu^{\prime}\right)+\mathcal{W}_{1}\left(\nu, \nu^{\prime}\right)$.

A stability result

Proposition

Let $\left(\mu^{\prime}, \nu^{\prime}\right)$ be another PCOC. If c is Lipschitz, then one has C >0 s.t.

$$
\mathrm{P}_{\varepsilon}(\mu, \nu) \leq \mathrm{P}_{\varepsilon+d}\left(\mu^{\prime}, \nu^{\prime}\right)+C d, \quad \text { with } d:=\mathcal{W}_{1}^{\oplus}\left((\mu, \nu),\left(\mu^{\prime}, \nu^{\prime}\right)\right) \text {. }
$$

A stability result

Proposition

Let $\left(\mu^{\prime}, \nu^{\prime}\right)$ be another PCOC. If c is Lipschitz, then one has $C>0$ s.t.

$$
\mathrm{P}_{\varepsilon}(\mu, \nu) \leq \mathrm{P}_{\varepsilon+d}\left(\mu^{\prime}, \nu^{\prime}\right)+\mathrm{Cd}, \quad \text { with } d:=\mathcal{W}_{1}^{\oplus}\left((\mu, \nu),\left(\mu^{\prime}, \nu^{\prime}\right)\right) \text {. }
$$

Corollary

Let $\left(\left(\mu_{n}, \nu_{n}\right)\right)_{n \geq 1}$ be a sequence of PCOCS converging to (μ, ν) under \mathcal{W}_{1}^{\oplus}. Set $d_{n}:=\mathcal{W}_{1}^{\oplus}\left(\left(\mu_{n}, \nu_{n}\right),(\mu, \nu)\right)$, then one has $C>0$ s.t.

$$
\mathrm{P}(\mu, \nu) \leq \mathrm{P}_{d_{n}}\left(\mu_{n}, \nu_{n}\right)+C d_{n} \leq \mathrm{P}_{2 d_{n}}(\mu, \nu)+2 C d_{n} .
$$

Stability: continuation...

Proposition

(i) Let c be u.s.c. Then $\lim _{\varepsilon \rightarrow 0} \mathrm{P}_{\varepsilon}(\mu, \nu)=\mathrm{P}(\mu, \nu)$.
(ii) Let (μ, ν) be boundedly supported, with $a=\inf (\operatorname{supp}(\mu))$ and $b=\sup (\operatorname{supp}(\mu))$. Assume further $c \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ and

$$
\int_{[a, b]}\left(\frac{1}{x-a}+\frac{1}{b-x}\right) d \mu<+\infty .
$$

Then one has $\mathrm{C}>0$ s.t. $0 \leq \mathrm{P}_{\varepsilon}(\mu, \nu)-\mathrm{P}(\mu, \nu) \leq C \varepsilon$ and

$$
\left|\mathbf{P}(\mu, \nu)-\mathbf{P}_{d_{n}}\left(\mu_{n}, \nu_{n}\right)\right| \leq C d_{n} .
$$

An explicit construction

Define

$$
\begin{aligned}
\mu_{n}(\{k / n\}) & :=\int_{[(k-1) / n, k / n)}(n x+1-k) d \mu+\int_{[k / n,(k+1) / n)}(1+k-n x) d \mu, \\
\nu_{n}(\{k / n\}) & :=\int_{[(k-1) / n, k / n)}(n x+1-k) d \nu+\int_{[k / n,(k+1) / n)}(1+k-n x) d \nu .
\end{aligned}
$$

An explicit construction

Define
$\mu_{n}(\{k / n\}):=\int_{[(k-1) / n, k / n)}(n x+1-k) d \mu+\int_{[k / n,(k+1) / n)}(1+k-n x) d \mu$,
$\nu_{n}(\{k / n\}):=\int_{[(k-1) / n, k / n)}(n x+1-k) d \nu+\int_{[k / n,(k+1) / n)}(1+k-n x) d \nu$.

Lemma

(i) μ_{n} and ν_{n} are probability measures.
(ii) $\left(\mu_{n}, \nu_{n}\right)$ are PCOCs and $d_{n} \leq 2 / n$.

A linear optimization problem

Set $\alpha_{k}:=\mu_{n}(\{k / n\})$ and $\beta_{k}:=\nu_{n}(\{k / n\})$. Then

A linear optimization problem

Set $\alpha_{k}:=\mu_{n}(\{k / n\})$ and $\beta_{k}:=\nu_{n}(\{k / n\})$. Then

$$
\begin{aligned}
\mathrm{P}_{d_{n}}\left(\mu_{n}, \nu_{n}\right)= & \sup _{p=\left(p_{i, j}\right)_{i, j \in \mathbb{Z}}} \sum_{i, j \in \mathbb{Z}} p_{i, j} c(i / n, j / n) \\
\text { s.t. } & \sum_{i, j \in \mathbb{Z}} p_{i, j}=1 \text { and } p_{i, j} \geq 0, \text { for all } i, j \in \mathbb{Z}, \\
& \sum_{j \in \mathbb{Z}} p_{k, j}=\alpha_{k} \text { and } \sum_{i \in \mathbb{Z}} p_{i, k}=\beta_{k}, \text { for all } k \in \mathbb{Z}, \\
& \sum_{j \in \mathbb{Z}} p_{k, j} j / n \leq(\geq)\left(\sum_{j \in \mathbb{Z}} p_{k, j}\right)\left(k / n \pm d_{n}\right), \text { for all } k \in \mathbb{Z} .
\end{aligned}
$$

