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Optimal Transport with Bregman ADMM

The classical setup of optimal transport is to solve

W (p,q) = min
Z∈Π(p,q)

〈Z ,M〉

where p,q belongs to the probabilistic simplex ∆m1 ,∆m2 , the coupling set
Π(p,q) = {Z ∈ Rm1×m2

+ : Z · 1m2 = p;ZT · 1m1 = q; } and let
M ∈ Rm1×m2

+ be the matrix of costs.

Our goal: find an efficient approximate solution Z̃ with some justifications.
Previous work: Entropic Regularization (e.g. [Cuturi 2013] [Cuturi &
Doucet 2014] [Benamou et al. 2015] [Cuturi & Peyré 2016])
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ADMM-type treatment

Rewrite the problem as

W (p,q) = min
Z1∈Π1(p)
Z2∈Π2(q)

〈Z1,M〉 s.t. Z1 = Z2︸ ︷︷ ︸
Λ : multiplier

where
Π1(p) = {Z ∈ Rm1×m2 : Z · 1m2 = p; }

and
Π2(q) = {Z ∈ Rm1×m2 : ZT · 1m1 = q; }.

Indeed, one can further convert this into a saddle point formulation w.r.t.
(Z1,Z2) and Λ and use the off-the-shelf dimension-free algorithms (e.g.
mirror descent or mirror prox algorithms). But the speed is practically slow
and the per-iteration computational cost is high.
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Bregman ADMM [Wang & Banerjee 2014]

Iterations:

Z1 := arg min
Z1∈Π1(p)

〈Z1,M〉+ 〈Λ,Z1〉+ ρ · KL(Z1,Z2)︸ ︷︷ ︸
replace | · |2 with BΦ(·, ·)

Z2 := arg min
Z2∈Π2(q)

−〈Λ,Z2〉+ ρ · KL(Z2,Z1)

Λ := Λ + ρ(Z1 − Z2)

Here we recommend ρ = ρ0 ·median(M) and ρ0 ∈ [1, 10].
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Bregman ADMM [Wang & Banerjee 2014]

Implementation (use caching to avoid repeated calculation of exp(·)):

Z1 := Z2 � exp

{
M + Λ

ρ

}
Z1 := PΠ1(p)(Z1)

Z2 := Z1 � exp

{
−Λ

ρ

}
Z2 := PΠ2(q)(Z2)

Λ := Λ + ρ(Z1 − Z2)
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Convergence [Wang & Banerjee 2014]

The main result presents the convergence of iterative solutions: Let

D(W ∗,W t) = KL(Z ∗,Z t
2 ) +

1

ρ2
‖Λ∗ − Λt‖2,

KL(Z t+1
1 ,Z t

2 ) ≤ D(W ∗,W t)︸ ︷︷ ︸
monotonic nonincreasing

−D(W ∗,W t+1)

And it also presents guaranteed optimality:

〈Z̄T
1 ,M〉 − 〈Z ∗,M〉 ≤

ρKL(Z ∗,Z 0
2 )

T
,

‖Z̄T
1 − Z̄T

2 ‖2 ≤ 2D(W ∗,W 0)

T
,

where Z̄j
T

= 1
T

∑T
t=1 Z

t
j , j = 1, 2.
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Algorithm for Computing W- Barycenter [Ye et al. 2017a]

Consider we are to find a barycenter probability q ∈ ∆m along with N OTs
to solve together. The problem becomes

min
q

N∑
i=1

W (p(i),q)

You come with a similar reformulation:

W (p(k),q) = min
Z

(k)
1 ∈Π1(p(k))

Z
(k)
2 ∈Π2(q)

〈Z (k)
1 ,M(k)〉 s.t. Z

(k)
1 = Z

(k)
2︸ ︷︷ ︸

Λ(k) : multiplier
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Iterations:

Z
(k)
1 := Z

(k)
2 � exp

{
M(k) + Λ(k)

ρ

}
Z

(k)
1 := PΠ1(p(k))(Z

(k)
1 )

Z
(k)
2 := Z

(k)
1 � exp

{
−Λ(k)

ρ

}
q(k) := P∆m2

(
(Z

(k)
2 )T · 1m1

)
qpi :∝ 1

N

N∑
k=1

(q
(k)
i )p, p = 1 or

1

2
(a heuristic!)

