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Clustering

Partition the data into meaningful groups.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

Partition the graph
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Connect nearby vertices: Edge weights Wi,j .
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j

Connect nearby vertices: Edge weights Wi,j .
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Graph Constructions

proximity based graphs

Wi,j = η(Xi − Xj)

η

L

η

L

kNN graphs: Connect each vertex with its k nearest neighbors
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k -means clustering

Given X = {x1, . . . , xn} ⊂ Rd find a set of k points A = {a1, . . . , ak} which
minimizes

min
A

1
n

n∑
i=1

dist(xi ,A)2

where dist(x ,A) = mina∈A |x − a|.
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Spectral Clustering

Shi, Malik, ’00, Ng, Jordan, Weiss, ’01, Belkin, Niyogi, ’01, von Luxburg ’07

Vn = {X1, . . . ,Xn}, similarity matrix W :

Wij := η (|Xi − Xj |) .

The weighted degree of a vertex is di =
∑

j Wi,j .

Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij |un(Xi)− un(Xj)|2.

Associated operator is the (unnormalized) graph laplacian

L = D −W ,

where D = diag(d1, . . . , dn).
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Spectral Clustering

Input: Number of clusters k and similarity matrix W .

– Construct the unnormalized graph Laplacian L.

– Compute the eigenvectors u1, . . . , uk of L associated to the k smallest
eigenvalues of L.

– Map the data into Rk : xi 7→ (u1(xi), . . . uk (xi)) =: yi

– Use the k -means algorithm to partition the set of points {y1, . . . , yn}
into k groups, that we denote by G1, . . . ,Gk .

Output: Clusters G1, . . . ,Gk .
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Spectral Clustering: an example
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Spectral Clustering: an example
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Spectral Clustering: an example
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Spectral Clustering: an example
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Comparison of Clustering Algorithms

(a) k - means (b) spectral (c) Cheeger cut

.
17 / 46



Ground Truth Assumption

Assume points X1,X2, . . . , are drawn i.i.d out of measure dν = ρd VolM,
whereM is a compact manifold without boundary, and 0 < ρ < C is
continuous.

-1
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x = x, y = -(2 cos(t) (1 - x2)1/2 (cos(3 x) - 8/5))/5, z = -(2 sin(t) (1 - x2)1/2 (cos(3 x) - 8/5))/5
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Questions

Consistency of spectral clustering and graph Laplacians: von Luxburg,
Belkin, Bousquet ’08, Belkin-Nyogi ’07, Ting, Huang, Jordan ’10, Singer,
Wu ’13, Burago, Ivanov, Kurylev ’14, Shi, Sun ’15

Does spectral clustering converge as n→∞?

How should the connection distance be scaled as n→∞?

What do the clusters converge to?

Does the graph laplacian converge spectrally?

Can one estimate the errors and obtain rates of convergence?

.
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Spectral Clustering

Vn = {X1, . . . ,Xn}, similarity matrix W :

Wij :=
1

εd+2 η

(
|Xi − Xj

ε

)
.

The weighted degree of a vertex is di =
∑

j Wi,j .
Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij |un(Xi)− un(Xj)|2.

Associated operator is the graph laplacian Ln = D −W , where
D = diag(d1, . . . , dn).
Spectrum has a variational characterization: The eigenvector
corresponding to the second eigenvalue:

un := arg min

∑
i,j

Wij |u(Xi)− u(Xj)|2 :
∑

i

u(Xi) = 0, ‖u‖2 = 1


.
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Consistency in Euclidean setting

Measure µ that data are sampled from is supported in D where D is
bounded open set in Rd with Lipschitz boundary and the measure µ has
continuous density ρ on D such that α < ρ < 1

α on D, for some α > 0.

The spectral limit of the unweighted graph laplacian is given by the
following eigenvalue problem.

Lcu = −1
ρ

div(ρ2∇u) = λ2u in D

∂u
∂n

= 0 on ∂D.

