Consistency of objective functionals in semi-supervised learning

Dejan Slepčev Carnegie Mellon University

Casa Matemática Oaxaca May 1, 2017.

- Dunlop, S., Stuart, Thorpe, *Consistency of objective functionals in semi-supervised learning* in preparation.
- S., Thorpe, *Consistency of p-Laplacian regularizations in semi-supervised learning* in preparation.
- García Trillos, Gerlach, Hein, and S., Error bounds for spectral convergence of empirical graph Laplacians in preparation.
- García Trillos and S., On the rate of convergence of empirical measures in ∞-transportation distance, Canad. J. Math, 67, (2015), pp. 1358-1383.
- García Trillos and S., *Continuum limit of total variation on point clouds*, Arch. Ration. Mech. Anal., 220 no. 1, (2016) 193-241.
- García Trillos, S., J. von Brecht, T. Laurent, and X. Bresson, *Consistency of Cheeger and ratio graph cuts*, J. Mach. Learn. Res. 17 (2016) 1-46.
- García Trillos, S., *A variational approach to the consistency of spectral clustering*, published online Applied and Computational Harmonic Analysis.

• Partition the data into meaningful groups.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.
- Partition the graph

From point clouds to graphs

• Let $V = \{X_1, \ldots, X_n\}$ be a point cloud in \mathbb{R}^d :

• Connect nearby vertices: Edge weights $W_{i,j}$.

From point clouds to graphs

• Let $V = \{X_1, \ldots, X_n\}$ be a point cloud in \mathbb{R}^d :

• Connect nearby vertices: Edge weights *W_{i,j}*.

From point clouds to graphs

• Let $V = \{X_1, \ldots, X_n\}$ be a point cloud in \mathbb{R}^d :

• Connect nearby vertices: Edge weights $W_{i,j}$.

Graph Constructions

proximity based graphs

• kNN graphs: Connect each vertex with its k nearest neighbors

k-means clustering

Given $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ find a set of *k* points $A = \{a_1, \ldots, a_k\}$ which minimizes

$$\min_{A} \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}(x_i, A)^2$$

where dist $(x, A) = \min_{a \in A} |x - a|$.

k-means clustering

Given $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ find a set of *k* points $A = \{a_1, \ldots, a_k\}$ which minimizes

$$\min_{A} \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}(x_i, A)^2$$

where dist $(x, A) = \min_{a \in A} |x - a|$.

Spectral Clustering

Shi, Malik, '00, Ng, Jordan, Weiss, '01, Belkin, Niyogi, '01, von Luxburg '07

• $V_n = \{X_1, \ldots, X_n\}$, similarity matrix *W*:

$$W_{ij} := \eta \left(|X_i - X_j| \right).$$

The weighted degree of a vertex is $d_i = \sum_j W_{i,j}$.

• Dirichlet energy of $u_n: V_n \to \mathbb{R}$ is

$$F(u) = \frac{1}{2} \sum_{i,j} W_{ij} |u_n(X_i) - u_n(X_j)|^2.$$

Associated operator is the (unnormalized) graph laplacian

$$L=D-W,$$

where $D = \text{diag}(d_1, \ldots, d_n)$.

Input: Number of clusters *k* and similarity matrix *W*.

- Construct the unnormalized graph Laplacian L.
- Compute the eigenvectors u₁,..., u_k of L associated to the k smallest eigenvalues of L.
- Map the data into R^k : $x_i \mapsto (u_1(x_i), \dots u_k(x_i)) =: y_i$
- Use the *k*-means algorithm to partition the set of points $\{y_1, \ldots, y_n\}$ into *k* groups, that we denote by G_1, \ldots, G_k .

Output: Clusters G_1, \ldots, G_k .

Comparison of Clustering Algorithms

(a) k - means

(b) spectral

(c) Cheeger cut

Ground Truth Assumption

Assume points X_1, X_2, \ldots , are drawn i.i.d out of measure $d\nu = \rho d \operatorname{Vol}_{\mathcal{M}}$, where \mathcal{M} is a compact manifold without boundary, and $0 < \rho < C$ is continuous.