Z
(k)
2 := PΠ2(q)(Z

(k)
2 )

Λ(k) := Λ(k) + ρ(Z
(k)
1 − Z

(k)
2 )
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Discrete Distribution Clustering [Ye et al. 2017a]

D2-Clustering uses 2-Wasserstein barycenter as a kind of “mean” in
K-means clustering with the following remarks:

Given the Wasserstein distance is a metric, one can use triangle
inequality to prune a significant portion of pairwise distance
calculations [Elkan 2003].

Every outer iteration, the B-ADMM algorithm (to compute the
barycenter) warmly starts from the previous Z1,Z2 but reset Λ = 0.

A finite number of iterations are used for each B-ADMM loop.

The support points of Wasserstein barycenter are updated (least
square estimates) simultaneously every τ B-ADMM iterations using
computed Z1 (e.g. τ = 10, 50).

The size of support points of Wasserstein barycenter is set to be small.

Jianbo Ye (PSU) New numerical tools for optimal transport and their machine learning applicationsOaxaca. May 4, 2017 10 / 24



Document Clustering [Ye et al. 2017b]

Idea: every document is a weighted collection of words. Every word has a
Euclidean embedding vector representing its semantic meaning.

Take advantages of both BoW representation and Word Embedding,
yet ignoring the order of words.

No vector representation for each document.

Perform robustly well even with a randomly sampled word embedding.
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Best AMIs of compared methods on different datasets and their averaging.
The best results are marked in bold font for each dataset, the 2nd and 3rd
are marked by blue and magenta colors respectively.

regular domain-specific
BBCNews
abstract

Wik
events

Reuters Newsgroups BBCSport Ohsumed Avg.

Tfidf-N 0.389 0.448 0.470 0.388 0.883 0.210 0.465
Tfidf 0.376 0.446 0.456 0.417 0.799 0.235 0.455

Laplacian 0.538 0.395 0.448 0.385 0.855 0.223 0.474
LSI 0.454 0.379 0.400 0.398 0.840 0.222 0.448

LPP 0.521 0.462 0.426 0.515 0.859 0.284 0.511
NMF 0.537 0.395 0.438 0.453 0.809 0.226 0.476
LDA 0.151 0.280 0.503 0.288 0.616 0.132 0.328

AvgDoc 0.753 0.312 0.413 0.376 0.504 0.172 0.422
PV 0.428 0.289 0.471 0.275 0.553 0.233 0.375

D2C (*) 0.759 0.545 0.534 0.493 0.812 0.260 0.567
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Comparison between random word embeddings (upper row) and
meaningful pre-trained word embeddings (lower row), based on their best
ARI, AMI, and V-measures. The improvements by percentiles are also
shown in the subscripts.

ARI AMI V-measure
BBCNews .146 .187 .190

abstract .792+442% .759+306% .762+301%

Wiki events
.194 .369 .463
.277+43% .545+48% .611+32%

Reuters
.498 .524 .588
.515+3% .534+2% .594+1%

Newsgroups
.194 .358 .390
.305+57% .493+38% .499+28%

BBCSport
.755 .740 .760
.801+6% .812+10% .817+8%

Ohsumed
.080 .204 .292
.116+45% .260+27% .349+20%
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The Dual Formulation of OT

Consider the following LP problem,

W (p,q) = max
f∈Ω(M)

〈p, g〉 − 〈q,h〉 .

where

Ω(M)
def.
=
{
f = [g;h] ∈ Rm1+m2

∣∣
− CM < gi − hj ≤ Mi ,j , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2

}
.

