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Informal introduction to Quantum mechanics/DFT

All materials systems we study essentially consist of electrons
and nuclear charge.

Mechanical, electronic, magnetic etc. properties are due to
electrons and their interaction with other electrons.

In order to define electrons and their interaction we use
Schrodinger equation.

It allows to predict, e.g., binding energies, equilibrium
geometries, intermolecular forces

Quantum mechanics for a molecule with N electrons reduces to a
PDE (called Schroedinger equation) for a function
Ψ ∈ L2(R3N ,C).
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The solution Ψ(x1, . . . , xN) is called wave function

N - number of electrons, xi position of electron i

|Ψ(x1, . . . , xN)|2

= probability density that the electrons are

at positions xi .

Ψ is an anti-symmetric function, which makes |Ψ|2 a symmetric
(N-exchangeable) probability measure.

If Schrodinger equation for the many electrons problem could be
solved accurately and efficiently then almost any property of the
materials could be determined determined accurately.

Unfortunately, there is neither an accurate nor an efficient
method to solve these problems.
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Density Functional Theory (DFT)

To simulate chemical behaviour, approximations are needed.

Curse of dimensionality: carbon atom: N = 6. Discretise R by
10 points→1018 total grid points.

DFT is a simplified version of quantum mechanics (QM), widely
used in molecular simulations in chemistry, physics, materials
science

Main idea: describe complicated N-particle system (a
probability on R3N) using only its one-particle marginal density

ρ(x1) =

∫
R3(N−1)

|Ψ(x1, . . . , xN)|2dx2 . . . dxN

Feasible system size: systems with more than a dozen or so
electrons.
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Some history of DFT

Thomas-Fermi: 1920s simple model

Hohenberg-Kohn-Sham (1963-1964): practical method based on
semi-empirical functions of ρ

Levy (1979), Lieb (1983): mathematical justification and
simplified reformulation of the equation

1970s: popular in solid state physics, but not so accurate

1990s: explosion in quantum chemistry, due to increase of
computational resources + discovery of efficient semi-empirical
functionals of ρ

1998 Nobel Prize for ‘founding father’ Walter Kohn

More than 15 000 papers per year with the keyword ’density
functional theory’
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Quantum mechanics-Formal definition

AN = {Ψ ∈ L2((R3N) | ∇Ψ ∈ L2, Ψ

antisymmetric, ||Ψ||L2 = 1}

Key quantum mechanics quantity is the ground state energy E0

E0 = inf
Ψ∈AN

E[Ψ]

where

E[Ψ] = Th[Ψ] + Vee[Ψ] + Vne[Ψ]



Density functional theory and optimal transportation with Coulomb and Riesz costs.

Informal introduction to Quantum mechanics- Density Functional Theory (DFT)

Kinetic energy:

Th[Ψ] =
h2

2

∫
R3N
|∇Ψ(x1, . . . , xN)|2dx1dx2 . . . dxN

Electron-electron energy:

Vee[Ψ] =

∫
R3N

∑
1≤i<j≤N

1
|xi − xj|

|Ψ|2dx1 . . . dxN

Nuclei-electron energy:

Vne[Ψ] =

N∑
i=1

∫
R3N

v(xi)|Ψ(x1 . . . , xN)|2dx1 . . . dxN
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N-electrons density

ρΨ
N (x1, .., xN) = |Ψ(x1, . . . , xN)|2

Pair electrons density

ρΨ
2 (x1, x2) =

∫
R3(N−2)

ρΨ
N (x1, . . . , xN)dx3 . . . dxN

Single electron density

ρΨ(x1) =

∫
R3(N−1)

ρΨ
N (x1, . . . , xN)dx2 . . . dxN .