Consistency of spectral clustering and graph Laplacians: *von Luxburg, Belkin, Bousquet '08, Belkin-Nyogi '07, Ting, Huang, Jordan '10, Singer, Wu '13, Burago, Ivanov, Kurylev '14, Shi, Sun '15*

- Does spectral clustering converge as $n \to \infty$?
- How should the connection distance be scaled as $n \to \infty$?
- What do the clusters converge to?
- Does the graph laplacian converge spectrally?
- Can one estimate the errors and obtain rates of convergence?

Spectral Clustering

•
$$V_n = \{X_1, \ldots, X_n\}$$
, similarity matrix *W*:

$$W_{ij} := rac{1}{arepsilon^{d+2}} \eta\left(rac{|X_i - X_j|}{arepsilon}
ight).$$

The weighted degree of a vertex is $d_i = \sum_j W_{i,j}$.

• Dirichlet energy of $u_n: V_n \to \mathbb{R}$ is

$$F(u) = \frac{1}{2} \sum_{i,j} W_{ij} |u_n(X_i) - u_n(X_j)|^2.$$

- Associated operator is the graph laplacian $L_n = D W$, where $D = \text{diag}(d_1, \dots, d_n)$.
- Spectrum has a variational characterization: The eigenvector corresponding to the second eigenvalue:

$$u_n := \arg\min\left\{\sum_{i,j} W_{ij}|u(X_i) - u(X_j)|^2 : \sum_i u(X_i) = 0, \|u\|_2 = 1\right\}$$

Consistency in Euclidean setting

Measure μ that data are sampled from is supported in \overline{D} where D is bounded open set in \mathbb{R}^d with Lipschitz boundary and the measure μ has continuous density ρ on D such that $\alpha < \rho < \frac{1}{\alpha}$ on D, for some $\alpha > 0$.

The spectral limit of the unweighted graph laplacian is given by the following eigenvalue problem.

$$L_{c}u = -\frac{1}{\rho}\operatorname{div}(\rho^{2}\nabla u) = \lambda_{2}u \quad \text{in } D$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial D.$$

The operator L_c describing the equation is self-adjoint with respect to the ρ -weighted L^2 inner product on D:

$$\langle u, v \rangle = \int_D u(x)v(x)\rho(x)dx$$

Consistency of Spectral Clustering in \mathbb{R}^d

Theorem (García Trillos and S., ACHA '16)

Assume $h \rightarrow 0$ as $n \rightarrow \infty$ and

$$e^d \gg \begin{cases} \frac{(\ln n)^{\frac{3}{2}}}{n} & \text{if } d = 2\\ \frac{\ln n}{n} & \text{if } d \ge 3 \end{cases}$$

Then

- (i) eigenvalues of the graph laplacian converge to eigenvalues of L_c
- (ii) eigenvectors of the graph laplacian converge (along a subsequence) to eigenfunctions of L_c .
- (iii) the clusters obtained by spectral clustering converge to clustering obtained by spectral clustering in continuum setting.

• We require

$$arepsilon_n \gg rac{(\log n)^{3/4}}{n^{1/2}} \quad ext{if } d = 2$$
 $arepsilon_n \gg rac{(\log n)^{1/d}}{n^{1/d}} \quad ext{if } d \ge 3.$

- Note that for $d \ge 3$ this means that typical degree $\gg \log(n)$.
- Does convergence hold if fewer than log(n) neighbors are connected to?

• We require

$$\varepsilon_n \gg \frac{(\log n)^{3/4}}{n^{1/2}} \quad \text{if } d = 2$$

$$\varepsilon_n \gg \frac{(\log n)^{1/d}}{n^{1/d}} \quad \text{if } d \ge 3.$$

- Note that for $d \ge 3$ this means that typical degree $\gg \log(n)$.
- Does convergence hold if fewer than log(n) neighbors are connected to?

No. There exists c > 0 such that $\varepsilon_n < c \frac{\log(n)^{1/d}}{n^{1/d}}$ then with probability one the random geometric graph is asymptotically disconnected. This implies that for large enough *n*, min $GC_{n,\varepsilon_n} = 0$. While inf C > 0.

So for $d \ge 3$ the condition is optimal in terms of scaling.