The operator Lc describing the equation is self-adjoint with respect to the
ρ-weighted L2 inner product on D:

〈u, v〉 =

∫
D

u(x)v(x)ρ(x)dx

.
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Consistency of Spectral Clustering in Rd

Theorem (Garcı́a Trillos and S., ACHA ’16)

Assume h→ 0 as n→∞ and

εd �

 (ln n)
3
2

n if d = 2
ln n
n if d ≥ 3

Then

(i) eigenvalues of the graph laplacian converge to eigenvalues of Lc

(ii) eigenvectors of the graph laplacian converge (along a subsequence)
to eigenfunctions of Lc .

(iii) the clusters obtained by spectral clustering converge to clustering
obtained by spectral clustering in continuum setting.
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Comment of εn

We require

εn �
(log n)3/4

n1/2
if d = 2

εn �
(log n)1/d

n1/d
if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).

Does convergence hold if fewer than log(n) neighbors are connected
to?

.
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(log n)3/4

n1/2
if d = 2

εn �
(log n)1/d

n1/d
if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).

Does convergence hold if fewer than log(n) neighbors are connected
to?

No. There exists c > 0 such that εn < c log(n)1/d

n1/d then with probability
one the random geometric graph is asymptotically disconnected.
This implies that for large enough n, min GCn,εn = 0. While inf C > 0.

So for d ≥ 3 the condition is optimal in terms of scaling.
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Optimal Transportation for p =∞

∞−transportation distance:

d∞(µ, ν) = inf
π∈Π(µ,ν)

esssupπ{|x − y | : x ∈ X , y ∈ Y}

If µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
j=1 δyj then

d∞(µ, ν) = min
σ−permutation

max
i
|xi − yσ(i)|.

If µ has density then OT map, T exists (Champion, De Pascale,
Juutinen 2008) and

d∞(µ, ν) = ‖T (x)− x‖L∞(µ).
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∞-OT between a measure and its random sample

Optimal matchings in dimension d ≥ 3: Ajtai-Komlós-Tusnády (1983), Yukich and
Shor (1991), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 (depending on d) such that with
probability one we can find a sequence of transportation maps {Tn}n∈N
from ν0 to νn (Tn#ν0 = νn) and such that:

c ≤ lim inf
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ C.
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∞-OT between a measure and its random sample

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by
Talagrand (2005), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 such that with probability one we
can find a sequence of transportation maps {Tn}n∈N from ν0 to νn

(Tn#ν0 = νn) and such that:

(1) c ≤ lim inf
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ lim sup
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ C.
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Consistency of Spectral Clustering in Manifold Setting

work in progress with Garcı́a Trillos, Gerlach, and Hein. Relies on work by
Burago, Ivanov Kurylev.

M compact manifold of dimension m.
The measure µ onM the data are sampled from has density ρ with
respect to volume form onM, such that α ≤ ρ ≤ 1

α for some α > 0 and ρ
is Lipschitz continuous.
The continuum operator is a weighted Laplace-Beltrami operator

u 7→ 1
ρ

divM(ρ2 grad u).

This operator is symmetric with respect to L2(dµ):

‖u‖2
L2(dµ) =

∫
M

u2dµ.

It has a spectrum
0 = λ1 < λ2 ≤ λ3 ≤ · · · .

with corresponding orthornomal set of eigenfunctions uk , k = 1, . . . .
.
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Transportation estimates

Let µn = 1
n

∑n
i=1 δXi be the empirical measure of the random i.i.d sample.

Theorem

For any β > 1 and every n ∈ N there exist a transportation map
Tn : M→ X and a constant A such that

` = sup
x∈M

d(x ,Tn(x)) ≤ A


log(n)3/4

n1/2 , if m = 2,

(log n)1/m

n1/m , if m ≥ 3,

holds with probability at least 1− CK ,Vol(M),m,i0 · n−β , where A depends
only on K , i0, R, m, Vol(M), α and β.

K – upper bound on absolute value of sectional curvature
i0 – injectivity radius
R – reach ofM is Rd

.
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Consistency of Spectral Clustering in Manifold Setting

Theorem (Garcı́a Trillos, Gerlach, Hein and S.)

With high probability, for every k ∈ {1, . . . , n} there exists a constant
C > 0 depending on K , R, m, p, ρ, ~m, η, and λk (M) such that

|λk (Γ)− λk (M)| ≤ C
(
ε+

`

ε

)
,

whenever ` < h� 1.

