Central limit theorems for transportation cost in general dimension

Eustasio del Barrio

Universidad de Valladolid. IMUVA.

Oaxaca, May, 2017
joint work with Jean-Michel Loubes

Outline

(1) Empirical optimal transportation \& matching
(2) Uniqueness and stability of optimal transportation potentials
(3) Variance bounds
4) CLTs for empirical transportation cost

Empirical transportation cost

P, Q probabilities on \mathbb{R}^{d} and $c(x, y)=\|x-y\|^{p}, p \geq 1$.

$$
\mathcal{W}_{p}^{p}(P, Q)=\min _{\pi \in \Pi(P, Q)} \int\|x-y\|^{p} d \pi(x, y)
$$

$\Pi(P, Q)$ probabilities on $X \times Y$ with marginals P and Q
\mathcal{W}_{p} is a metric on \mathcal{F}_{p}, probabilities on \mathbb{R}^{d} with finite p-th moment
$X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}, P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
Empirical transportation cost: $\mathcal{W}_{p}^{p}\left(P_{n}, Q\right)$

Empirical transportation cost

P, Q probabilities on \mathbb{R}^{d} and $c(x, y)=\|x-y\|^{p}, p \geq 1$.

$$
\mathcal{W}_{p}^{p}(P, Q)=\min _{\pi \in \Pi(P, Q)} \int\|x-y\|^{p} d \pi(x, y)
$$

$\Pi(P, Q)$ probabilities on $X \times Y$ with marginals P and Q
\mathcal{W}_{p} is a metric on \mathcal{F}_{p}, probabilities on \mathbb{R}^{d} with finite p-th moment
$X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}, P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
Empirical transportation cost: $\mathcal{W}_{p}^{p}\left(P_{n}, Q\right)$
What is the transportation cost from a (large) set of points to a fixed target?
Assume X_{1}, \ldots, X_{n} i.i.d. P

Optimal matching

$X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$
Cost of matching X_{i} to $Y_{j}:\left\|X_{i}-Y_{j}\right\|^{p}$
Optimal matching minimizes $\frac{1}{n} \sum_{i=1}^{n}\left\|X_{i}-Y_{\sigma(i)}\right\|^{p}$ σ permutation of $\{1, \ldots, n\}$.

Optimal matching cost $=\mathcal{W}_{p}^{p}\left(P_{n}, Q_{n}\right)$,

$$
P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}, \quad Q_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}}
$$

Optimal matching

$X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$
Cost of matching X_{i} to $Y_{j}:\left\|X_{i}-Y_{j}\right\|^{p}$
Optimal matching minimizes $\frac{1}{n} \sum_{i=1}^{n}\left\|X_{i}-Y_{\sigma(i)}\right\|^{p}$ σ permutation of $\{1, \ldots, n\}$.

Optimal matching cost $=\mathcal{W}_{p}^{p}\left(P_{n}, Q_{n}\right)$,

$$
P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}, \quad Q_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}}
$$

What is the cost of matching two (large) sets of points?
Assume X_{1}, \ldots, X_{n} i.i.d. P, Y_{1}, \ldots, Y_{n} i.i.d. Q, independent of X_{i} 's
$\mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ iff $P_{n} \underset{w}{\rightarrow} P$ and $\int\|x\|^{p} d P_{n} \rightarrow \int\|x\|^{p} d P$.
P with finite p-th moment, P_{n} empirical measure $\Rightarrow \mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ a.s.
Hence, $\mathcal{W}_{p}\left(P_{n}, Q\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s., $\mathcal{W}_{p}\left(P_{n}, Q_{n}\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s.
$\mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ iff $P_{n} \underset{w}{\rightarrow} P$ and $\int\|x\|^{p} d P_{n} \rightarrow \int\|x\|^{p} d P$.
P with finite p-th moment, P_{n} empirical measure $\Rightarrow \mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ a.s.
Hence, $\mathcal{W}_{p}\left(P_{n}, Q\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s., $\mathcal{W}_{p}\left(P_{n}, Q_{n}\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s.
How fast? Rates of convegence
$\mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ iff $P_{n} \underset{w}{\rightarrow} P$ and $\int\|x\|^{p} d P_{n} \rightarrow \int\|x\|^{p} d P$.
P with finite p-th moment, P_{n} empirical measure $\Rightarrow \mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ a.s.
Hence, $\mathcal{W}_{p}\left(P_{n}, Q\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s., $\mathcal{W}_{p}\left(P_{n}, Q_{n}\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s.
How fast? Rates of convegence
Description of fluctuation?
$\mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ iff $P_{n} \underset{w}{\rightarrow} P$ and $\int\|x\|^{p} d P_{n} \rightarrow \int\|x\|^{p} d P$.
P with finite p-th moment, P_{n} empirical measure $\Rightarrow \mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow 0$ a.s.
Hence, $\mathcal{W}_{p}\left(P_{n}, Q\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s., $\mathcal{W}_{p}\left(P_{n}, Q_{n}\right) \rightarrow \mathcal{W}_{p}(P, Q)$ a.s.
How fast? Rates of convegence
Description of fluctuation?