RN := {ρ : R3 → R | ρ is the density of some Ψ ∈ AN}

Full Scrod. eqn. can be reformulated as a hierarchy of eqn: for ρ in
terms of of the pair electrons density ρ2, for ρ2 in terms of ρ3 etc.
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Variational formulation of density functional theory

(Hohenberg/Kohn 1964, M. Levy 1979, E. Lieb 1983)
For any external potential v, the exact Schroedinger eqn. satisfies

E0 = inf
ρ∈RN

{
Fh[ρ] + N

∫
R3

v(x) ρ(x)dx
}

with

Fh[ρ] : = inf
Ψ∈AN ,Ψ 7→ρ

{
Th[Ψ] + Vee[Ψ]

}
= inf

Ψ∈AN ,Ψ 7→ρ

{
Th[Ψ] +

N(N − 1)

2

∫
R6

1
|x− y|

ρΨ
2 (dx, dy)

}
,

Fh[ρ] is the famous Hohenberg-Kohn functional.
Not useful for computations (definitely still contains the big
space of Ψ(x1, . . . , xN)). But useful starting point for model
reduction in asymptotic limits.
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What do physicists do?

Correlations in DFT

Mathematical structure: Minimize an approximate energy
functional F[ρ] which depends on the electron density ρ(x), a
function on R3.

Catch: exact QM energy requires knowledge of electron-pair
density ρ2(x, y), a function on R6, which entails correlations.

Roughly, DFT models ≈ semi-empirical models of the pair
density ρ2 in terms of ρ.

Standard way out: start by assuming independence, add
semi-empirical corrections to Fh[ρ] accounting for correlations.
Often but not always accurate/reliable.
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What do physicists do?

Popular functionals

All functionals used in practice are of form

Mean field + additive corrections.

Why mean field? Interactions not weaker than single-particle terms.

The mean field approximation:∫
R6

1
|x− y|

ρ2(dx, dy) =
1
2

∫
R6

1
|x− y|

ρ(dx)ρ(dy) =: J[ρ].

Local Density Approximation approximation:∫
R6

1
|x− y|

ρ2(dx, dy) = J[ρ]− 4
3

(3/π)1/3
∫
R3
ρ(x)4/3dx.
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What do physicists do?

Quantum mechanics is becoming so unbelievably complex that it
is taking longer and longer to train a quantum theorist.

It is taking so long, in fact, to train him to the point where he
understands the nature of physical problems that he is already
too old to solve them. (Eugene Wigner)

Most cited physicist of all time is a designer of DFT models,
J.Perdew.
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ρN measure in RNd, ρ measure in Rd

0 < s < d

Minimize the transportation cost∫
RNd

( ∑
1≤i<j≤N

1
|xi − xj|s

)
dρN(x1, . . . , xN)

subject to the constraint∫
R(N−1)d

ρN(x1, . . . , xN)dx2 . . . dxN = ρ(x) . . .

∫
R(N−1)d

ρN(x1, . . . , xN−1, xN)dx1 . . . dxN−1 = ρ(x).

We can symmetrise the measure ρN-finite exchangeable.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

Coulomb: s = d − 2 (for DFT, s = 1, d = 3)

Riesz: 0 < s < d

For s = 1, d = 3

EN
OT [ρ] = inf

ρN

∑
1≤i<j≤N

∫
1

|xi − xj|
dρN(x1, x2, . . . , xN),

subject to equal marginals ρ.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

Semiclassical limit

Theorem

(C, Friesecke, Klueppelberg - CPAM 2013) Fix ρ ∈ RN . Let N = 2.
Then

lim
h→0

Fh[ρ] = EN
OT [ρ]

for every ρ ∈ RN , where recall that

Fh[ρ] := inf
Ψ∈AN ,Ψ7→ρ

{
Th[Ψ] + Vee[Ψ]

}
.

Bindini - De Pascale (2017): extension to N = 3.
C, Friesecke, Klueppelberg (in preparation): extension to N ≥ 4
In physics literature: Seidl’99, Seidl/Perdew/Levy 1999,
Seidl/Gori-Giorgi/Savin 2007
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

The 2-marginal Optimal Transport Problem with Coulomb
Cost

ρ2 measure in R2d, ρ measure in Rd

Minimize the transportation cost∫
R2d

1
|x− y|

dρ2(x, y)

subject to the constraint∫
Rd
ρ2(x, y)dy = ρ(x) and

∫
Rd
ρ2(x, y)dx = ρ(y).

