MARTINGALE OPTIMAL TRANSPORT

AT THE CROSSROADS OF MATHEMATICAL FINANCE, OPTIMAL

TRANSPORT AND PROBABILITY

Jan Obłój¹ University of Oxford

CMO, Oaxaca, Mexico, 1 May 2017

St John's College

European Research Council Established by the European Commission

¹With many thanks to Nizar Touzi!

On Some Transport problems

For some space *E*, consider $\Omega := E \times E$ with the canonical process

Transport plans:

$$\Pi(\mu,\nu) := \left\{ \mathbb{P} \in \operatorname{Prob}(\Omega) : \mathbb{P} \circ X^{-1} = \mu, \mathbb{P} \circ Y^{-1} = \nu \right\}$$

In our applications additional restrictions are natural:

- further measurability, e.g. Y adapted to a given filtration
- dynamics of (X, Y), e.g. is a \mathbb{P} -martingale, or nearly so
- more marginals: $\Omega = E^N$ or $\Omega = E^{[0,T]}$
- but maybe with less information: $\mathbb{P} \circ Y^{-1} \in \Lambda \subseteq \operatorname{Prob}(E)$
- pathspace restrictions: $(X, Y) \in \mathfrak{P} \subseteq \Omega \mathbb{P}$ -a.s.

Martingale Optimal Transport

On Some Transport problems

For some space *E*, consider $\Omega := E \times E$ with the canonical process

$$X(\omega) = x, \quad Y(\omega) = y \quad \text{for all } \omega = (x,y) \in \Omega.$$

Transport plans:

$$\Pi(\mu,\nu) := \left\{ \mathbb{P} \in \operatorname{Prob}(\Omega) : \mathbb{P} \circ X^{-1} = \mu, \mathbb{P} \circ Y^{-1} = \nu \right\}$$

In our applications additional restrictions are natural:

- further measurability, e.g. Y adapted to a given filtration
- dynamics of (X, Y), e.g. is a \mathbb{P} -martingale, or nearly so
- more marginals: $\Omega = E^N$ or $\Omega = E^{[0,T]}$
- but maybe with less information: $\mathbb{P} \circ Y^{-1} \in \Lambda \subseteq \operatorname{Prob}(E)$
- pathspace restrictions: $(X, Y) \in \mathfrak{P} \subseteq \Omega \mathbb{P}$ -a.s.

Martingale Optimal Transport

On Some Transport problems

For some space *E*, consider $\Omega := E \times E$ with the canonical process

$$X(\omega) = x, \quad Y(\omega) = y \quad \text{for all } \omega = (x,y) \in \Omega.$$

Transport plans:

$$\Pi(\mu,\nu) := \left\{ \mathbb{P} \in \operatorname{Prob}(\Omega) : \mathbb{P} \circ X^{-1} = \mu, \mathbb{P} \circ Y^{-1} = \nu \right\}$$

In our applications additional restrictions are natural:

- further measurability, e.g. Y adapted to a given filtration
- dynamics of (X, Y), e.g. is a \mathbb{P} -martingale, or nearly so
- more marginals: $\Omega = E^N$ or $\Omega = E^{[0,T]}$
- but maybe with less information: $\mathbb{P} \circ Y^{-1} \in \Lambda \subseteq \operatorname{Prob}(E)$
- pathspace restrictions: $(X, Y) \in \mathfrak{P} \subseteq \Omega \mathbb{P}$ -a.s.

Martingale Optimal Transport

Two applications

On some novel features in the MOT 000000000

Outline

MOT and its duality

Two applications Skorokhod Embedding Problem Robust Hedging of Financial Derivatives

On some novel features in the MOT

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT 000000000

Martingale Optimal Transport on the line Let $\Omega := \mathbb{R} \times \mathbb{R}$ and introduce the canonical process

Transport plans:

$$\Pi(\mu,\nu) := \left\{ \mathbb{P} \in \operatorname{Prob}(\Omega) : \mathbb{P} \circ X^{-1} = \mu, \mathbb{P} \circ Y^{-1} = \nu \right\}$$

Martingale Transport plans: μ, ν have finite first moment,

$$\mathcal{M}(\mu, \nu) := \left\{ \mathbb{P} \in \Pi(\mu, \nu) : \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\}$$

i.e. $\mathbb{P}(d\omega) = \mu(dx)\mathbb{P}_x(dy)$, whose desintegration \mathbb{P}_x has barycentre x

Martingale Optimal Transport problem

$$\inf_{\mathbb{P}\in\mathcal{M}(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[c(X,Y)]$$

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT 000000000

Martingale restriction

• $\mathbb{E}^{\mathbb{P}}[Y|X] = X$ iff $\mathbb{E}^{\mathbb{P}}[h(X)(Y-X)] = 0$ for all $h \in C_b^0$ $\implies h$ will act as Lagrange multipliers... Denote

 $h^{\otimes}(x,y) := h(x)(y-x), x, y \in \mathbb{R}$

[complementing the standard notations $\varphi \oplus \psi$]

• Strassen '65: $\mathcal{M}(\mu, \nu) \neq \emptyset$ iff $\mu \leq \nu$ in convex order:

 $\mu[f] \leq \nu[f]$ for all $f : \mathbb{R} \longrightarrow \mathbb{R}$ convex

• $\mathcal{M}(\mu, \nu)$ closed convex subset of $\Pi(\mu, \nu)...$

Martingale Optimal Transport

Oaxaca, 1 May 2017

Two applications

On some novel features in the MOT 000000000

Kantorovitch dual formulation

Martingale Optimal Transport: $c: \Omega \longrightarrow \mathbb{R}$ measurable

 $\mathbf{P}(\mu,\nu) := \inf_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c], \quad \mathcal{M}(\mu,\nu) := \left\{ \mathbb{P} \in \Pi(\mu,\nu) : \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\}$