ε – averaging length scale

` – transportation length scale

K – upper bound on absolute value of sectional curvature

R – reach ofM is Rd

.
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Consistency of Spectral Clustering in Manifold Setting

ε – averaging length scale
` – transportation length scale

Theorem (Garcı́a Trillos, Gerlach, Hein and S.)

With high probability, for every k ∈ {1, . . . , n} there exists a constant
C > 0 depending on K , R, m, p, ρ, ~m, η, and λk (M) such that

‖un
k − uk‖L2 ≤ C

(
ε+

`

ε

)
,

whenever ` < h� 1.

where un
k : Vn → R, u :M→ R, and

Lnun
k = λk (Γn)uk

n

Lcuk = λk (M)uk .

.
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Consistency of Spectral Clustering in Manifold Setting

ε – averaging length scale
` – transportation length scale

Theorem (Garcı́a Trillos, Gerlach, Hein and S.)

With high probability, for every k ∈ {1, . . . , n} there exists a constant
C > 0 depending on K , R, m, p, ρ, ~m, η, and λk (M) such that

dTL2((µn, un
k ), (µ, uk )) ≤ C

(
ε+

`

ε

)
,

whenever ` < h� 1.

where un
k : Vn → R, u :M→ R, and

Lnun
k = λk (Γn)uk

n

Lcuk = λk (M)uk .
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn =
1
n

n∑
i=1

δXi .
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

un ◦ Tn

u

ν
νn

Let Tn be a transportation map from ν to νn.

.
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Topology

Let ν be a measure with density ρ, supported on the domain D.

We need to compare values at nearby points. Thus we also penalize
transport |Tn(x)− x |.

Metric

For u ∈ L1(ν) and un ∈ L1(νn)

d((ν, u), (νn, un)) = inf
Tn ]ν=νn

∫
D

(|un(Tn(x))− u(x)|+ |Tn(x)− x |) ρ(x)dx

where
Tn ]ν = νn

.
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TLp Space

Definition

TLp = {(ν, f ) : ν ∈ P(D), f ∈ Lp(ν)}

dp
TLp ((ν, f ), (σ, g)) = inf

π∈Π(ν,σ)

∫
D×D
|y − x |p + |g(y)− f (x))|pdπ(x , y).

where

Π(ν, σ) = {π ∈ P(D × D) : π(A× D) = ν(A), π(D × A) = σ(A)}.

Lemma

(TLp, dTLp ) is a metric space.

The topology of TLp agrees with the Lp convergence in the sense that

(ν, fn)
TLp

−→ (ν, f ) iff fn
Lp(ν)−→ f

.
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TLp convergence

(ν, fn)
TLp

−→ (ν, f ) iff fn
Lp(ν)−→ f

(νn, fn)
TLp

−→ (ν, f ) iff the measures (I × fn)]νn weakly converge to
(I × f )]ν. That is if graphs, considered as measures converge weakly.

The space TLp is not complete. Its completion are the probability
measures on the product space D × R.

If (νn, fn)
TLp

−→ (ν, f ) then there exists a sequence of transportation plans νn

such that

(2)
∫

D×D
|x − y |pdπn(x , y) −→ 0 as n→∞.

We call a sequence of transportation plans πn ∈ Π(νn, ν) stagnating if it
satisfies (2).

.
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Stagnating sequence:
∫

D×D |x − y |pdπn(x , y) −→ 0

TFAE:
1 (νn, fn)

TLp

−→ (ν, f ) as n→∞.
2 νn ⇀ ν and there exists a stagnating sequence of transportation

plans {πn}n∈N for which

(3)
∫∫

D×D
|f (x)− fn(y)|p dπn(x , y)→ 0, as n→∞.

3 νn ⇀ ν and for every stagnating sequence of transportation plans
πn, (3) holds.

