Consistency of objective functionals in semi-supervised learning

Dejan Slepčev
Carnegie Mellon University

Casa Matemática Oaxaca
May 1, 2017.

- Dunlop, S., Stuart, Thorpe, Consistency of objective functionals in semi-supervised learning in preparation.
- S.,Thorpe, Consistency of p-Laplacian regularizations in semi-supervised learning in preparation.
- García Trillos, Gerlach, Hein, and S., Error bounds for spectral convergence of empirical graph Laplacians in preparation.
- García Trillos and S., On the rate of convergence of empirical measures in ∞-transportation distance, Canad. J. Math, 67, (2015), pp. 1358-1383.
- García Trillos and S., Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., 220 no. 1, (2016) 193-241.
- García Trillos, S., J. von Brecht, T. Laurent, and X. Bresson, Consistency of Cheeger and ratio graph cuts, J. Mach. Learn. Res. 17 (2016) 1-46.
- García Trillos, S., A variational approach to the consistency of spectral clustering, published online Applied and Computational Harmonic Analysis.

Clustering

- Partition the data into meaningful groups.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.
- Partition the graph

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

Graph Constructions

- proximity based graphs

$$
W_{i, j}=\eta\left(X_{i}-X_{j}\right)
$$

- kNN graphs: Connect each vertex with its k nearest neighbors

k-means clustering

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ find a set of k points $A=\left\{a_{1}, \ldots, a_{k}\right\}$ which minimizes

$$
\min _{A} \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}\left(x_{i}, A\right)^{2}
$$

where $\operatorname{dist}(x, A)=\min _{a \in A}|x-a|$.

k-means clustering

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ find a set of k points $A=\left\{a_{1}, \ldots, a_{k}\right\}$ which minimizes

$$
\min _{A} \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}\left(x_{i}, A\right)^{2}
$$

where $\operatorname{dist}(x, A)=\min _{a \in A}|x-a|$.

Spectral Clustering

Shi, Malik, '00, Ng, Jordan, Weiss, '01, Belkin, Niyogi, '01, von Luxburg '07

- $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$, similarity matrix W :

$$
W_{i j}:=\eta\left(\left|X_{i}-X_{j}\right|\right) .
$$

The weighted degree of a vertex is $d_{i}=\sum_{j} W_{i, j}$.

- Dirichlet energy of $u_{n}: V_{n} \rightarrow \mathbb{R}$ is

$$
F(u)=\frac{1}{2} \sum_{i, j} W_{i j}\left|u_{n}\left(X_{i}\right)-u_{n}\left(X_{j}\right)\right|^{2} .
$$

- Associated operator is the (unnormalized) graph laplacian

$$
L=D-W,
$$

where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

Input: Number of clusters k and similarity matrix W.

- Construct the unnormalized graph Laplacian L.
- Compute the eigenvectors u_{1}, \ldots, u_{k} of L associated to the k smallest eigenvalues of L.
- Map the data into $R^{k}: x_{i} \mapsto\left(u_{1}\left(x_{i}\right), \ldots u_{k}\left(x_{i}\right)\right)=: y_{i}$
- Use the k-means algorithm to partition the set of points $\left\{y_{1}, \ldots, y_{n}\right\}$ into k groups, that we denote by G_{1}, \ldots, G_{k}.
Output: Clusters G_{1}, \ldots, G_{k}.