Pointwise Dual Problem:

$$\mathsf{D}(\mu,\nu) := \sup_{(\varphi,\psi,h)\in\mathcal{D}(c)} \mu[\varphi] + \nu[\psi]$$

where

$$\mathcal{D}(c) := \{(\varphi, \psi, h): \varphi \oplus \psi + h^{\otimes} \leq c \text{ on } \Omega\}$$

Martingale Optimal Transport

Oaxaca, 1 May 2017

Two applications

On some novel features in the MOT 000000000

Duality for LSC claim

Theorem (Beiglböck, Henry-Labordère, Penkner '13)

Assume $c \in LSC$ and bounded from below. Then P = D, and existence holds for $P(\mu, \nu)$ for all $\mu \leq \nu$

Theorem (Beiglböck, Lim, O. '17)

Assume further that there exists u such that $\mu(dx)$ -a.e.

 $y \rightarrow c(x, y) + u(y)$ is convex, of linear growth.

Then existence holds for extended $D(\mu, \nu)$. Existence for $D(\mu, \nu)$ holds when c is Lipschitz and ν has compact support.

• There are easy examples where existence for the dual fails, even for bounded *c*, bounded support... (Beiglböck, Henry-Labordère & Penkner, Beiglböck, Nutz & Touzi)

• The condition $c \in LSC$ is not innocent, e.g. duality may fail for the USC function $c(x, y) := -\mathbb{1}_{\{x \neq y\}}$ on $[0, 1] \times [0, 1]$

Martingale Optimal Transport

Two applications

On some novel features in the MOT 000000000

Duality for LSC claim

Theorem (Beiglböck, Henry-Labordère, Penkner '13)

Assume $c \in LSC$ and bounded from below. Then P = D, and existence holds for $P(\mu, \nu)$ for all $\mu \leq \nu$

Theorem (Beiglböck, Lim, O. '17)

Assume further that there exists u such that $\mu(dx)$ -a.e.

 $y \rightarrow c(x, y) + u(y)$ is convex, of linear growth.

Then existence holds for extended $D(\mu, \nu)$. Existence for $D(\mu, \nu)$ holds when c is Lipschitz and ν has compact support.

• There are easy examples where existence for the dual fails, even for bounded *c*, bounded support... (Beiglböck, Henry-Labordère & Penkner, Beiglböck, Nutz & Touzi)

• The condition $c \in LSC$ is not innocent, e.g. duality may fail for the USC function $c(x, y) := -\mathbb{1}_{\{x \neq y\}}$ on $[0, 1] \times [0, 1]$

Martingale Optimal Transport

Two applications

On some novel features in the MOT 000000000

Duality for LSC claim

Theorem (Beiglböck, Henry-Labordère, Penkner '13)

Assume $c \in LSC$ and bounded from below. Then P = D, and existence holds for $P(\mu, \nu)$ for all $\mu \leq \nu$

Theorem (Beiglböck, Lim, O. '17)

Assume further that there exists u such that $\mu(dx)$ -a.e.

 $y \rightarrow c(x, y) + u(y)$ is convex, of linear growth.

Then existence holds for extended $D(\mu, \nu)$. Existence for $D(\mu, \nu)$ holds when c is Lipschitz and ν has compact support.

• There are easy examples where existence for the dual fails, even for bounded *c*, bounded support... (Beiglböck, Henry-Labordère & Penkner, Beiglböck, Nutz & Touzi)

• The condition $c \in LSC$ is not innocent, e.g. duality may fail for the USC function $c(x, y) := -\mathbb{I}_{\{x \neq y\}}$ on $[0, 1] \times [0, 1]$

Martingale Optimal Transport

On some novel features in the MOT 000000000

Continuous-time Transport Plans

Let $\Omega := C^0([0, T], \mathbb{R})$ or $\Omega := \operatorname{RCLL}([0, T], \mathbb{R})$, with canonical process and filtration

$$X_t(\omega) = \omega(t), \ \ \mathcal{F}_t := \sigma(X_s, s \leq t) \ \ ext{for all} \ \ 0 \leq t \leq T$$

Transport plans:

$$\Pi(\mu,\nu) := \left\{ \mathbb{P} \in \operatorname{Prob}(\Omega) : \ \mathbb{P} \circ X_0^{-1} = \mu, \ \mathbb{P} \circ X_T^{-1} = \nu \right\}$$

A first difficulty: $\Pi(\mu, \nu)$ is not weakly compact

Martingale Optimal Transport

Oaxaca, 1 May 2017

Continuous-time Martingale Transport

Martingale Transport plans: μ, ν have finite first moment,

$$\mathcal{M}(\mu,
u) \hspace{.1 in} := \hspace{.1 in} ig\{\mathbb{P}\in {\sf \Pi}(\mu,
u): \hspace{.1 in} {X} \hspace{.1 in} {
m is} \hspace{.1 in} \mathbb{P}-{\sf martingale}ig\}$$

i.e. $\mathbb{E}^{\mathbb{P}}[X_t|\mathcal{F}_s] = X_s$ for all $0 \le s \le t \le T$, or "equivalently":

 $\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} h_{t} dX_{t}\right] = 0 \text{ for } \mathbb{F} - \text{meas. bdd } h : [0, T] \times \Omega \longrightarrow \mathbb{R}$