.
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Formally TLp(D) is a fiber bundle over P(D).
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Composition in TLp space

Lemma

Let p ≥ 1 and let {νn}n∈N and ν be Borel probability measures on Rd with
finite second moments. Let Fn ∈ Lp(νn,Rd ,Rk ) and F ∈ Lp(ν,Rd ,Rk ).
Consider the measures ν̃n,= Fn]νn and ν̃,= F]ν. Finally, let
f̃n ∈ Lp(ν̃n,Rk ,R) and f̃ ∈ Lp(ν̃,Rk ,R). If

(νn,Fn)
TLp

−→ (ν,F ) as n→∞,

and
(ν̃n, f̃n)

TLp

−→ (ν̃, f̃ ) as n→∞.

Then,
(νn, f̃n ◦ Fn)

TLp

−→ (ν, f̃ ◦ Fn) as n→∞.
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Consistency of Spectral Clustering in manifold setting

Theorem (Garcı́a Trillos and S., ACHA ’16)

Assume h→ 0 as n→∞ and

εd �

 (ln n)
3
2

n if d ≥ 2
ln n
n if d ≥ 3

Then

(i) eigenvalues of the graph laplacian converge to eigenvalues of Lc

(ii) eigenvectors of the graph laplacian converge (along a subsequence)
to eigenfunctions of Lc .

(iii) the clusters obtained by spectral clustering converge to clustering
obtained by spectral clustering in continuum setting.

.
40 / 46



Functionals in semi-supervised learning

xi− points, yi− real valued labels
Assume we are given k labeled points

(x1, y1), . . . (xk , yk )

and a random sample xk+1, . . . xn.

Q. How to label the rest of the points?

Zhu, Ghahramani, and Lafferty ’03 proposed the following

Harmonic SSL

E(u) =
1
n2

∑
i,j

Wi,j(ui − uj)
2Minimize

ui = yi for i = 1, . . . , k .subject to constraint
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Harmonic semi-supervised learning

Nadler, Srebro, and Zhou ’09 observed that solutions are spiky as n→∞,
while the Dirichlet energy is decreasing. [Also see Wahba ’90.]
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Harmonic semi-supervised learning

It can be shown that if Wi,j = 1
ε2

n
ηεn (xi − xj) and

εd
n �

 (ln n)
3
2

n if d = 2
ln n
n if d ≥ 3

then the minimizers un of

E(un) =
1
n2

∑
i,j

Wi,j(un
i − un

j )2

un
i = yi for i = 1, . . . , k .subject to constraint

converge along a subsequence to a “harmonic” function which in general
does not respect the labels.
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Harmonic semi-supervised learning II

x1, . . . xn random sample of a measure µ with density ρ on Ω.
Points in subdomain Ω+ ⊂ Ω are labeled: yi = f (xi) for xi ∈ Ω+.

Consider, as did Bertozzi, Luo, Stuart, Zygalakis, minimizing

Harmonic SSL

E(un) =
1
n2

∑
i,j

Wi,j(un
i − un

j )2 +
1
γ2

1
n

∑
i : xi∈Ω+

|un
i − f (xi)|2

Theorem (Dunlop, Stuart, S. Thorpe)

Under standard assumptions the minimizers un converge in TL2 to the
minimizer of

E(u) = σ

∫
Ω
|∇u|2ρ2dx +

1
γ2

∫
Ω+

|u(x)− f (x)|2ρ(x)dx

.
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Higher order regularizations

Related work by Zhou, Belkin ’11.
Given are k labeled points, (x1, y1), . . . (xk , yk ), and a random sample
xk+1, . . . xn.

Using graph laplacian Ln we define

An = (Ln + τ2I)α.

Power of a symmetric matrix is defined by Aα = PDαP−1 for A = PDP−1.

Higher order SSL

E(u) =
1
2
〈un,Anun〉µnMinimize

un
i = yi for i = 1, . . . , k .subject to constraint
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Higher order regularizations

An = (Ln + τ2I)α.

Higher order SSL

E(u) =
1
2
〈un,Anun〉µnMinimize

un
i = yi for i = 1, . . . , k .subject to constraint

Theorem (Dunlop, Stuart, S. Thorpe)

For α > d
2 , under usual assumptions, minimizers un converge in TL2 to the

E(u) = σ

∫
Ω

u(x)(Au)(x)ρ(x)dxminimizer of

u(xi) = yi for i = 1, . . . , k .subject to constraint

where A = (σLc + τ I)α and Lcu = −1
ρ div(ρ2∇u).
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