Spectral Clustering: an example

Spectral Clustering: an example

Spectral Clustering: an example

Comparison of Clustering Algorithms

Ground Truth Assumption

Assume points X_{1}, X_{2}, \ldots, are drawn i.i.d out of measure $d \nu=\rho d \mathrm{Vol}_{\mathcal{M}}$, where \mathcal{M} is a compact manifold without boundary, and $0<\rho<\mathcal{C}$ is continuous.
$x=x, y=-\left(2 \cos (t)\left(1-x^{2}\right)^{1 / 2}(\cos (3 x)-8 / 5)\right) / 5, z=-\left(2 \sin (t)\left(1-x^{2}\right)^{1 / 2}(\cos (3 x)-8 / 5)\right) / 5$

Questions

Consistency of spectral clustering and graph Laplacians: von Luxburg, Belkin, Bousquet '08, Belkin-Nyogi '07, Ting, Huang, Jordan '10, Singer, Wu '13, Burago, Ivanov, Kurylev '14, Shi, Sun '15

- Does spectral clustering converge as $n \rightarrow \infty$?
- How should the connection distance be scaled as $n \rightarrow \infty$?
- What do the clusters converge to?
- Does the graph laplacian converge spectrally?
- Can one estimate the errors and obtain rates of convergence?
- $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$, similarity matrix W :

$$
W_{i j}:=\frac{1}{\varepsilon^{d+2}} \eta\left(\frac{\mid X_{i}-X_{j}}{\varepsilon}\right)
$$

The weighted degree of a vertex is $d_{i}=\sum_{j} W_{i, j}$.

- Dirichlet energy of $u_{n}: V_{n} \rightarrow \mathbb{R}$ is

$$
F(u)=\frac{1}{2} \sum_{i, j} W_{i j}\left|u_{n}\left(X_{i}\right)-u_{n}\left(X_{j}\right)\right|^{2}
$$

- Associated operator is the graph laplacian $L_{n}=D-W$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
- Spectrum has a variational characterization: The eigenvector corresponding to the second eigenvalue:

$$
u_{n}:=\arg \min \left\{\sum_{i, j} w_{i j}\left|u\left(X_{i}\right)-u\left(X_{j}\right)\right|^{2}: \sum_{i} u\left(X_{i}\right)=0,\|u\|_{2}=1\right\}
$$

Consistency in Euclidean setting

Measure μ that data are sampled from is supported in \bar{D} where D is bounded open set in \mathbb{R}^{d} with Lipschitz boundary and the measure μ has continuous density ρ on D such that $\alpha<\rho<\frac{1}{\alpha}$ on D, for some $\alpha>0$.
The spectral limit of the unweighted graph laplacian is given by the following eigenvalue problem.

$$
\begin{aligned}
L_{c} u=-\frac{1}{\rho} \operatorname{div}\left(\rho^{2} \nabla u\right) & =\lambda_{2} u & & \text { in } D \\
\frac{\partial u}{\partial n} & =0 & & \text { on } \partial D .
\end{aligned}
$$

The operator L_{c} describing the equation is self-adjoint with respect to the ρ-weighted L^{2} inner product on D :

$$
\langle u, v\rangle=\int_{D} u(x) v(x) \rho(x) d x
$$

Consistency of Spectral Clustering in \mathbb{R}^{d}

Theorem (García Trillos and S., ACHA '16)

Assume $h \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\varepsilon^{d} \gg \begin{cases}\frac{(\ln n)^{\frac{3}{2}}}{n} & \text { if } d=2 \\ \frac{\ln n}{n} & \text { if } d \geq 3\end{cases}
$$

Then
(i) eigenvalues of the graph laplacian converge to eigenvalues of L_{c}
(ii) eigenvectors of the graph laplacian converge (along a subsequence) to eigenfunctions of L_{c}.
(iii) the clusters obtained by spectral clustering converge to clustering obtained by spectral clustering in continuum setting.