Martingale Optimal Transport: $c : (\Omega, \mathcal{F}_T) \longrightarrow \mathbb{R}$ measurable

$$\mathsf{P}(\mu,
u) := \inf_{\mathbb{P} \in \mathcal{M}(\mu,
u)} \mathbb{E}^{\mathbb{P}}[c(X_t : t \leq T)]$$

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT 000000000

Continuous-time Martingale Optimal Transport Martingale Optimal Transport: $c : (\Omega, \mathcal{F}_T) \longrightarrow \mathbb{R}$ measurable

$$\mathbf{P}(\mu,\nu) := \inf_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c], \quad \mathcal{M}(\mu,\nu) := \left\{ \mathbb{P} \in \Pi(\mu,\nu) : \ X \ \mathbb{P} - \mathsf{mart} \right\}$$

Dual Problem:

$$\mathsf{D}(\mu,\nu) := \sup_{(\varphi,\psi,h)\in\mathcal{D}(\boldsymbol{c})} \mu[\varphi] + \nu[\psi]$$

where

$$\mathcal{D}(c) := \left\{ (\varphi, \psi, h) : \varphi(X_0) + \psi(X_T) + \underbrace{\int_0^T h_t dX_t}_{h \text{ s.t. ... !!!}} \leq c \text{ on } \Omega \right\}$$

Theorem (Dolinsky & Soner '14; Hou & O. '16)

Let $\mu \preceq \nu$. Then $\mathbf{P} = \mathbf{V}$ for a unif. continuous and bounded c.

Martingale Optimal Transport

On some novel features in the MOT 000000000

Continuous-time Martingale Optimal Transport Martingale Optimal Transport: $c : (\Omega, \mathcal{F}_T) \longrightarrow \mathbb{R}$ measurable

$$\mathbf{P}(\mu,\nu) := \inf_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c], \quad \mathcal{M}(\mu,\nu) := \left\{ \mathbb{P} \in \Pi(\mu,\nu) : \ X \ \mathbb{P} - \mathsf{mart} \right\}$$

Dual Problem:

$$\mathsf{D}(\mu,\nu) := \sup_{(\varphi,\psi,h)\in\mathcal{D}(c)} \mu[\varphi] + \nu[\psi]$$

where

$$\mathcal{D}(c) := \left\{ (\varphi, \psi, h) : \varphi(X_0) + \psi(X_T) + \underbrace{\int_0^T h_t dX_t}_{h \text{ s.t. ... !!!}} \leq c \text{ on } \Omega \right\}$$

Theorem (Dolinsky & Soner '14; Hou & O. '16)

Let $\mu \leq \nu$. Then $\mathbf{P} = \mathbf{V}$ for a unif. continuous and bounded c.

Martingale Optimal Transport

On some novel features in the MOT $_{\rm OOOOOOOOO}$

Extensions

- Martingale optimal transport in \mathbb{R}^d
- Multiple marginals (easy in DT, hard in CT)
- All marginals specified,

e.g. fake Brownian motion: $\mu_t = \mathcal{N}(0, t)$ for all $t \geq 0$

- Partial specification of marginal distributions
- Pathspace restrictions

Martingale Optimal Transport

Oaxaca, 1 May 2017

wo applications

On some novel features in the MOT 000000000

Some more references...

Pioneered by Pierre Henry-Labordère,

Discrete-time: Beiglböck, Burzoni, Campi, Davis, De March, Frittelli, Ghoussoub, Griessler, Henry-Labordère, Hobson, Hou, Kim, Klimmek, Lim, Martini, Maggis, Neuberger, Nutz, O., Penkner, Juillet, Schachermayer, Touzi

Continuous-time: Beiglböck, Bayraktar, Claisse, Cox, Davis, Dolinsky, Galichon, Guo, Hou, Henry-Labordère, Hobson, Huesmann, Perkowski, Proemel, Kallblad, Klimmek, O., Siorpaes, Soner, Spoida, Stebegg, Tan, Touzi, Zaev

Martingale Optimal Transport

Oaxaca, 1 May 2017

Two applications

On some novel features in the MOT 000000000

Outline

MOT and its duality

Two applications Skorokhod Embedding Problem Robust Hedging of Financial Derivatives

On some novel features in the MOT

Martingale Optimal Transport

Oaxaca, 1 May 2017

Formulation of the SEP

 $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ filtered probability space, B Brownian motion

SEP (μ, ν) : Find a stopping time τ such that

 $\mathbb{P} \circ (B_0)^{-1} = \mu$, $\mathbb{P} \circ (B_{ au})^{-1} = \nu$ and $B_{.\wedge au}$ UI

- on $\mathbb R$, infinity of solutions for any $\mu \preceq
 u$
- on \mathbb{R}^d a stronger relation is required (Rost)
- UI requirement needed for a meaningful solution
- originally, and in many applications, $\mu = \delta_{x_0}$.
- also considered in a weak formulation
- goes back to Skorokhod in 1961, see my (outdated!) survey paper

(Original) Motivation of the SEP

SEP originally used to show Invariance Principles, such as the Central Limit Theorem or the Law of Iterated Logarithm, etc. E.g.: Weak law of large numbers \implies Central Limit Theorem

 $X_i \sim \mu$ iid, where μ is centred and $\int x^2 \mu(dx) < \infty$.

$$X_i = B^i_{ au_i}$$
, with $au_i \sim \,$ iid, and $B^i_t := B_{ au_{i-1}+t} - B_{ au_{i-1}}$ iid BM. Then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i} = \frac{1}{\sqrt{n}}B_{nT_{n}}, \text{ where } T_{n} := \frac{1}{n}\sum_{i=1}^{n}\tau_{i} \xrightarrow{\mathbb{P}} \mathbb{E}[\tau] = \mathbb{E}[X_{i}^{2}]$$

and $B_t^n = \frac{1}{\sqrt{n}} B_{nt}$ converges in law to a BM independent of B.