$\infty-$ transportation distance:

$$d_\infty(\mu,
u) = \inf_{\pi\in\Pi(\mu,
u)} ext{esssup}_\pi\{|x-y| \ : \ x\in X, y\in Y\}$$

• If
$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$$
 and $\nu = \frac{1}{n} \sum_{j=1}^{n} \delta_{y_j}$ then
$$d_{\infty}(\mu, \nu) = \min_{\sigma - \text{permutation}} \max_{i} |x_i - y_{\sigma(i)}|.$$

• If μ has density then OT map, *T* exists (Champion, De Pascale, Juutinen 2008) and

$$d_{\infty}(\mu,\nu) = \|T(x) - x\|_{L^{\infty}(\mu)}.$$

∞ -OT between a measure and its random sample

Optimal matchings in dimension $d \ge 3$: Ajtai-Komlós-Tusnády (1983), Yukich and Shor (1991), Garcia Trillos and S. (2014)

Theorem

There are constants c > 0 and C > 0 (depending on d) such that with probability one we can find a sequence of transportation maps $\{T_n\}_{n \in \mathbb{N}}$ from ν_0 to ν_n ($T_{n \#}\nu_0 = \nu_n$) and such that:

$$c \leq \liminf_{n \to \infty} \frac{n^{1/d} \| Id - T_n \|_{\infty}}{(\log n)^{1/d}} \leq \limsup_{n \to \infty} \frac{n^{1/d} \| Id - T_n \|_{\infty}}{(\log n)^{1/d}} \leq C.$$

∞ -OT between a measure and its random sample

Optimal matchings in dimension $\mathbf{d} = \mathbf{2}$: Leighton and Shor (1986), new proof by Talagrand (2005), Garcia Trillos and S. (2014)

Theorem

There are constants c > 0 and C > 0 such that with probability one we can find a sequence of transportation maps $\{T_n\}_{n \in \mathbb{N}}$ from ν_0 to ν_n $(T_{n\#}\nu_0 = \nu_n)$ and such that:

(1)
$$c \leq \liminf_{n \to \infty} \frac{n^{1/2} \| Id - T_n \|_{\infty}}{(\log n)^{3/4}} \leq \limsup_{n \to \infty} \frac{n^{1/2} \| Id - T_n \|_{\infty}}{(\log n)^{3/4}} \leq C.$$

Consistency of Spectral Clustering in Manifold Setting

work in progress with García Trillos, Gerlach, and Hein. Relies on work by Burago, Ivanov Kurylev.

 \mathcal{M} compact manifold of dimension m.

The measure μ on \mathcal{M} the data are sampled from has density ρ with respect to volume form on \mathcal{M} , such that $\alpha \leq \rho \leq \frac{1}{\alpha}$ for some $\alpha > 0$ and ρ is Lipschitz continuous.

The continuum operator is a weighted Laplace-Beltrami operator

$$u\mapsto \frac{1}{
ho}\operatorname{div}_{\mathcal{M}}(
ho^2\operatorname{grad} u).$$

This operator is symmetric with respect to $L^2(d\mu)$:

$$\|u\|_{L^2(d\mu)}^2=\int_{\mathcal{M}}u^2d\mu.$$

It has a spectrum

$$0=\lambda_1<\lambda_2\leq\lambda_3\leq\cdots.$$

with corresponding orthornomal set of eigenfunctions u_k , k = 1, ...,

Transportation estimates

Let $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ be the empirical measure of the random i.i.d sample.

Theorem

For any $\beta > 1$ and every $n \in \mathbb{N}$ there exist a transportation map $T_n \colon \mathcal{M} \to X$ and a constant A such that

$$\ell = \sup_{x \in \mathcal{M}} d(x, T_n(x)) \le A \begin{cases} rac{\log(n)^{3/4}}{n^{1/2}}, & \text{if } m = 2, \\ rac{(\log n)^{1/m}}{n^{1/m}}, & \text{if } m \ge 3, \end{cases}$$

holds with probability at least $1 - C_{K,Vol(\mathcal{M}),m,i_0} \cdot n^{-\beta}$, where A depends only on K, i_0 , R, m, Vol(\mathcal{M}), α and β .

K – upper bound on absolute value of sectional curvature

- io injectivity radius
- R reach of \mathcal{M} is \mathbb{R}^d

Theorem (García Trillos, Gerlach, Hein and S.)