- We require

$$
\begin{aligned}
& \varepsilon_{n} \gg \frac{(\log n)^{3 / 4}}{n^{1 / 2}} \quad \text { if } d=2 \\
& \varepsilon_{n} \gg \frac{(\log n)^{1 / d}}{n^{1 / d}} \quad \text { if } d \geq 3 .
\end{aligned}
$$

- Note that for $d \geq 3$ this means that typical degree $\gg \log (n)$.
- Does convergence hold if fewer than $\log (n)$ neighbors are connected to?
- We require

$$
\begin{aligned}
& \varepsilon_{n} \gg \frac{(\log n)^{3 / 4}}{n^{1 / 2}} \text { if } d=2 \\
& \varepsilon_{n} \gg \frac{(\log n)^{1 / d}}{n^{1 / d}} \quad \text { if } d \geq 3 .
\end{aligned}
$$

- Note that for $d \geq 3$ this means that typical degree $\gg \log (n)$.
- Does convergence hold if fewer than $\log (n)$ neighbors are connected to?
No. There exists $c>0$ such that $\varepsilon_{n}<c \frac{\log (n)^{1 / d}}{n^{1 / d}}$ then with probability one the random geometric graph is asymptotically disconnected. This implies that for large enough $n, \min G C_{n, \varepsilon_{n}}=0$. While $\inf C>0$.

So for $d \geq 3$ the condition is optimal in terms of scaling.
∞-transportation distance:

$$
d_{\infty}(\mu, \nu)=\inf _{\pi \in \Pi(\mu, \nu)} \operatorname{esssup}_{\pi}\{|x-y|: x \in X, y \in Y\}
$$

- If $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$ and $\nu=\frac{1}{n} \sum_{j=1}^{n} \delta_{y_{j}}$ then

$$
d_{\infty}(\mu, \nu)=\min _{\sigma \text {-permutation }} \max _{i}\left|x_{i}-y_{\sigma(i)}\right| .
$$

- If μ has density then OT map, T exists (Champion, De Pascale, Juutinen 2008) and

$$
d_{\infty}(\mu, \nu)=\|T(x)-x\|_{L^{\infty}(\mu)} .
$$

∞-OT between a measure and its random sample

Optimal matchings in dimension d \geq 3: Ajtai-Komlós-Tusnády (1983), Yukich and Shor (1991), Garcia Trillos and S. (2014)

Theorem

There are constants $c>0$ and $C>0$ (depending on d) such that with probability one we can find a sequence of transportation maps $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ from ν_{0} to $\nu_{n}\left(T_{n \#} \nu_{0}=\nu_{n}\right)$ and such that:

$$
c \leq \liminf _{n \rightarrow \infty} \frac{n^{1 / d}\left\|I d-T_{n}\right\|_{\infty}}{(\log n)^{1 / d}} \leq \limsup _{n \rightarrow \infty} \frac{n^{1 / d}\left\|l d-T_{n}\right\|_{\infty}}{(\log n)^{1 / d}} \leq C .
$$

∞-OT between a measure and its random sample

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by Talagrand (2005), Garcia Trillos and S. (2014)

Theorem

There are constants $c>0$ and $C>0$ such that with probability one we can find a sequence of transportation maps $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ from ν_{0} to ν_{n} ($T_{n \#} \nu_{0}=\nu_{n}$) and such that:
(1) $\quad c \leq \liminf _{n \rightarrow \infty} \frac{n^{1 / 2}\left\|I d-T_{n}\right\|_{\infty}}{(\log n)^{3 / 4}} \leq \limsup _{n \rightarrow \infty} \frac{n^{1 / 2}\left\|I d-T_{n}\right\|_{\infty}}{(\log n)^{3 / 4}} \leq C$.

Consistency of Spectral Clustering in Manifold Setting

work in progress with García Trillos, Gerlach, and Hein. Relies on work by Burago, Ivanov Kurylev.
\mathcal{M} compact manifold of dimension m.
The measure μ on \mathcal{M} the data are sampled from has density ρ with respect to volume form on \mathcal{M}, such that $\alpha \leq \rho \leq \frac{1}{\alpha}$ for some $\alpha>0$ and ρ is Lipschitz continuous.
The continuum operator is a weighted Laplace-Beltrami operator

$$
u \mapsto \frac{1}{\rho} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \operatorname{grad} u\right) .
$$

This operator is symmetric with respect to $L^{2}(d \mu)$:

$$
\|u\|_{L^{2}(d \mu)}^{2}=\int_{\mathcal{M}} u^{2} d \mu .
$$

It has a spectrum

$$
0=\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots .
$$

with corresponding orthornomal set of eigenfunctions $u_{k}, k=1, \ldots$

Transportation estimates

Let $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$ be the empirical measure of the random i.i.d sample.