$$
\mu=\mathcal{U}([-1,1]), \nu=\mathcal{U}([-2,2]), c(x, y)=|x-y| \text {. Then } \mathrm{P}(\mu, \nu)=1 \text {. }
$$

$\mu=\mathcal{U}([-1,1]), \nu=\mathcal{U}([-2,2]), c(x, y)=|x-y|$. Then $\mathrm{P}(\mu, \nu)=1$.

- $\alpha_{-n}=\alpha_{n}=1 / 4 n, \alpha_{k}=1 / 2 n$, for $-n<k<n$;
- $\beta_{-2 n}=\beta_{2 n}=1 / 8 n, \beta_{k}=1 / 4 n$, for $-2 n<k<2 n$;
- $d_{n} \leq 2 / n$ (set w.l.o.g. $d_{n}=2 / n$).
$\mu=\mathcal{U}([-1,1]), \nu=\mathcal{U}([-2,2]), c(x, y)=|x-y|$. Then $\mathrm{P}(\mu, \nu)=1$.
- $\alpha_{-n}=\alpha_{n}=1 / 4 n, \alpha_{k}=1 / 2 n$, for $-n<k<n$;
- $\beta_{-2 n}=\beta_{2 n}=1 / 8 n, \beta_{k}=1 / 4 n$, for $-2 n<k<2 n$;
- $d_{n} \leq 2 / n$ (set w.l.o.g. $d_{n}=2 / n$).

Remarks

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu, \nu) \supset \mathcal{M}(\mu, \nu) \neq \emptyset$;

$0|x|_{F}|O|_{\mathbf{R}} \mid \mathbf{D}$

Remarks

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu, \nu) \supset \mathcal{M}(\mu, \nu) \neq \emptyset$;
- Generalize the numerical solver for optimal transport;

Remarks

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu, \nu) \supset \mathcal{M}(\mu, \nu) \neq \emptyset$;
- Generalize the numerical solver for optimal transport;
- Estimate the convergence rate $\mathbf{P}_{\varepsilon}(\mu, \nu)-\mathbf{P}(\mu, \nu)$ under more general conditions;

Remarks

- Find the sufficient and necessary conditions for $\mathcal{M}_{\varepsilon}(\mu, \nu) \supset \mathcal{M}(\mu, \nu) \neq \emptyset$;
- Generalize the numerical solver for optimal transport;
- Estimate the convergence rate $\mathbf{P}_{\varepsilon}(\mu, \nu)-\mathbf{P}(\mu, \nu)$ under more general conditions;
- This approach can apply for the multi-dimensional case.

An alternative formulation

Proposition

One has
$\mathrm{D}(\mu, \nu)=\inf _{\psi \in \Lambda}\left\{\int v_{\psi} d \mu+\int \psi d \nu\right\}$, with $v_{\psi}(x):=(c(x, \cdot)-\psi)^{c}(x)$.
Here $(c(x, \cdot)-\psi)^{c}$ denotes the concave envelope of $y \mapsto c(x, y)-\psi(y)$. In addition, see Obermann, $(c(x, \cdot)-\psi)^{c}$ is the viscosity solution of

$$
\max \left(c(x, y)-\psi(y)-u(y), \quad u^{\prime \prime}(y)\right)=0
$$

First approximation

Define

$$
J(\psi):=\int v_{\psi} d \mu+\int \psi d \nu
$$

Set $\mathrm{D}_{L}(\mu, \nu):=\inf _{\psi \in \Lambda_{L} J} J(\psi)$, where $\Lambda_{L} \subset \Lambda$ consists of L-Lipschitz functions ψ with $\psi(0)=0$. Then

Proposition

$J: \Lambda \rightarrow \mathbb{R}$ is convex and

$$
\mathrm{D}(\mu, \nu)=\lim _{L \rightarrow+\infty} \mathrm{D}_{L}(\mu, \nu) .
$$

Further approximation

Let (μ, ν) be supported on a finite interval, e.g. $[0,1]$. Consider the set $\Lambda_{L}(n) \subset \Lambda_{L}$ of functions ψ which are affine on $[(k-1) / n, k / n]$ for $k=1, \cdots n$.