The case $P=Q$

For $d=2$, (Ajtai-Komlos-Tusnady, 1984; Talagrand \& Yukich, 1993)

$$
c(p)\left(\frac{\log n}{n}\right)^{1 / 2} \leq E\left(\mathcal{W}_{p}\left(P_{n}, U\left([0,1]^{2}\right)\right)\right) \leq C(p)\left(\frac{\log n}{n}\right)^{1 / 2}
$$

For $d \geq 3$, Talagrand, Yukich, 1992-1994

$$
E\left(\mathcal{W}_{p}\left(P_{n}, U\left([0,1]^{d}\right)\right)\right) \leq C(d, p) \frac{1}{n^{1 / d}} .
$$

Extensions to compactly supported P with 'regular' density
If $d=1$ and $P \sim f$ s.t. $\int_{0}^{1}\left(\frac{(t(1-t))^{1 / 2}}{f\left(F^{-1}(t)\right)}\right)^{p} d t<\infty$

$$
\sqrt{n} \mathcal{W}_{p}\left(P_{n}, P\right) \rightarrow_{w}\left[\int_{0}^{1}\left(\frac{B(t)}{f\left(F^{-1}(t)\right)}\right)^{p} d t\right]^{1 / p}
$$

$B(t)$ Brownian bridge on $[0,1]$

No results for $P \neq Q$
An exception: Sommerfeld and Munk (2016) for the case P, Q with finite support; possibly nonnormal limits

Here CLTs for $\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)$ and $\mathcal{W}_{2}^{2}\left(P_{n}, Q_{m}\right)$ for general P, Q and d
Valid CLTs, with normal limits under moment assumptions $(4+\delta)$ and a bit of smoothness (on Q) asymptotic variances easily described in terms of dual formulation of OT

No results for $P \neq Q$
An exception: Sommerfeld and Munk (2016) for the case P, Q with finite support; possibly nonnormal limits

Here CLTs for $\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)$ and $\mathcal{W}_{2}^{2}\left(P_{n}, Q_{m}\right)$ for general P, Q and d
Valid CLTs, with normal limits under moment assumptions $(4+\delta)$ and a bit of smoothness (on Q) asymptotic variances easily described in terms of dual formulation of OT

Beyond theoretical interest,
[the transportation cost distance] is an attractive tool for data analysis but statistical inference is hindered by the lack of distributional limits

Sommerfeld and Munk (2016)

The Kantorovich duality

Denote

$$
\begin{aligned}
& I[\pi]=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} x \cdot y d \pi(x, y), \\
& \Phi=\left\{(\varphi, \psi) \in L_{1}(P) \times L_{1}(Q): \varphi(x)+\psi(y) \geq x \cdot y \text { for all } x, y\right\}, \text { and } \\
& J(\varphi, \psi)=\int_{\mathbb{R}^{d}} \varphi d P+\int_{\mathbb{R}^{d}} \psi d Q .
\end{aligned}
$$

Then,

$$
\min _{(\varphi, \psi) \in \Phi} J(\varphi, \psi)=\max _{\pi \in \Pi(P, Q)} \tilde{I}[\pi]
$$