Theorem

For any $\beta>1$ and every $n \in \mathbb{N}$ there exist a transportation map
$T_{n}: \mathcal{M} \rightarrow X$ and a constant A such that

$$
\ell=\sup _{x \in \mathcal{M}} d\left(x, T_{n}(x)\right) \leq A \begin{cases}\frac{\log (n)^{3 / 4}}{n^{1 / 2}}, & \text { if } m=2, \\ \frac{(\log n)^{1 / m}}{n^{1 / m}}, & \text { if } m \geq 3,\end{cases}
$$

holds with probability at least $1-C_{K, \mathrm{Vol}(\mathcal{M}), m, i_{0}} \cdot n^{-\beta}$, where A depends only on K, i_{0}, R, m, $\operatorname{Vol}(\mathcal{M}), \alpha$ and β.
K - upper bound on absolute value of sectional curvature
i_{0} - injectivity radius
R - reach of \mathcal{M} is \mathbb{R}^{d}

Consistency of Spectral Clustering in Manifold Setting

Theorem (García Trillos, Gerlach, Hein and S.)

With high probability, for every $k \in\{1, \ldots, n\}$ there exists a constant $C>0$ depending on $K, R, m, p, \rho, \vec{m}, \eta$, and $\lambda_{k}(\mathcal{M})$ such that

$$
\left|\lambda_{k}(\Gamma)-\lambda_{k}(\mathcal{M})\right| \leq C\left(\varepsilon+\frac{\ell}{\varepsilon}\right),
$$

whenever $\ell<h \ll 1$.
ε - averaging length scale
ℓ - transportation length scale
K - upper bound on absolute value of sectional curvature
R - reach of \mathcal{M} is \mathbb{R}^{d}

Consistency of Spectral Clustering in Manifold Setting

ε - averaging length scale
ℓ - transportation length scale
Theorem (García Trillos, Gerlach, Hein and S.)
With high probability, for every $k \in\{1, \ldots, n\}$ there exists a constant $C>0$ depending on $K, R, m, p, \rho, \vec{m}, \eta$, and $\lambda_{k}(\mathcal{M})$ such that

$$
\left\|u_{k}^{n}-u_{k}\right\|_{L^{2}} \leq C\left(\varepsilon+\frac{\ell}{\varepsilon}\right)
$$

whenever $\ell<h \ll 1$.
where $u_{k}^{n}: V_{n} \rightarrow \mathbb{R}, u: \mathcal{M} \rightarrow \mathbb{R}$, and

$$
\begin{aligned}
& L_{n} u_{k}^{n}=\lambda_{k}\left(\Gamma_{n}\right) u_{n}^{k} \\
& L_{c} u_{k}=\lambda_{k}(\mathcal{M}) u_{k} .
\end{aligned}
$$

Consistency of Spectral Clustering in Manifold Setting

ε - averaging length scale
ℓ - transportation length scale
Theorem (García Trillos, Gerlach, Hein and S.)
With high probability, for every $k \in\{1, \ldots, n\}$ there exists a constant $C>0$ depending on $K, R, m, p, \rho, \vec{m}, \eta$, and $\lambda_{k}(\mathcal{M})$ such that

$$
d_{T L^{2}}\left(\left(\mu_{n}, u_{k}^{n}\right),\left(\mu, u_{k}\right)\right) \leq C\left(\varepsilon+\frac{\ell}{\varepsilon}\right),
$$

whenever $\ell<h \ll 1$.
where $u_{k}^{n}: V_{n} \rightarrow \mathbb{R}, u: \mathcal{M} \rightarrow \mathbb{R}$, and

$$
\begin{aligned}
& L_{n} u_{k}^{n}=\lambda_{k}\left(\Gamma_{n}\right) u_{n}^{k} \\
& L_{c} u_{k}=\lambda_{k}(\mathcal{M}) u_{k} .
\end{aligned}
$$

Consider domain D and $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ random i.i.d points.