With high probability, for every $k \in \{1, ..., n\}$ there exists a constant C > 0 depending on K, R, m, p, ρ , \vec{m} , η , and $\lambda_k(\mathcal{M})$ such that

$$|\lambda_k(\Gamma) - \lambda_k(\mathcal{M})| \leq C\left(\varepsilon + \frac{\ell}{\varepsilon}\right),$$

whenever $\ell < h \ll 1$.

- ε averaging length scale
- ℓ transportation length scale
- K upper bound on absolute value of sectional curvature
- R reach of \mathcal{M} is \mathbb{R}^d

Consistency of Spectral Clustering in Manifold Setting

- ε averaging length scale
- ℓ transportation length scale

Theorem (García Trillos, Gerlach, Hein and S.)

With high probability, for every $k \in \{1, ..., n\}$ there exists a constant C > 0 depending on K, R, m, p, ρ , \vec{m} , η , and $\lambda_k(\mathcal{M})$ such that

$$\|u_k^n-u_k\|_{L^2}\leq C\left(\varepsilon+\frac{\ell}{\varepsilon}\right),$$

whenever $\ell < h \ll 1$.

where $u_k^n : V_n \to \mathbb{R}$, $u : \mathcal{M} \to \mathbb{R}$, and

$$L_n u_k^n = \lambda_k (\Gamma_n) u_n^k$$
$$L_c u_k = \lambda_k (\mathcal{M}) u_k$$

Consistency of Spectral Clustering in Manifold Setting

- ε averaging length scale
- ℓ transportation length scale

Theorem (García Trillos, Gerlach, Hein and S.)

With high probability, for every $k \in \{1, ..., n\}$ there exists a constant C > 0 depending on K, R, m, p, ρ , \vec{m} , η , and $\lambda_k(\mathcal{M})$ such that

$$d_{TL^2}((\mu_n, u_k^n), (\mu, u_k)) \leq C\left(arepsilon + rac{\ell}{arepsilon}
ight),$$

whenever $\ell < h \ll 1$.

where $u_k^n : V_n \to \mathbb{R}$, $u : \mathcal{M} \to \mathbb{R}$, and

$$L_n u_k^n = \lambda_k (\Gamma_n) u_n^k$$
$$L_c u_k = \lambda_k (\mathcal{M}) u_k$$

Topology

Consider domain *D* and $V_n = \{X_1, \ldots, X_n\}$ random i.i.d points.

• How to compare $u_n : V_n \to \mathbb{R}$ and $u : D \to \mathbb{R}$ in a way consistent with L^1 topology?

Note that
$$u \in L^1(\nu)$$
 and $u_n \in L^1(\nu_n)$, where $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$.

Topology

Consider domain *D* and $V_n = \{X_1, \ldots, X_n\}$ random i.i.d points.

• Let T_n be a transportation map from ν to ν_n .

Let ν be a measure with density ρ , supported on the domain *D*.

We need to compare values at nearby points. Thus we also penalize transport $|T_n(x) - x|$.

Metric

For
$$u \in L^{1}(\nu)$$
 and $u_{n} \in L^{1}(\nu_{n})$
$$d((\nu, u), (\nu_{n}, u_{n})) = \inf_{T_{n} \neq \nu = \nu_{n}} \int_{D} (|u_{n}(T_{n}(x)) - u(x)| + |T_{n}(x) - x|) \rho(x) dx$$

where

$$T_{n\,\sharp}\nu=\nu_n$$

TL^p Space

Definition

$$TL^{p} = \{(\nu, f) : \nu \in \mathcal{P}(D), f \in L^{p}(\nu)\}$$
$$d^{p}_{TL^{p}}((\nu, f), (\sigma, g)) = \inf_{\pi \in \Pi(\nu, \sigma)} \int_{D \times D} |y - x|^{p} + |g(y) - f(x))|^{p} d\pi(x, y).$$

where

$$\Pi(\nu,\sigma) = \{\pi \in \mathcal{P}(\mathsf{D} \times \mathsf{D}) : \pi(\mathsf{A} \times \mathsf{D}) = \nu(\mathsf{A}), \ \pi(\mathsf{D} \times \mathsf{A}) = \sigma(\mathsf{A})\}.$$

Lemma

 $(TL^{p}, d_{TL^{p}})$ is a metric space.