Further approximation

Let (μ, ν) be supported on a finite interval, e.g. $[0,1]$. Consider the set $\Lambda_{L}(n) \subset \Lambda_{L}$ of functions ψ which are affine on $[(k-1) / n, k / n]$ for $k=1, \cdots n$. Remark
Let $U_{L}(n) \subset \mathbb{R}^{n}$ be the set of vectors $\left(u_{k}\right)_{1 \leq k \leq n}$ s.t. $\left|u_{k}\right| \leq L$, then there exists a bijection between $U_{L}(n)$ and $\Lambda_{L}(n)$. Denote by $\Phi: U_{L}(n) \rightarrow \Lambda_{L}(n)$ this bijection.

Further approximation

Let (μ, ν) be supported on a finite interval, e.g. $[0,1]$. Consider the set $\Lambda_{L}(n) \subset \Lambda_{L}$ of functions ψ which are affine on $[(k-1) / n, k / n]$ for $k=1, \cdots n$. Remark
Let $U_{L}(n) \subset \mathbb{R}^{n}$ be the set of vectors $\left(u_{k}\right)_{1 \leq k \leq n}$ s.t. $\left|u_{k}\right| \leq L$, then there exists a bijection between $U_{L}(n)$ and $\Lambda_{L}(n)$. Denote by $\Phi: U_{L}(n) \rightarrow \Lambda_{L}(n)$ this bijection.

Define
$c_{n}(x, y):=(1+\lfloor n y\rfloor-n y) c(\lfloor n x\rfloor / n,\lfloor n y\rfloor / n)+(n y-\lfloor n y\rfloor) c(\lfloor n x\rfloor / n,(1+\lfloor n y\rfloor) / n)$

Define similarly $J_{n}(\psi)$ by replacing c by c_{n}.

Define similarly $J_{n}(\psi)$ by replacing c by c_{n}.

Lemma

If c is Lipschitz, then one has C >0 s.t.

$$
\begin{aligned}
0 \leq \inf _{\psi \in \Lambda_{L}(n)} J(\psi)-\mathrm{D}_{L}(\mu, \nu) & \leq \frac{C}{n}, \\
\left|\inf _{\psi \in \Lambda_{L}(n)} J_{n}(\psi)-\inf _{\psi \in \Lambda_{L}(n)} J(\psi)\right| & \leq \frac{C}{n} .
\end{aligned}
$$

Define similarly $J_{n}(\psi)$ by replacing c by c_{n}.

Lemma

If c is Lipschitz, then one has C >0 s.t.

$$
\begin{array}{r}
0 \leq \inf _{\psi \in \Lambda_{L}(n)} J(\psi)-\mathrm{D}_{L}(\mu, \nu) \leq \frac{C}{n}, \\
\left|\inf _{\psi \in \Lambda_{L}(n)} J_{n}(\psi)-\inf _{\psi \in \Lambda_{L}(n)} J(\psi)\right| \leq \frac{C}{n} .
\end{array}
$$

We have

$$
\inf _{\psi \in \Lambda_{L}(n)} J_{n}(\psi)=\inf _{u \in U_{L}(n)} \mathcal{J}_{n}(u), \quad \text { with } \mathcal{J}_{n}:=J_{n} \circ \Phi .
$$

Notice $U_{L}(n) \subset \mathbb{R}^{n}$ is convex and compact, and the map \mathcal{J}_{n} is convex.

More...

For any numerical solver for $\mathcal{J}_{n}(u)$, e.g. Boyd \& Vandenberghe, we may compute $\inf _{u \in U_{L}(n)} \mathcal{J}_{n}(u)$ by the following gradient projection algorithm.

More...

For any numerical solver for $\mathcal{J}_{n}(u)$, e.g. Boyd \& Vandenberghe, we may compute $\inf _{u \in U_{L}(n)} \mathcal{J}_{n}(u)$ by the following gradient projection algorithm.

Letting $\left(\gamma_{i}\right)_{i \geq 0} \subset \mathbb{R}_{+}$be a sequence satisfying $\sum_{i \geq 0} \gamma_{i}=+\infty$:

1. Let $u^{0}:=0$.
2. Given u^{i}, compute the sub-gradient $\nabla \mathcal{J}_{n}\left(u^{i}\right)$ of \mathcal{J}_{n} at u^{i}.
3. Let $u^{i+1}:=\operatorname{Proj}_{u_{l}(n)}\left(u^{i}+\gamma_{i} \nabla \mathcal{J}_{n}\left(u^{i}\right)\right)$.
4. Go back to Step 2.

Remarks

- Estimate the convergence rate $\mathrm{D}_{L}(\mu, \nu)-\mathrm{D}(\mu, \nu)$;

$\left.0|x|_{F}|O|_{R}\right|_{D}$

Remarks

- Estimate the convergence rate $\mathrm{D}_{L}(\mu, \nu)-\mathrm{D}(\mu, \nu)$;
- Is there some necessary condition for the optimizer $\operatorname{argmin} J_{\psi \in \Lambda}(\psi)$ (if exists) or $\operatorname{argmin} \int_{\psi \in \Lambda_{L}}(\psi)$?

Thank you very much!

European
 Research Council