Martingale Optimal Transport

Oaxaca, 1 May 2017

Two applications

On some novel features in the MOT 000000000

Some solutions of the SEP

- Skorokhod, Doob, Hall, Chacon and Walsh,
- Root
- Azéma-Yor
- Vallois

Perkins, Jacka, Bertoin and Le Jan, and many many more

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT 000000000

Some solutions of the SEP

- Skorokhod, Doob, Hall, Chacon and Walsh,
- Root $\implies \min_{\tau} \mathbb{E}[\phi(\tau)], \ \phi'' > 0$
- Azéma-Yor $\implies \max_{\tau} \mathbb{E}[\phi(\sup_{t \leq \tau} B_t)], \ \phi' > 0$
- Vallois $\Longrightarrow \max_{\tau} \mathbb{E}[\phi(L_{\tau})], \ \phi' > 0$

Perkins, Jacka, Bertoin and Le Jan, and many many more

Martingale Optimal Transport

Oaxaca, 1 May 2017

Connection with Martingale Transport

The process $(X_t = B_{\frac{t}{T-t} \wedge \tau} : t \in [0, T])$ is a martingale transport: $X_0 = B_0 \sim \mu$ and $X_T = B_\tau \sim \nu$

Conversely, every martingale is a time-changed Brownian motion

Martingale Optimal Transport \Longrightarrow find a solution τ of the SEP for a given optimality criterion...

Geometry of optimality \implies characterisation of support of $(B_{t\wedge\tau}:t\geq 0)$ analogous to *c*-cyclical monotonicity Monotonicity Principle of Beiglböck, Cox & Huesmann (IM, 2016) recovers all known optimality properties!

Martingale Optimal Transport

Connection with Martingale Transport

The process $(X_t = B_{\frac{t}{T-t} \wedge \tau} : t \in [0, T])$ is a martingale transport: $X_0 = B_0 \sim \mu$ and $X_T = B_\tau \sim \nu$

Conversely, every martingale is a time-changed Brownian motion

Martingale Optimal Transport \Longrightarrow find a solution τ of the SEP for a given optimality criterion...

Geometry of optimality \implies characterisation of support of $(B_{t\wedge\tau}:t\geq 0)$ analogous to *c*-cyclical monotonicity Monotonicity Principle of Beiglböck, Cox & Huesmann (IM, 2016) recovers all known optimality properties!

Martingale Optimal Transport

Connection with Martingale Transport

The process $(X_t = B_{\frac{t}{T-t} \wedge \tau} : t \in [0, T])$ is a martingale transport: $X_0 = B_0 \sim \mu$ and $X_T = B_\tau \sim \nu$

Conversely, every martingale is a time-changed Brownian motion

Martingale Optimal Transport \Longrightarrow find a solution τ of the SEP for a given optimality criterion...

Geometry of optimality \implies characterisation of support of $(B_{t\wedge\tau}: t \ge 0)$ analogous to *c*-cyclical monotonicity Monotonicity Principle of Beiglböck, Cox & Huesmann (IM, 2016) recovers all known optimality properties!

Martingale Optimal Transport

A simple financial setup with traded options

• Consider a risky asset $S = (S_0, \dots, S_N)$. Trading at no cost:

$$\sum_{t=0}^{N-1} h_t(S_0, \ldots, S_t)(S_{t+1} - S_t)$$

Suppose call options with maturity N are traded at prices C(K).
If ℙ is a model and pricing via expectation then

$$\mathbb{E}^{\mathbb{P}}[(S_N - K)^+] = C(K), \quad \text{i.e.} \quad \int_K^\infty (s - K) \mathbb{P}(S_N \in ds) = C(K).$$

Differentiating twice: $S_N \sim \nu_N$ under \mathbb{P} , where $\nu_N = C''$.

• Arbitrage considerations $\implies \nu_N$ a probability measure and if call options for maturities t_1, t_2 available then $\nu_{t_1} \preceq \nu_{t_2}$.

Martingale Optimal Transport

A simple financial setup with traded options

• Consider a risky asset $S = (S_0, \dots, S_N)$. Trading at no cost:

$$\sum_{t=0}^{N-1} h_t(S_0, \ldots, S_t)(S_{t+1} - S_t)$$

Suppose call options with maturity N are traded at prices C(K).
If P is a model and pricing via expectation then

$$\mathbb{E}^{\mathbb{P}}[(S_N - K)^+] = C(K), \quad ext{i.e.} \quad \int_K^\infty (s - K) \mathbb{P}(S_N \in ds) = C(K).$$

Differentiating twice: $S_N \sim \nu_N$ under \mathbb{P} , where $\nu_N = C''$.

• Arbitrage considerations $\implies \nu_N$ a probability measure and if call options for maturities t_1, t_2 available then $\nu_{t_1} \preceq \nu_{t_2}$.