- How to compare $u_{n}: V_{n} \rightarrow \mathbb{R}$ and $u: D \rightarrow \mathbb{R}$ in a way consistent with L^{1} topology?

Note that $u \in L^{1}(\nu)$ and $u_{n} \in L^{1}\left(\nu_{n}\right)$, where $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$.

Topology

Consider domain D and $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ random i.i.d points.

- Let T_{n} be a transportation map from ν to ν_{n}.

Let ν be a measure with density ρ, supported on the domain D.
We need to compare values at nearby points. Thus we also penalize transport $\left|T_{n}(x)-x\right|$.

Metric

For $u \in L^{1}(\nu)$ and $u_{n} \in L^{1}\left(\nu_{n}\right)$

$$
d\left((\nu, u),\left(\nu_{n}, u_{n}\right)\right)=\inf _{T_{n \sharp \nu=\nu_{n}}} \int_{D}\left(\left|u_{n}\left(T_{n}(x)\right)-u(x)\right|+\left|T_{n}(x)-x\right|\right) \rho(x) d x
$$

where

$$
T_{n \sharp} \nu=\nu_{n}
$$

$T L^{p}$ Space

Definition

$$
\begin{gathered}
T L^{p}=\left\{(\nu, f): \nu \in \mathcal{P}(D), f \in L^{p}(\nu)\right\} \\
\left.d_{T L P}^{p}((\nu, f),(\sigma, g))=\inf _{\pi \in \Pi(\nu, \sigma)} \int_{D \times D}|y-x|^{p}+\mid g(y)-f(x)\right)\left.\right|^{p} d \pi(x, y) .
\end{gathered}
$$

where

$$
\Pi(\nu, \sigma)=\{\pi \in \mathcal{P}(D \times D): \pi(A \times D)=\nu(A), \pi(D \times A)=\sigma(A)\} .
$$

Lemma

($T L^{p}, d_{T L P}$) is a metric space.
The topology of $T L^{p}$ agrees with the L^{p} convergence in the sense that

- $\left(\nu, f_{n}\right) \xrightarrow{T L^{\rho}}(\nu, f)$ iff $f_{n} \xrightarrow{L^{p}(\nu)} f$
- $\left(\nu, f_{n}\right) \xrightarrow{T L^{p}}(\nu, f)$ iff $f_{n} \xrightarrow{L^{\rho}(\nu)} f$
- $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{p}}(\nu, f)$ iff the measures $\left(I \times f_{n}\right)_{\sharp \nu_{n}}$ weakly converge to $(I \times f)_{\sharp} \nu$. That is if graphs, considered as measures converge weakly.
- The space $T L^{p}$ is not complete. Its completion are the probability measures on the product space $D \times \mathbb{R}$.

If $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{p}}(\nu, f)$ then there exists a sequence of transportation plans ν_{n} such that

$$
\begin{equation*}
\int_{D \times D}|x-y|^{p} d \pi_{n}(x, y) \longrightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

We call a sequence of transportation plans $\pi_{n} \in \Pi\left(\nu_{n}, \nu\right)$ stagnating if it satisfies (2).