Maximizing pair for J can be chosen as pair of Isc, proper convex conjugate functions $\varphi(x)=\psi^{*}(x) \sup _{y \in \mathbb{R}^{d}}(x \cdot y-\psi(y))$
By Kantorovich duality, $\left(\psi^{*}, \psi\right)$ is a minimizer of J and π is a maximizer of \tilde{I} iff

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\psi^{*}(x)+\psi(y)-x \cdot y\right) d \pi(x, y)=0
$$

iff $\psi^{*}(x)+\psi(y)-x \cdot y$ vanishes π-almost surely

Now $\psi^{*}(x)+\psi(y)-x \cdot y=0 \Longleftrightarrow x \in \partial \psi(y) \Longleftrightarrow y \in \partial \psi^{*}(x)$,

$$
\partial \psi(y)=\left\{z \in \mathbb{R}^{d}: \psi\left(y^{\prime}\right)-\psi(y) \geq z \cdot\left(y^{\prime}-y\right) \text { for all } y^{\prime} \in \mathbb{R}^{d}\right\}
$$

$\partial \psi(y)$ nonempty if $y \in \operatorname{int}(\operatorname{dom}(\psi))$; if ψ differentiable at $y, \partial \psi(y)=\{\nabla \psi(y)\}$
From this (Knott, Smith, Brenier,...) $\left(\psi^{*}, \psi\right)$ a minimizing pair for J iff
$Q \circ(\nabla \psi)^{-1}=P$; then $\pi=Q \circ(\nabla \psi, I d)^{-1}$ maximizes \tilde{I}.
$T=\nabla \psi$ optimal transportation map from Q to P; it is Q-a.s. unique:
Optimal transportation potential: Isc convex ψ s.t. $\left(\psi^{*}, \psi\right)$ minimizes J (equivalently, Isc convex ψ s.t. such that $Q \circ(\nabla \psi)^{-1}=P$

Optimal transportation potentials not unique $\left(J\left(\psi^{*}-C, \psi+C\right)=J\left(\psi^{*}, \psi\right)\right)$

Lemma

Assume ψ_{1} and ψ_{2} finite convex functions on nonempty convex, open $A \subset \mathbb{R}^{d}$ s.t.

$$
\nabla \psi_{1}(x)=\nabla \psi_{2}(x) \quad \text { for a.e. } x \in A .
$$

Then $\psi_{1}(x)=\psi_{2}(x)+C$ for all $x \in A$

As a consequence

Corollary

Assume $P, Q \in \mathcal{F}_{2}$ and
Q has a positive density in the interior of its convex support.
Then, if ψ_{1}, ψ_{2} are Isc convex and $J\left(\psi_{1}^{*}, \psi_{1}\right)=J\left(\psi_{2}^{*}, \psi_{2}\right)=\min _{(\varphi, \psi) \in \Phi} J(\varphi, \psi)$ $\psi_{2}=\psi_{1}+C$ in $\operatorname{int}(\operatorname{supp}(Q))$. In particular, $\psi_{2}=\psi_{1}+C Q$-a.s..

Uniqueness of optimal transportation potential fails without (1) (Take $P=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}, Q_{\varepsilon}$ is the uniform on $(-\varepsilon-1,-\varepsilon) \cup(\varepsilon, 1+\varepsilon), \varepsilon>0$; $\psi_{\varepsilon, L}(x)=-x, x \leq-\frac{L}{2}, \psi_{\varepsilon, L}(x)=x+L, x \geq-\frac{L}{2}, 0<L<\varepsilon$, are optimal transportation potentials, but $\psi_{\varepsilon, L_{2}} \neq \psi_{\varepsilon, L_{1}}+C$)