General pattern: c : Rd × Rd → R ∪ {+∞},with
c(x, y) := l(|x− y|), such that l ≥ 0 is strictly convex, strictly
decreasing and C1 on (0,∞), l(0) = +∞.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

Theorem

(C, Friesecke, Klueppelberg - CPAM 2013)
Let c(x, y) := l(|x− y|), such that l ≥ 0 is strictly convex, strictly
decreasing and C1 on (0,∞), l(0) = +∞. Take ρ ∈ P(Rd)∩ L1(Rd).
Then

There exists a unique optimizing measure ρ2 with minimizer of
Monge form, i.e.

ρ2 = (id,T)#ρ,

where the optimal map T : Rd → R is unique. Moreover
ρ ◦ T−1 = ρ.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

For Coulomb cost, we have also T(x) = x + ∇v(x)

|∇v(x)|3/2 for some

convex potential v : R3 → R
Physical meaning 1: T(x) = position of the 2nd electron if the
first electron is at x.

Physical meaning 2: the graph of T is the support of the electron
pair density ρ2.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

The Method

Adaptation of Gangbo and McCann: The geometry of optimal
transportation, Acta Math. 177, 113-161 (1996).

Check that formula (originally for increasing costs) generalizes
to decreasing costs with singularity on the diagonal.

Explicit Solution: For d = 1, for all marginals. As simple
example, take ρ to be the uniform measure on [0, 1]. Then
ρ2 = (id,T)#ρ, and T rigidly switches right and left half of
[0, 1].

More precisely, we have T(x) = x + 1/2 for x < 1/2, and
T(x) = x− 1/2 for 1/2 < x < 1.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

For d ≥ 2, explicit solution for all symmetric marginals. Then
for ρ1 and ρ2 densities of µ, ν, with ρ1(x) = λ1(|x|) and
ρ2(x) = λ2(|x|), x ∈ Rd.

Then T is of form:
T(x) = x g(|x|)

|x| , x ∈ Rd, with g : [0,∞)→ R. Moreover g ≤ 0,
and g is an increasing function with g(0+) = −∞ and
g(+∞) = 0.

g explicitly computable

Physical interpretation of solution: 2nd electron is in the
opposite direction of first.
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Optimal transport with Coulomb and Riesz cost

Connection to DFT problem

Many-marginals optimal transport problem

Kantorovich problem coincides with infimum over Monge states
"strongly correlated electrons" (Colombo-Di Marino 2015)

Existence and uniqueness of Monge solution for N ≥ 2 in d = 1
(Colombo-De Pascale-Di Marino 2013)

Buttazzo, De Pascale & Gori-Giorgi (2012); Pass (2013);
Benamou, Carlier & Nenna (2015); Di Marino, Gerolin & Nenna
(2015)
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Connection to exchangeable processes

The infinite-dimensional Optimal Transportation problem

Let γ be an infinite dimensional measure, γ symmetric
(exchangeable), ρ probability measure in Rd.

F∞OT [ρ] = inf
γ

lim
N→∞

1(N
2

) ∫
RdN

∑
1≤i<j≤N

1
|xi − xj|d−2 dγ(x1, .., xN),

subject to the constraint∫
R×R×...

γ(x1, x2, . . . , xN , . . .)dx2dx3 . . . = ρ(x1).

Theorem

(C, Friesecke, Pass - Calc Var PDEs 2015)

lim
N→∞

FN
OT [ρ] = F∞OT [ρ] =

1
2

∫
R2d

1
|x− y|d−2 ρ(x)ρ(y)dxdy.
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Connection to exchangeable processes

Proof by use of de Finetti’s Theorem and Fourier transforms

De Finetti theorem: Let γ∞ be a symm. inf. dim. Borel measure.
Then there exists a unique Borel prob. measure ν such that

γ∞ =

∫
P(Rd)

Q⊗∞dν(Q).

F∞OT [ρ] =

∫
R2d

`(x− y) ρ(dx) ρ(dy)+∫
Rd

ˆ̀(z)
(

varν(dQ)Re(Q̂(z)) + varν(dQ)Im(Q̂(z))
)

dz
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Connection to exchangeable processes

Let γ be an infinite dimensional measure, γ symmetric
(exchangeable), ρ probability measure in Rd and let 0 < s < d.