Martingale Optimal Transport

A simple financial setup with traded options

• Consider a risky asset $S = (S_0, \dots, S_N)$. Trading at no cost:

$$\sum_{t=0}^{N-1} h_t(S_0, \ldots, S_t)(S_{t+1} - S_t)$$

Suppose call options with maturity N are traded at prices C(K).
If P is a model and pricing via expectation then

$$\mathbb{E}^{\mathbb{P}}[(S_N - K)^+] = C(K), \quad ext{i.e.} \quad \int_K^\infty (s - K) \mathbb{P}(S_N \in ds) = C(K).$$

Differentiating twice: $S_N \sim \nu_N$ under \mathbb{P} , where $\nu_N = C''$.

• Arbitrage considerations $\implies \nu_N$ a probability measure and if call options for maturities t_1, t_2 available then $\nu_{t_1} \preceq \nu_{t_2}$.

Martingale Optimal Transport

Hedging (trading) instruments

Consider a two-time snapshot: $S = (S_1, S_2)$.

- Prices C_1, C_2 of calls with maturities 1, 2 available for all strikes
- A generic Vanilla payoff $\varphi \in C^2$ may be synthesised:

$$arphi(S_i) = arphi(x_0) + (S_i - x_0)arphi'(x_0) \ + \int_{x_0}^{\infty} (S_i - K)^+ arphi''(K) dK + \int_{-\infty}^{x_0} (K - S_i)^+ arphi''(K) dK$$

• By linearity of pricing rules, with $\nu_i = C_i''$,

$$\operatorname{Price}(\varphi(S_i)) = \mathbb{E}^{\mathbb{P}}[\varphi(S_i)] = \int \varphi(s) \mathbb{P}(S_i \in ds) = \nu_i[\varphi]$$

• In addition, dynamic trading for zero cost

$$h_1(S_1)(S_2-S_1) = h_1^{\otimes}(S_1,S_2)$$

Martingale Optimal Transport

Hedging (trading) instruments

Consider a two-time snapshot: $S = (S_1, S_2)$.

- Prices C_1, C_2 of calls with maturities 1, 2 available for all strikes
- A generic Vanilla payoff $\varphi \in C^2$ may be synthesised:

$$arphi(S_i) = arphi(x_0) + (S_i - x_0)arphi'(x_0) \ + \int_{x_0}^{\infty} (S_i - K)^+ arphi''(K) dK + \int_{-\infty}^{x_0} (K - S_i)^+ arphi''(K) dK$$

• By linearity of pricing rules, with $\nu_i = C_i''$,

$$\operatorname{Price}(\varphi(S_i)) = \mathbb{E}^{\mathbb{P}}[\varphi(S_i)] = \int \varphi(s) \mathbb{P}(S_i \in ds) = \nu_i[\varphi]$$

• In addition, dynamic trading for zero cost

$$h_1(S_1)(S_2-S_1) = h_1^{\otimes}(S_1,S_2)$$

Martingale Optimal Transport

On some novel features in the MOT 000000000

Robust / Model-Free Subhedging Problem

Exotic option defined by the payoff $c(S_1, S_2)$ at time 2:

 $c: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$

Robust sub-hedging problem naturally formulated as:

$$\mathbf{D}(\mu,\nu) := \sup_{(\varphi,\psi,\mathbf{h})\in\mathcal{D}} \left\{ \mu[\varphi] + \nu[\psi] \right\}$$

i.e. as the MOT Kantorovitch dual, where

 $\mathcal{D} := \left\{ (\varphi, \psi, \mathbf{h}) \in \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu) \times \mathbb{L}^0 : \ \varphi \oplus \psi + \mathbf{h}^{\otimes} - \mathbf{c} \leq \mathbf{0} \right\}$

The dual "pricing problem" is: $\mathbf{P}(\mu, \nu) = \inf_{\mathbb{P} \in \mathcal{M}(\mu, \nu)} \mathbb{E}^{\mathbb{P}}[c]$

All the quantities of direct financial relevance: value of $\mathbf{P} = \mathbf{D}$, optimal hedging in \mathbf{D} , structure of optimal \mathbb{P} for \mathbf{P} .

Martingale Optimal Transport

On some novel features in the MOT 000000000

Robust / Model-Free Subhedging Problem

Exotic option defined by the payoff $c(S_1, S_2)$ at time 2:

 $c: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$

Robust sub-hedging problem naturally formulated as:

$$\mathbf{D}(\mu,
u) := \sup_{(\varphi, \psi, \mathbf{h}) \in \mathcal{D}} \left\{ \mu[\varphi] + \nu[\psi] \right\}$$

i.e. as the MOT Kantorovitch dual, where

 $\mathcal{D} := \left\{ (\varphi, \psi, \boldsymbol{h}) \in \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu) \times \mathbb{L}^0 : \ \varphi \oplus \psi + \boldsymbol{h}^{\otimes} - \boldsymbol{c} \leq 0 \right\}$

The dual "pricing problem" is: $\mathbf{P}(\mu, \nu) = \inf_{\mathbb{P} \in \mathcal{M}(\mu, \nu)} \mathbb{E}^{\mathbb{P}}[c]$

All the quantities of direct financial relevance: value of $\mathbf{P} = \mathbf{D}$, optimal hedging in \mathbf{D} , structure of optimal \mathbb{P} for \mathbf{P} .