Stability of optimal transportation potentials

Assume Q with a density, $\mathcal{W}_{2}\left(P_{n}, P\right) \rightarrow 0$, If $\nabla \psi_{n}$ is o.t.p. from Q to $P_{n}, \nabla \psi$ is o.t.p. from Q to P, then

$$
\nabla \psi_{n} \rightarrow \nabla \psi \quad Q-\text { a.s. }
$$

How about ψ_{n} ?
Approach based on Painlevé-Kuratowski convergence: if C_{n} subsets of \mathbb{R}^{d}

$$
\begin{array}{r}
\limsup _{n \rightarrow \infty} C_{n}=\left\{x \in \mathbb{R}^{d}: x=\lim _{j \rightarrow \infty} x_{n_{j}} \text { for some } x_{n_{j}} \in C_{n_{j}}\right\}, \\
\liminf _{n \rightarrow \infty} C_{n}=\left\{x \in \mathbb{R}^{d}: x=\lim _{n \rightarrow \infty} x_{n} \text { with } x_{n} \in C_{n} \text { if } n \geq n_{0}\right\} \\
C_{n} \rightarrow C \text { in P-K sense if } C=\liminf _{n \rightarrow \infty} C_{n}=\limsup \sup _{n \rightarrow \infty} C_{n}
\end{array}
$$

If T multivalued map from \mathbb{R}^{d} to \mathbb{R}^{d} (for each $x \in \mathbb{R}^{d}, T(x)$ is a subset of \mathbb{R}^{d}),

$$
\operatorname{gph}(T)=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: t \in T(x)\right\} .
$$

Multivalued maps identified with subsets of $\mathbb{R}^{d} \times \mathbb{R}^{d}$ If T_{n}, T multivalued maps, $T_{n} \rightarrow T$ graphically if $\operatorname{gph}\left(T_{n}\right) \rightarrow \operatorname{gph}(T)$ in P-K sense
Some useful results

Theorem

(a) Assume that for some $\varepsilon>0$ and some subsequence $\left\{n_{j}\right\} C_{n_{j}} \cap B(0, \varepsilon) \neq \emptyset$ for every $j \geq 1$. Then there exists a subsequence $\left\{n_{j_{k}}\right\}$ and a nonempty subset $C \subset \mathbb{R}^{d}$ such that $C_{n_{j_{k}}} \rightarrow C$ in $P-K$ sense.
(b) Assume $\left\{T_{n}\right\}_{n \geq 1}$ multivalued maps such that for some bounded sets $C, D \subset \mathbb{R}^{d}$ and some subsequence $\left\{n_{j}\right\}$ there exist $x_{n_{j}} \in C$ with $T_{n_{j}}\left(x_{n_{j}}\right) \cap D \neq \emptyset$ for all $j \geq 1$. Then there exists a subsequence $\left\{n_{j_{k}}\right\}$ and a multivalued map, T, from \mathbb{R}^{d} to \mathbb{R}^{d}, with nonempty domain s.t. $T_{n_{j_{k}}}$ converges graphically to T.

Recall that π optimal (a maximizer of I) iff $\operatorname{supp}(\pi) \subset \operatorname{gph}(\partial \psi)$ for some Isc convex ψ

Subgradients of convex maps characterized in terms of cyclical monotonicity:
T monotone if $\left(t_{1}-t_{0}\right) \cdot\left(x_{1}-x_{0}\right) \geq 0$ whenever $t_{i} \in T\left(x_{i}\right), i=0,1$.
T cyclically monotone if for every choice of $m \geq 1$, points x_{0}, \ldots, x_{m} and $t_{i} \in T\left(x_{i}\right), i=0, \ldots, m$

$$
t_{0} \cdot\left(x_{1}-x_{0}\right)+t_{1} \cdot\left(x_{2}-x_{1}\right)+\cdots+t_{m} \cdot\left(x_{0}-x_{m}\right) \leq 0 .
$$

Rockafellar's Theorem: $T=\partial \psi$ for some Isc convex ψ iff T maximal cyclically monotone

Theorem

If T_{n} cyclically monotone maps $\left\{T_{n}\right\}$ and $T_{n} \rightarrow T$ graphically then T is cyclically monotone. If T_{n} are maximal cyclically monotone then T is also maximal cyclically monotone.
If $\left\{\psi_{n}\right\}$ Isc, convex maps s.t. for some bounded $C, D \subset \mathbb{R}^{d}$ and some $\left\{n_{j}\right\}$ there exist $x_{n_{j}} \in C$ with $\partial \psi_{n_{j}}\left(x_{n_{j}}\right) \cap D \neq \emptyset$ for all $j \geq 1$, then there exist $\left\{n_{j_{k}}\right\}$ and a Isc convex ψ with $\operatorname{dom}(\partial \psi) \neq \emptyset$ s.t. $\partial \psi_{n_{j_{k}}} \rightarrow \partial \psi$ graphically