Stagnating sequence: $\int_{D \times D}|x-y|^{p} d \pi_{n}(x, y) \longrightarrow 0$
TFAE:
(1) $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{p}}(\nu, f)$ as $n \rightarrow \infty$.
(2) $\nu_{n} \rightharpoonup \nu$ and there exists a stagnating sequence of transportation plans $\left\{\pi_{n}\right\}_{n \in \mathbb{N}}$ for which

$$
\begin{equation*}
\iint_{D \times D}\left|f(x)-f_{n}(y)\right|^{p} d \pi_{n}(x, y) \rightarrow 0, \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

(3) $\nu_{n} \rightharpoonup \nu$ and for every stagnating sequence of transportation plans π_{n}, (3) holds.

Formally $T L^{P}(D)$ is a fiber bundle over $\mathcal{P}(D)$.

Composition in $T L^{p}$ space

Lemma

Let $p \geq 1$ and let $\left\{\nu_{n}\right\}_{n \in \mathbb{N}}$ and ν be Borel probability measures on \mathbb{R}^{d} with finite second moments. Let $F_{n} \in L^{p}\left(\nu_{n}, \mathbb{R}^{d}, \mathbb{R}^{k}\right)$ and $F \in L^{p}\left(\nu, \mathbb{R}^{d}, \mathbb{R}^{k}\right)$.
Consider the measures $\tilde{\nu}_{n},=F_{n \sharp} \nu_{n}$ and $\tilde{\nu},=F_{\sharp} \nu$. Finally, let $\tilde{f}_{n} \in L^{p}\left(\tilde{\nu}_{n}, \mathbb{R}^{k}, \mathbb{R}\right)$ and $\tilde{f} \in L^{p}\left(\tilde{\nu}, \mathbb{R}^{k}, \mathbb{R}\right)$. If

$$
\left(\nu_{n}, F_{n}\right) \xrightarrow{T L^{p}}(\nu, F) \quad \text { as } n \rightarrow \infty,
$$

and

$$
\left(\tilde{\nu}_{n}, \tilde{f}_{n}\right) \xrightarrow{T L^{p}}(\tilde{\nu}, \tilde{f}) \quad \text { as } n \rightarrow \infty .
$$

Then,

$$
\left(\nu_{n}, \tilde{f}_{n} \circ F_{n}\right) \xrightarrow{T L^{p}}\left(\nu, \tilde{f} \circ F_{n}\right) \quad \text { as } n \rightarrow \infty .
$$

Consistency of Spectral Clustering in manifold setting

Theorem (García Trillos and S., ACHA '16)

Assume $h \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\varepsilon^{d} \gg \begin{cases}\frac{(\ln n)^{\frac{3}{2}}}{n} & \text { if } d \geq 2 \\ \frac{\ln n}{n} & \text { if } d \geq 3\end{cases}
$$

Then
(i) eigenvalues of the graph laplacian converge to eigenvalues of L_{c}
(ii) eigenvectors of the graph laplacian converge (along a subsequence) to eigenfunctions of L_{c}.
(iii) the clusters obtained by spectral clustering converge to clustering obtained by spectral clustering in continuum setting.
$x_{i}-$ points, $y_{i}-$ real valued labels
Assume we are given k labeled points

$$
\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)
$$

and a random sample $x_{k+1}, \ldots x_{n}$.
Q. How to label the rest of the points?

Zhu, Ghahramani, and Lafferty '03 proposed the following

Harmonic SSL

Minimize

$$
E(u)=\frac{1}{n^{2}} \sum_{i, j} W_{i, j}\left(u_{i}-u_{j}\right)^{2}
$$

subject to constraint

$$
u_{i}=y_{i} \quad \text { for } i=1, \ldots, k
$$

Harmonic semi-supervised learning

Nadler, Srebro, and Zhou '09 observed that solutions are spiky as $n \rightarrow \infty$, while the Dirichlet energy is decreasing. [Also see Wahba '90.]