Martingale Optimal Transport

On some novel features in the MOT 000000000

One natural extension: American options

- Consider N times, (S_0, S_1, \ldots, S_N) , $\mu = \delta_{S_0}$ and $c = (c_t)$ the payoff of an American option \sim a game situation
- dual natural: inequality required at all times $t \leq N$
- first attempt at primal: $\sup_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \sup_{\tau \leq N} \mathbb{E}^{\mathbb{P}}[c_{\tau}]$ gives a duality gap! (Hobson & Neuberger, Bayraktar & Zhou)

this is because we lost the Bellman principle
→ need to transfer the terminal condition into a starting one
consider transport for ∞ of assets with given initial prices alternatively consider Measures Valued Martingales:
X₁ = C(S₁|E₁) see Aksamit Deng, O, & Tan '17

 \bullet Also useful in continuous time: MOT $\rightsquigarrow\infty-dim$ stoch. opt. control, see Eldan '16, Cox & Kallblad '17.

One natural extension: American options

- Consider N times, (S_0, S_1, \ldots, S_N) , $\mu = \delta_{S_0}$ and $c = (c_t)$ the payoff of an American option \sim a game situation
- dual natural: inequality required at all times $t \leq N$
- first attempt at primal: $\sup_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \sup_{\tau \leq N} \mathbb{E}^{\mathbb{P}}[c_{\tau}]$ gives a duality gap! (Hobson & Neuberger, Bayraktar & Zhou)
- \bullet this is because we lost the Bellman principle \rightsquigarrow need to transfer the terminal condition into a starting one
- consider transport for ∞ of assets with given initial prices alternatively consider Measures Valued Martingales: $X_t = \mathcal{L}(S_N | \mathcal{F}_t)$, see Aksamit, Deng, O. & Tan '17.
- \bullet Also useful in continuous time: MOT $\leadsto \infty-dim$ stoch. opt. control, see Eldan '16, Cox & Kallblad '17.

Two applications

Outline

MOT and its duality

Two applications Skorokhod Embedding Problem Robust Hedging of Financial Derivatives

On some novel features in the MOT

Martingale Optimal Transport

Oaxaca, 1 May 2017

Recall our MOT formulation

Let $\Omega := \mathbb{R} \times \mathbb{R}$ and (X, Y) the canonical process

Martingale Optimal Transport: $c : \Omega \longrightarrow \mathbb{R}$ measurable

 $\mathbf{P}(\mu,\nu) := \inf_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c], \quad \mathcal{M}(\mu,\nu) := \left\{ \mathbb{P} \in \Pi(\mu,\nu) : \ \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\}$

Pointwise Dual Problem:

$$\mathsf{D}(\mu,\nu) := \sup_{(\varphi,\psi,h)\in\mathcal{D}(\boldsymbol{c})} \mu[\varphi] + \nu[\psi]$$

where $\mathcal{D}(c) := \{(\varphi, \psi, h) : \varphi \oplus \psi + h^{\otimes} \leq c \text{ on } \Omega\}.$

For $c \in LSC$, $\mathbf{P} = \mathbf{D}$ and existence holds for $\mathbf{P}(\mu, \nu)$ for all $\mu \leq \nu$. Duality for \mathbf{D} requires convexity^{*} of c.

Martingale Optimal Transport

wo applications

Quasi-sure dual formulation

Definition

 $\mathcal{M}(\mu, \nu)$ -q.s. (quasi surely) means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{M}(\mu, \nu)$

• The quasi-sure robust sub-hedging cost

$$\mathsf{D}^{qs} := \sup_{(arphi, \psi, h) \in \mathcal{D}^{qs}} \left\{ \mu[arphi] +
u[\psi]
ight\}$$

 $\mathcal{D}^{qs} := \{(\varphi, \psi, h) \in \hat{L}(\mu, \nu) \times \mathbb{L}^0 : \varphi \oplus \psi + h^{\otimes} \leq c, \ \mathcal{M}(\mu, \nu) - q.s.\}$

is also natural... $(\hat{L}(\mu, \nu) \supset \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu))$

• Then, $\mathbf{D}(\mu, \nu) \leq \mathbf{D}^{qs}(\mu, \nu) \leq \mathbf{P}(\mu, \nu)$

so if the duality $\mathbf{P} = \mathbf{D}$ holds, it follows that $\mathbf{D} = \mathbf{D}^{qs}$

Martingale Optimal Transport

Oaxaca, 1 May 2017

wo applications

Quasi-sure dual formulation

Definition

 $\mathcal{M}(\mu, \nu)$ -q.s. (quasi surely) means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{M}(\mu, \nu)$

• The quasi-sure robust sub-hedging cost

$$\mathsf{D}^{qs} := \sup_{(arphi, \psi, h) \in \mathcal{D}^{qs}} \left\{ \mu[arphi] +
u[\psi]
ight\}$$

 $\mathcal{D}^{qs} := \{(\varphi, \psi, h) \in \hat{L}(\mu, \nu) \times \mathbb{L}^0 : \varphi \oplus \psi + h^{\otimes} \leq c, \ \mathcal{M}(\mu, \nu) - q.s.\}$

is also natural... $(\hat{L}(\mu, \nu) \supset \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu))$

• Then,
$$\mathsf{D}(\mu,
u) \leq \mathsf{D}^{qs}(\mu,
u) \leq \mathsf{P}(\mu,
u)$$

so if the duality $\mathbf{P} = \mathbf{D}$ holds, it follows that $\mathbf{D} = \mathbf{D}^{qs}$

Martingale Optimal Transport

On some novel features in the MOT $_{\odot \bullet \odot \odot \odot \odot \odot \odot \odot}$

Structure of polar sets in (standard) optimal transport

$$\mathcal{N}_{\mu} := \{\mu - \mathsf{null sets}\}, \ \mathcal{N}_{\nu}...$$

Theorem (Kellerer)

For $N \subset \mathbb{R} \times \mathbb{R}$, TFAE:

•
$$\mathbb{P}[N] = 0$$
 for all $\mathbb{P} \in \Pi(\mu, \nu)$

• $N \subset (N_\mu imes \mathbb{R}) \cup (\mathbb{R} imes N_
u)$ for some $N_\mu \in \mathcal{N}_\mu$, $N_
u \in \mathcal{N}_
u$

 \Longrightarrow no difference between the pointwise and the quasi-sure formulations in standard optimal transport

Martingale Optimal Transport

Oaxaca, 1 May 2017

Pointwise versus Quasi-sure superhedging I

Suppose $Supp(\mu) = [0, 2] = Supp(\nu) = [0, 2]$, then

- $\mathcal{M}(\mu, \nu)$ -q.s. only involves the values $(x, y) \in [0, 2]^2$
- Pointwise superhedging involves all values $(x, y) \in \mathbb{R}^2$

On some novel features in the MOT $_{\texttt{OOOOOOOO}}$

Pointwise versus Quasi-sure superhedging II Suppose $\text{Supp}(\mu) = \text{Supp}(\nu) = [0, 2]$, and $C_{\mu}(1) = C_{\nu}(1)$ $\mathbb{E}[(X - 1)^+] = \mathbb{E}[(Y - 1)^+] \ge \mathbb{E}[(X - 1)^+]$

by Jensen's inequality, and then $\{X \ge 1\} = \{Y \ge 1\}$ \implies many more MOT polar set than OT ones!

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT $_{\texttt{OOOOOOOO}}$

Duality and existence under quasi-sure formulation in ${\mathbb R}$

Theorem (Beiglböck, Nutz & Touzi '15)

Let $\mu \preceq \nu$ and $c \geq 0$ measurable. Then

$$\mathbf{P}(\mu,\nu) = \mathbf{D}^{qs}(\mu,\nu)$$

and existence holds for \mathbf{D}^{qs} , whenever finite

Many examples where $\mathbf{D}(\mu, \nu) < \mathbf{D}^{qs}(\mu, \nu) = \mathbf{P}(\mu, \nu)$.

Martingale Optimal Transport

Oaxaca, 1 May 2017

On some novel features in the MOT $_{\texttt{OOOOOOOO}}$

Duality and existence under quasi-sure formulation in ${\mathbb R}$

Theorem (Beiglböck, Nutz & Touzi '15)

Let $\mu \preceq \nu$ and $c \geq 0$ measurable. Then

$$\mathbf{P}(\mu,\nu) = \mathbf{D}^{qs}(\mu,\nu)$$

and existence holds for \mathbf{D}^{qs} , whenever finite

Many examples where $\mathbf{D}(\mu, \nu) < \mathbf{D}^{qs}(\mu, \nu) = \mathbf{P}(\mu, \nu)$.

Martingale Optimal Transport

Oaxaca, 1 May 2017

Description of MOT polar sets (O. & Siorpaes) Convex functions allow to study MOT polar sets in \mathbb{R}^d :

$$\varphi'' \ge 0 \text{ and } (\nu - \mu)[\varphi] = 0 \implies \varphi \text{ "is affine" } \mathcal{M}(\mu, \nu) - q.s. \quad (*)$$

Let $A_x(\varphi)$ be the largest relatively open set containing x on which ϕ is affine. Then, for any convex Lip ϕ with $(\nu - \mu)[\varphi] = 0$,

 $\kappa(x,\overline{\mathcal{A}_{x}(\varphi)}) = 1 \ \mu(dx)$ -a.e. $\forall \mathbb{P} = \mu \otimes \kappa \in \mathcal{M}(\mu,\nu)$

Extend the notion to sequences of functions $(\nu - \mu)[\varphi_n] \rightarrow 0$ and take μ -essential infimum of r.v. $x \rightarrow \overline{A_x(\varphi_n)}$:

$$E_{x}(\mu,\nu) := \mu - \operatorname{ess} \bigcap_{\varphi_{n}:(\nu-\mu)[\varphi_{n}] \to 0} \overline{A_{x}(\varphi_{n})}$$

Finally, the convex component is the r.i. of the face F_x :

 $C_x(\mu, \nu) := \operatorname{ri}(F_x(E_x(\mu, \nu)))$ form a partition of \mathbb{R}^d & satisfy (*) In general uncountably many components. In \mathbb{R} all explicit: at most countably many intervals C_i + points (B-N-T '15).

Martingale Optimal Transport

Description of MOT polar sets (O. & Siorpaes) Convex functions allow to study MOT polar sets in \mathbb{R}^d :

 $\varphi'' \ge 0 \text{ and } (\nu - \mu)[\varphi] = 0 \implies \varphi \text{ "is affine" } \mathcal{M}(\mu, \nu) - q.s. \quad (*)$

Let $A_x(\varphi)$ be the largest relatively open set containing x on which ϕ is affine. Then, for any convex Lip ϕ with $(\nu - \mu)[\varphi] = 0$,

 $\kappa(x, \overline{A_x(\varphi)}) = 1 \ \mu(dx)$ -a.e. $\forall \mathbb{P} = \mu \otimes \kappa \in \mathcal{M}(\mu, \nu)$

Extend the notion to sequences of functions $(\nu - \mu)[\varphi_n] \rightarrow 0$ and take μ -essential infimum of r.v. $x \rightarrow \overline{A_x(\varphi_n)}$:

$$E_{x}(\mu,\nu) := \mu - \mathrm{ess} \bigcap_{\varphi_{n}:(\nu-\mu)[\varphi_{n}] \to 0} \overline{A_{x}(\varphi_{n})}$$

Finally, the convex component is the r.i. of the face F_x :

 $C_x(\mu, \nu) := \operatorname{ri}(F_x(E_x(\mu, \nu)))$ form a partition of \mathbb{R}^d & satisfy (*) In general uncountably many components. In \mathbb{R} all explicit: at most countably many intervals C_i + points (B-N-T '15).