The topology of TL^{p} agrees with the L^{p} convergence in the sense that

•
$$(\nu, f_n) \xrightarrow{TL^p} (\nu, f)$$
 iff $f_n \xrightarrow{L^p(\nu)} f$

•
$$(\nu, f_n) \xrightarrow{TL^p} (\nu, f)$$
 iff $f_n \xrightarrow{L^p(\nu)} f$

- $(\nu_n, f_n) \xrightarrow{TL^p} (\nu, f)$ iff the measures $(I \times f_n)_{\sharp} \nu_n$ weakly converge to $(I \times f)_{\sharp} \nu$. That is if graphs, considered as measures converge weakly.
- The space *TL^p* is not complete. Its completion are the probability measures on the product space *D* × ℝ.

If $(\nu_n, f_n) \xrightarrow{TL^p} (\nu, f)$ then there exists a sequence of transportation plans ν_n such that

(2)
$$\int_{D\times D} |x-y|^p d\pi_n(x,y) \longrightarrow 0 \text{ as } n \to \infty.$$

We call a sequence of transportation plans $\pi_n \in \Pi(\nu_n, \nu)$ stagnating if it satisfies (2).

Stagnating sequence: $\int_{D \times D} |x - y|^p d\pi_n(x, y) \longrightarrow 0$ TFAF:

$$(\nu_n, f_n) \xrightarrow{TL^p} (\nu, f) \text{ as } n \to \infty.$$

2 $\nu_n \rightharpoonup \nu$ and **there exists** a stagnating sequence of transportation plans $\{\pi_n\}_{n \in \mathbb{N}}$ for which

(3)
$$\int\!\!\!\int_{D\times D} |f(x) - f_n(y)|^p d\pi_n(x, y) \to 0, \text{ as } n \to \infty.$$

3 $\nu_n \rightarrow \nu$ and **for every** stagnating sequence of transportation plans π_n , (3) holds.

Formally $TL^{p}(D)$ is a fiber bundle over $\mathcal{P}(D)$.

Lemma

Let $p \ge 1$ and let $\{\nu_n\}_{n\in\mathbb{N}}$ and ν be Borel probability measures on \mathbb{R}^d with finite second moments. Let $F_n \in L^p(\nu_n, \mathbb{R}^d, \mathbb{R}^k)$ and $F \in L^p(\nu, \mathbb{R}^d, \mathbb{R}^k)$. Consider the measures $\tilde{\nu}_n = F_{n\sharp}\nu_n$ and $\tilde{\nu} = F_{\sharp}\nu$. Finally, let $\tilde{f}_n \in L^p(\tilde{\nu}_n, \mathbb{R}^k, \mathbb{R})$ and $\tilde{f} \in L^p(\tilde{\nu}, \mathbb{R}^k, \mathbb{R})$. If

$$(
u_n, F_n) \stackrel{ extsf{TL}^p}{\longrightarrow} (
u, F) \quad \textit{as } n o \infty,$$

and

$$(ilde{
u}_n, ilde{f}_n) \stackrel{ extsf{TL}^p}{\longrightarrow} (ilde{
u}, ilde{f}) \quad \textit{as } n o \infty.$$

Then,

$$(\nu_n, \tilde{f}_n \circ F_n) \xrightarrow{TL^p} (\nu, \tilde{f} \circ F_n)$$
 as $n \to \infty$.

Theorem (García Trillos and S., ACHA '16)

Assume $h \rightarrow 0$ as $n \rightarrow \infty$ and

$$e^d \gg \begin{cases} rac{(\ln n)^{rac{3}{2}}}{n} & ext{if } d \geq 2 \\ rac{\ln n}{n} & ext{if } d \geq 3 \end{cases}$$

Then

- (i) eigenvalues of the graph laplacian converge to eigenvalues of L_c
- (ii) eigenvectors of the graph laplacian converge (along a subsequence) to eigenfunctions of L_c .
- (iii) the clusters obtained by spectral clustering converge to clustering obtained by spectral clustering in continuum setting.