Harmonic semi-supervised learning

It can be shown that if $W_{i, j}=\frac{1}{\varepsilon_{n}^{2}} \eta_{\varepsilon_{n}}\left(x_{i}-x_{j}\right)$ and

$$
\varepsilon_{n}^{d} \gg \begin{cases}\frac{(\ln n)^{\frac{3}{2}}}{n} & \text { if } d=2 \\ \frac{\ln n}{n} & \text { if } d \geq 3\end{cases}
$$

then the minimizers u^{n} of
subject to constraint

$$
\begin{aligned}
E\left(u^{n}\right) & =\frac{1}{n^{2}} \sum_{i, j} W_{i, j}\left(u_{i}^{n}-u_{j}^{n}\right)^{2} \\
u_{i}^{n} & =y_{i} \quad \text { for } i=1, \ldots, k
\end{aligned}
$$

converge along a subsequence to a "harmonic" function which in general does not respect the labels.

Harmonic semi-supervised learning II

$x_{1}, \ldots x_{n}$ random sample of a measure μ with density ρ on Ω.
Points in subdomain $\Omega^{+} \subset \Omega$ are labeled: $y_{i}=f\left(x_{i}\right)$ for $x_{i} \in \Omega^{+}$.
Consider, as did Bertozzi, Luo, Stuart, Zygalakis, minimizing

Harmonic SSL

$$
E\left(u^{n}\right)=\frac{1}{n^{2}} \sum_{i, j} W_{i, j}\left(u_{i}^{n}-u_{j}^{n}\right)^{2}+\frac{1}{\gamma^{2}} \frac{1}{n} \sum_{i: x_{i} \in \Omega^{+}}\left|u_{i}^{n}-f\left(x_{i}\right)\right|^{2}
$$

Theorem (Dunlop, Stuart, S. Thorpe)

Under standard assumptions the minimizers u^{n} converge in $T L^{2}$ to the minimizer of

$$
E(u)=\sigma \int_{\Omega}|\nabla u|^{2} \rho^{2} d x+\frac{1}{\gamma^{2}} \int_{\Omega^{+}}|u(x)-f(x)|^{2} \rho(x) d x
$$

Higher order regularizations

Related work by Zhou, Belkin '11.
Given are k labeled points, $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, and a random sample $x_{k+1}, \ldots x_{n}$.

Using graph laplacian L_{n} we define

$$
A_{n}=\left(L_{n}+\tau^{2} I\right)^{\alpha} .
$$

Power of a symmetric matrix is defined by $A^{\alpha}=P D^{\alpha} P^{-1}$ for $A=P D P^{-1}$.

Higher order SSL

Minimize
subject to constraint

$$
\begin{aligned}
E(u) & =\frac{1}{2}\left\langle u^{n}, A_{n} u^{n}\right\rangle_{\mu_{n}} \\
u_{i}^{n} & =y_{i} \quad \text { for } i=1, \ldots, k .
\end{aligned}
$$

Higher order regularizations

$$
A_{n}=\left(L_{n}+\tau^{2} I\right)^{\alpha} .
$$

Higher order SSL

Minimize
subject to constraint

$$
\begin{aligned}
E(u) & =\frac{1}{2}\left\langle u^{n}, A_{n} u^{n}\right\rangle_{\mu_{n}} \\
u_{i}^{n} & =y_{i} \quad \text { for } i=1, \ldots, k .
\end{aligned}
$$

Theorem (Dunlop, Stuart, S. Thorpe)
For $\alpha>\frac{d}{2}$, under usual assumptions, minimizers u^{n} converge in $T L^{2}$ to the
minimizer of
subject to constraint

$$
\begin{aligned}
& E(u)=\sigma \int_{\Omega} u(x)(A u)(x) \rho(x) d x \\
& u\left(x_{i}\right)=y_{i} \quad \text { for } i=1, \ldots, k
\end{aligned}
$$

where $A=\left(\sigma L_{c}+\tau I\right)^{\alpha}$ and $L_{c} u=-\frac{1}{\rho} \operatorname{div}\left(\rho^{2} \nabla u\right)$.