Martingale Optimal Transport

Description of MOT polar sets (O. & Siorpaes) Convex functions allow to study MOT polar sets in \mathbb{R}^d :

$$\varphi'' \ge 0 \text{ and } (\nu - \mu)[\varphi] = 0 \implies \varphi \text{ "is affine" } \mathcal{M}(\mu, \nu) - q.s. \quad (*)$$

Let $A_x(\varphi)$ be the largest relatively open set containing x on which ϕ is affine. Then, for any convex Lip ϕ with $(\nu - \mu)[\varphi] = 0$,

 $\kappa(x,\overline{\mathcal{A}_{x}(arphi)})=1\ \mu(dx) ext{-a.e.}\quad \forall\ \mathbb{P}=\mu\otimes\kappa\in\mathcal{M}(\mu,
u)$

Extend the notion to sequences of functions $(\nu - \mu)[\varphi_n] \rightarrow 0$ and take μ -essential infimum of r.v. $x \rightarrow \overline{A_x(\varphi_n)}$:

$$E_{x}(\mu,\nu) := \mu - \mathrm{ess} \bigcap_{\varphi_{n}:(\nu-\mu)[\varphi_{n}] \to 0} \overline{A_{x}(\varphi_{n})}$$

Finally, the convex component is the r.i. of the face F_x :

 $C_x(\mu, \nu) := \operatorname{ri}(F_x(E_x(\mu, \nu)))$ form a partition of \mathbb{R}^d & satisfy (*) In general uncountably many components. In \mathbb{R} all explicit: at

most countably many intervals C_i + points (B-N-T '15).

Martingale Optimal Transport

Description of MOT polar sets (O. & Siorpaes) Convex functions allow to study MOT polar sets in \mathbb{R}^d :

$$\varphi'' \ge 0 \text{ and } (\nu - \mu)[\varphi] = 0 \implies \varphi \text{ "is affine" } \mathcal{M}(\mu, \nu) - q.s. \quad (*)$$

Let $A_x(\varphi)$ be the largest relatively open set containing x on which ϕ is affine. Then, for any convex Lip ϕ with $(\nu - \mu)[\varphi] = 0$,

 $\kappa(x,\overline{\mathcal{A}_{x}(arphi)})=1\ \mu(dx) ext{-a.e.}\quad \forall\ \mathbb{P}=\mu\otimes\kappa\in\mathcal{M}(\mu,
u)$

Extend the notion to sequences of functions $(\nu - \mu)[\varphi_n] \rightarrow 0$ and take μ -essential infimum of r.v. $x \rightarrow \overline{A_x(\varphi_n)}$:

$$E_{x}(\mu,\nu) := \mu - \mathrm{ess} \bigcap_{\varphi_{n}:(\nu-\mu)[\varphi_{n}] \to 0} \overline{A_{x}(\varphi_{n})}$$

Finally, the convex component is the r.i. of the face F_x :

 $C_x(\mu, \nu) := \operatorname{ri}(F_x(E_x(\mu, \nu)))$ form a partition of \mathbb{R}^d & satisfy (*) In general uncountably many components. In \mathbb{R} all explicit: at most countably many intervals C_i + points (B-N-T '15).

Martingale Optimal Transport

Extensions – discrete time

- Geometry of MOT on the line, Brenier-type thm
- Geometry of Super/Sub-Martingale Optimal Transport
- Many papers on duality under relaxed conditions
 - only finitely many constraints on the marginals
 - CPS (*\epsilon*-martingale transports)
- Extension to \mathbb{R}^n :
 - Lim '16: 1-dim marginals constraints (μ_i, ν_i)_{1≤i≤n}
 - Ghoussoub, Kim & Lim '16, and De March & Touzi '17, O. & Siorpaes '17

Extensions – discrete time

- Geometry of MOT on the line, Brenier-type thm
- Geometry of Super/Sub-Martingale Optimal Transport
- Many papers on duality under relaxed conditions
 - only finitely many constraints on the marginals
 - CPS (*\epsilon*-martingale transports)
- Extension to \mathbb{R}^n :
 - Lim '16: 1-dim marginals constraints (μ_i, ν_i)_{1≤i≤n}
 - Ghoussoub, Kim & Lim '16, and De March & Touzi '17, O. & Siorpaes '17

On some novel features in the MOT $_{\texttt{OOOOOOO}}$

Extensions – continuous time

- Continuous-time transport and Skorokhod embedding
 - Beiglböck, Cox & Huesmann ('16,'17) on geometry of solutions to the optimal SEP
 - Ghoussoub, Kim & Lim on optimal SEP for radially symmetric distributions in \mathbb{R}^d
 - O. & Spoida '15, Cox, O. & Touzi '16 on iterated SEP
 - Duality in different setups in several papers. Also in R^d and with multiple maturities. Require stronger continuity of c. "Complete" duality still open!
 - Optimal Local Martingale Transport in Cox, Hou & O. '16

Last but not least, NO NUMERICAL METHODS.

Two applications

THANK YOU!

(and I am happy to discuss any of the above if you are interested)

Martingale Optimal Transport

Oaxaca, 1 May 2017