F∞OT,s[ρ] = inf
γ

lim
N→∞

1(N
2

) ∫
RdN

∑
1≤i<j≤N

1
|xi − xj|s

dγ(x1, .., xN),

subject to the constraint∫
R×R×...

γ(x1, x2, . . . , xN , . . .)dx2dx3 . . . = ρ(x1).

Then by de Finetti’s Theorem and positive-definiteness, we have

Theorem

(Petrache 2015)

lim
N→∞

FN
OT,s[ρ] = F∞OT [ρ] =

1
2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy.
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Next-order term

C, di Marino, Lewin, Lieb, Petrache . . .

lim
N→∞

N1−s/d
(

FN
OT,s[ρ]− N2

2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy
)

=?

Lieb-Oxford bound

N1−s/d
(

FN
OT,s[ρ]− N2

2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy
)

≥ −CLO

∫
Rd
ρ(x)1+s/ddx.

Trivially, we have

FN
OT,s[ρ]− F∞OT [ρ] ≤ 0.

Question: Does the limit exit?
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Exists C(d, s, ρ) > 0 such that

lim
N→∞

N1−s/d
(

FN
OT,s[ρ]− N2

2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy
)

= −C(d, s, ρ)

∫
Rd
ρ(x)1+s/ddx

Uniform marginal: ρΩ = 1Ω/|Ω| (uniform electron gas)
Cunif independent of Ω

Chemists conjecture for s = 1, d = 3: C(d, s, ρ) = Cunif

(Rasanen, Pittalis, Capelle & Proetto 2009)
Exact value of Cunif is unknown, although everybody thought for
decades that it is approx 1.4441, related to Epstein Zeta function
Cunif is exactly known for d = 1 (di Marino-2017).
Numerics by Seidl-Vuckovic-Gori Giorgi 2015 (N = 50).
Cunif ≥ 1.401.
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Next-order term

Connection with Coulomb and Riesz gases (Jellium)

N electrons and a neutralizing background in a domain Ω with
|Ω| = N.
Minimize over xi∑

1≤i<j≤N

1
|xi − xj|

−
N∑

j=1

∫
Ω

1
|xj − y|

dy +
1
2

∫
Ω

∫
Ω

1
|x− y|

dxdy

Let minimization be ξ(N,Ω), then the limit (Lieb & Narnhofer
1975)

lim
N→∞

ξ(N,Ω)

N4/3 = −Cjel.

Wigner crystallisation conjecture: in limit N →∞, the electrons
place themselves on a BCC lattice (hexagonal lattice in d = 2)
Lewin-Lieb (2015): comparison with uniform electron gas
constant in d = 3
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Next-order term

Sandier, Serfaty, Rougerie, Petrache . . .
Let V : Rd → R be a confining potential growing at infinity
For 0 < d − 2 ≤ s < d, let

HN(x1, . . . , xN) :=
∑
i6=j

1
|xi − xj|s

+ N
∑

i

V(xi).

Let µV be the minimizer (among probability measures) of

EV(µ) =

∫ ∫
1

|x− y|s
dµ(x)dµ(y) +

∫
V(x)dµ(x)

If the density ρV is smooth enough

min
x1,...,xN

HN(x1, . . . , xN)−N2EV(µV) = CJelN1+ s
d

∫
Σ
ρ1+ s

d (x)dx

+ o
(

N1+ s
d

)
.
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Next-order term

For d − 2 < s < d, we have (C-Petrache (in progress))

Cunif = CJel.

CJel minimizer of a limiting energyW
Abrikosov conjecture: in 2d, the regular triangular lattice is a
minimizing configuration forW .

Known for Coulomb case in d = 2 (Sandier, Serfaty 2012)

For general dimension, the conjecture is that the minimum ofW
for all d − 2 ≤ s < d is always achieved by some lattice.
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Next-order term

THANK YOU!
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Next-order term

Theorem

(C, Frieescke, Klueppelberg - CPAM 2013) Suppose that µ = ν. Let
t ∈ (0,∞) and let

F1(t) = |Sd−1|
∫ t

0
λ(s)sd−1ds

and
F2(−t) = |Sd−1|

∫ ∞
t

λ(s)sd−1ds.

Then
g(t) = F−1

2 (F1(t)).
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