For sufficiently large CM , Wdual(p,q) = Wprimal(p,q) if p,q are strictly
positive.
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The Boltzmann distribution

Let Ω0(M)={f = [g;h] ∈ Ω(M) | g1 = 0}, consider a probability density
on Ω0 ∈ Rm1+m2−1 with

p(f;p,q) ∝ exp

[
1

T
(〈p, g〉 − 〈q,h〉)

]
,

The samples from the Boltzmann distribution will eventually concentrate
at the optimum set of its deriving problem (e.g. Wdual(p,q)) as T → 0.
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Given any f = (g;h) ∈ Ω0(M) and any CM > 0, we have for any i and j ,

gi ≤ Ui (h)
def.
= min

1≤j≤m2

(Mi ,j + hj) ,

hj ≥ Lj(g)
def.
= max

1≤i≤m1

(gi −Mi ,j) .

and

gi > L̂i (h)
def.
= max

1≤j≤m2

(−CM + hj) ,

hj < Ûj(g)
def.
= max

1≤i≤m1

(CM + gi ) .

Here Ui = Ui (h) and Lj = Lj(g) are auxiliary variables. gi ’s are
conditionally independent given h, and likewise hj ’s are also conditionally
independent given g.
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Furthermore, each of their conditional probabilities within its feasible
region (subject to CM) satisfies

p(gi |h) ∝ exp
(gipi

T

)
, L̂i (h) < gi ≤ Ui (h),

p(hj |g) ∝ exp

(
−
hjqj
T

)
, Lj(g) ≤ hj < Ûj(g),

where 2 ≤ i ≤ m1 and 1 ≤ j ≤ m2. As CM → +∞, Ûj(g)→ +∞ and

L̂i (h)→ −∞.
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The Gibbs-OT Sampler [Ye, Wang, Li 2016]

Given f(0) ∈ Ω0(M), p ∈ ∆m1 and q ∈ ∆m2 , and T (1), . . . ,T (2N) > 0, for
t = 1, . . . ,N, we define the following Markov chain

1 Randomly sample

θ1, . . . , θm2

i .i .d .∼ Exponential(1).

For j = 1, 2, . . . ,m2, letL
(t)
j := max1≤i≤m1

(
g

(t−1)
i −Mi ,j

)
h

(t)
j := L

(t)
j + θj · T (2t−1)/qj

2 Randomly sample

θ2, . . . , θm1

i .i .d .∼ Exponential(1).

For i = (1), 2, . . . ,m1, let{
U

(t)
i := min1≤j≤m2

(
Mi ,j + h

(t)
j

)
g

(t)
i := U

(t)
i − θi · T (2t)/pi
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Wasserstein Loss Minimization

Consider the following loss function to minimize w.r.t θ:

R(θ) :=

|D|∑
i=1

W (pi (θ),qi (θ))

Define auxiliary function V (x, y)
def.
= 〈p, x〉 − 〈q, y〉. To minimize the

Wasserstein losses W (p,q) approximately in such WLMs, we propose to
instead optimize its asymptotically consistent upper bound E[V (U,V)]
at equilibrium of Boltzmann distribution p(f;p,q) using its stochastic
sub-gradients: U ∈ ∂V (U,V))/∂p and −L ∈ ∂V (U,V))/∂q .
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An illustrative example of a simple 1D optimal transportation problem
with Coulomb cost
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Some Discussions

(Intuitively) A suitable annealing schedule should let V (U,V) be
supermartingale, which gives a (calculable) upper bound for
temperature T at every iteration.

An approximate primal solution can be quickly recovered from MCMC
samples. Similarly, the procedure can be naturally extended to
estimate barycentric mapping at zero-mass points using MCMC
(related to [Perrot et al. 2016]).

The analysis of g,h chain can be achieved by the analysis of U,V
chain. The transitive kernel underpinning U,V chain admits a closed
form, and can be of interest (e.g. for constructing Hilbert spaces for
Lipschitz continuous functions).

The solution obtained from Gibbs-OT seems to possess very different
properties than other regularized approaches.
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Problem Setup

The Wasserstein NMF models each distribution as a linear additive
combination of K base distributions:

min
{β(i)},{Ψk}

n∑
i=1

W (Φi ,

K∑
k=1

β
(i)
k Ψk),

where we solve linear coefficients {β(i) ∈ ∆k} and base distributions {Ψk}.
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Graphical Comparison of Base Distributions

Left: Entropic Regularization [Rolet & Cuturi 2016];
Right: Gibbs-OT Sampler [Ye, Wang, Li 2016]
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