Functionals in semi-supervised learning

 x_i points, y_i real valued labels Assume we are given k labeled points

 $(x_1, y_1), \ldots (x_k, y_k)$

and a random sample $x_{k+1}, \ldots x_n$.

Q. How to label the rest of the points?

Zhu, Ghahramani, and Lafferty '03 proposed the following

Harmonic SSL

Minimize
$$E(u) = \frac{1}{n^2} \sum_{i,j} W_{i,j} (u_i - u_j)^2$$
subject to constraint $u_i = y_i$ for $i = 1, \dots, k$.

Harmonic semi-supervised learning

Nadler, Srebro, and Zhou '09 observed that solutions are spiky as $n \to \infty$, while the Dirichlet energy is decreasing. [Also see Wahba '90.]

Harmonic semi-supervised learning

It can be shown that if $W_{i,j} = \frac{1}{\varepsilon_n^2} \eta_{\varepsilon_n}(x_i - x_j)$ and

$$\varepsilon_n^d \gg \begin{cases} \frac{(\ln n)^{\frac{3}{2}}}{n} & \text{if } d = 2\\ \frac{\ln n}{n} & \text{if } d \ge 3 \end{cases}$$

then the minimizers u^n of

$$E(u^n) = \frac{1}{n^2} \sum_{i,j} W_{i,j} (u_i^n - u_j^n)^2$$
$$u_i^n = y_i \quad \text{for } i = 1, \dots, k.$$

subject to constraint

converge along a subsequence to a "harmonic" function which in general does not respect the labels.

Harmonic semi-supervised learning II

 $x_1, \ldots x_n$ random sample of a measure μ with density ρ on Ω . Points in subdomain $\Omega^+ \subset \Omega$ are labeled: $y_i = f(x_i)$ for $x_i \in \Omega^+$.

Consider, as did Bertozzi, Luo, Stuart, Zygalakis, minimizing

Harmonic SSL

$$E(u^{n}) = \frac{1}{n^{2}} \sum_{i,j} W_{i,j}(u^{n}_{i} - u^{n}_{j})^{2} + \frac{1}{\gamma^{2}} \frac{1}{n} \sum_{i: x_{i} \in \Omega^{+}} |u^{n}_{i} - f(x_{i})|^{2}$$

Theorem (Dunlop, Stuart, S. Thorpe)

Under standard assumptions the minimizers u^n converge in TL^2 to the minimizer of

$$E(u) = \sigma \int_{\Omega} |\nabla u|^2 \rho^2 dx + \frac{1}{\gamma^2} \int_{\Omega^+} |u(x) - f(x)|^2 \rho(x) dx$$

Higher order regularizations

Related work by *Zhou, Belkin '11*. Given are *k* labeled points, $(x_1, y_1), \ldots, (x_k, y_k)$, and a random sample x_{k+1}, \ldots, x_n .

Using graph laplacian L_n we define

$$A_n = (L_n + \tau^2 I)^{\alpha}.$$

Power of a symmetric matrix is defined by $A^{\alpha} = PD^{\alpha}P^{-1}$ for $A = PDP^{-1}$.

Higher order SSL

Minimize
$$E(u) = \frac{1}{2} \langle u^n, A_n u^n \rangle_{\mu_n}$$
subject to constraint $u_i^n = y_i$ for $i = 1, \dots, k_n$

Higher order regularizations

$$A_n = (L_n + \tau^2 I)^{\alpha}.$$

Higher order SSL

Minimize

$$E(u) = \frac{1}{2} \langle u^n, A_n u^n \rangle_{\mu_n}$$
$$u_i^n = y_i \quad \text{for } i = 1, \dots, k.$$

subject to constraint

Theorem (Dunlop, Stuart, S. Thorpe)

For $\alpha > \frac{d}{2}$, under usual assumptions, minimizers u^n converge in TL^2 to the

minimizer of

$$E(u) = \sigma \int_{\Omega} u(x)(Au)(x)\rho(x)dx$$
$$u(x_i) = y_i \quad \text{for } i = 1, \dots, k.$$

subject to constraint

where $A = (\sigma L_c + \tau I)^{\alpha}$ and $L_c u = -\frac{1}{\rho} \operatorname{div}(\rho^2 \nabla u)$.