If $\partial \psi_{n} \rightarrow \partial \psi$ graphically and for some $\left(x_{n}, t_{n}\right)$ with $t_{n} \in \partial \psi_{n}\left(x_{n}\right)$ and $\left(x_{0}, t_{0}\right)$ with $t_{0} \in \partial \psi\left(x_{0}\right)$

$$
\left(x_{n}, t_{n}\right) \rightarrow\left(x_{0}, t_{0}\right) \text { and } \psi_{n}\left(x_{n}\right) \rightarrow \psi\left(x_{0}\right),
$$

then

$$
\lim _{n \rightarrow \infty} \psi_{n}\left(\tilde{x}_{n}\right)=\psi(x)
$$

if $x \in \operatorname{int}(\operatorname{dom}(\psi))$

Theorem (Stability of optimal transportation potentials)

Assume Q satisfies (1) and $\mathcal{W}_{2}\left(P_{n}, P\right) \rightarrow 0$ and $\mathcal{W}_{2}\left(Q_{n}, Q\right) \rightarrow 0$. If $\psi_{n}(r e s p . ~ \psi)$ optimal transportation potentials from Q_{n} to P_{n} (resp. from Q to P) then there exist constants a_{n} such that if $\tilde{\psi}_{n}=\psi_{n}-a_{n}$ then $\tilde{\psi}_{n}(x) \rightarrow \psi(x)$ for every x in the interior of the support of Q (hence, for Q-almost every x)

Proof: If π_{n}, π o.t.plans $\pi_{n} \rightarrow_{w} \pi$; $\operatorname{supp}\left(\pi_{n}\right) \subset \operatorname{gph}\left(\partial \psi_{n}\right)$ $\operatorname{supp}(\pi) \subset \operatorname{gph}(\partial \psi) \Rightarrow \partial \psi_{n} \rightarrow \partial \rho$ graphically (along subsequences); $\rho=\psi(+C)$ in $\operatorname{int}(\operatorname{dom}(\psi))$; re-center to conclude.

If $Q_{n}=Q$ and (1) holds ψ_{n} differentiable at a.e. $x \in A$; from graphical convergence of $\partial \psi_{n}$ to $\partial \rho$ with $\rho=\psi$ in A conclude

$$
\nabla \psi_{n}(x) \rightarrow \nabla \psi(x) \text { at a.e. } x \in A
$$

$\nabla \psi_{n} \rightarrow \nabla \psi Q$-a.s
Recover known stability of o.t.maps

Theorem

Assume $Q, P,\left\{P_{n}\right\}_{n \geq 1} \in \mathcal{F}_{4}$ and Q satisfies (1); ψ_{n}, ψ optimal transportation potentials s.t. $\psi_{n} \rightarrow \psi Q$-a.s. Then

$$
\psi_{n} \rightarrow \psi \text { in } L_{2}(Q)
$$

Efron-Stein inequality

Assume X_{1}, \ldots, X_{n} independent r.v.'s; $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ independent copy of $\left(X_{1} \ldots, X_{n}\right)$
If $Z=f\left(X_{1}, \ldots, X_{n}\right)$ then

$$
\operatorname{Var}(Z) \leq \frac{1}{2} \sum_{i=1}^{n} E\left(Z-Z_{i}\right)^{2}=\sum_{i=1}^{n} E\left(Z-Z_{i}\right)_{+}^{2},
$$

with $Z_{i}=f\left(X_{1}, \ldots, X_{i}^{\prime}, \ldots, X_{n}\right)$
If f symmetric in x_{1}, \ldots, x_{n} and X_{1}, \ldots, X_{n} i.i.d. then

$$
\operatorname{Var}(Z) \leq n E\left(Z-Z_{1}\right)_{+}^{2}
$$

Control of (one-sided) decrease of Z when X_{1} replaced by X_{1}^{\prime} enough for control of $\operatorname{Var}(Z)$
Perfect for minimization functionals of empirical measure

Variance bounds for $\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)$

If Q smooth $\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)=\sum_{i=1}^{n} \int_{C_{i}}\left\|y-X_{i}\right\|^{2} d Q(y)$ with

$$
C_{i}=\left\{y: \nabla \psi_{n}(y)=X_{i}\right\},
$$

ψ_{n} optimal transportation potential from Q to P_{n}
P_{n}^{\prime} empirical measure on $X_{1}^{\prime}, X_{2}, \ldots, X_{n} ; \psi_{n}^{\prime}$ optimal transportation potential from Q to P_{n}^{\prime}
Set $T(y)=X_{i}$ if $\nabla \psi_{n}^{\prime}(y)=X_{i}, i=2, \ldots, n, T(y)=X_{1}$ if $\nabla \psi_{n}^{\prime}(y)=X_{1}^{\prime}$
T suboptimal, but maps Q to P_{n}; hence,

$$
\begin{aligned}
\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{n}^{\prime}, Q\right) & \leq \int\|y-T(y)\|^{2} d Q(y)-\int\left\|y-\nabla \psi_{n}^{\prime}(y)\right\|^{2} d Q(y) \\
& =\int_{C_{1}^{\prime}}\left(\left\|y-X_{1}\right\|^{2}-\left\|y-X_{1}^{\prime}\right\|^{2}\right) d Q(y)
\end{aligned}
$$

Consequence:

Theorem

If $P, Q \in \mathcal{F}_{4}$ and Q has a density

$$
\operatorname{Var}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)\right) \leq \frac{C(P, Q)}{n}
$$

where
$C(P, Q)=8\left(E\left(\left\|X_{1}-X_{2}\right\|^{2}\left\|X_{1}\right\|^{2}\right)+\left(E\left\|X_{1}-X_{2}\right\|^{4}\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}\|y\|^{4} d Q(y)\right)^{1 / 2}\right)$.

Alternative bound: if $\left(\varphi_{n}, \psi_{n}\right)$ minimizers of J

$$
\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)=\int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{n}(x)\right) d P_{n}(x)+\int_{\mathbb{R}^{d}}\left(\|y\|^{2}-2 \psi_{n}(y)\right) d Q(y)
$$

Similar for $\mathcal{W}_{2}^{2}\left(P_{n}^{\prime}, Q\right)$; by optimality,

$$
\mathcal{W}_{2}^{2}\left(P_{n}^{\prime}, Q\right) \geq \int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{n}(x)\right) d P_{n}^{\prime}(x)+\int_{\mathbb{R}^{d}}\left(\|y\|^{2}-2 \psi_{n}(y)\right) d Q(y) .
$$

Hence,

$$
\begin{aligned}
\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{n}^{\prime}, Q\right) \leq & \int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{n}(x)\right) d P_{n}(x) \\
& -\int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{n}(x)\right) d P_{n}^{\prime}(x) \\
= & \frac{1}{n}\left[\left(\left\|X_{1}\right\|^{2}-\varphi_{n}\left(X_{1}\right)\right)-\left(\left\|X_{1}^{\prime}\right\|^{2}-\varphi_{n}\left(X_{1}^{\prime}\right)\right)\right]
\end{aligned}
$$

Consequence,

$$
\operatorname{Var}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)\right) \leq \frac{E\left(\left[\left(\left\|X_{1}\right\|^{2}-\varphi_{n}\left(X_{1}\right)\right)-\left(\left\|X_{1}^{\prime}\right\|^{2}-\varphi_{n}\left(X_{1}^{\prime}\right)\right)\right)^{2}\right.}{n}:=\frac{C_{n}}{n}
$$

C_{n} harder to control; however, if $P, Q \in \mathcal{F}_{4+\delta}$ and satisfy (1) $C_{n} \rightarrow C<\infty$ (sharp constants)

More important, linearization bounds:

Theorem

If $P, Q \in \mathcal{F}_{4+\delta}$ and satisfy (1), φ_{0} o.t. potential from P to Q and

$$
R_{n}=\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)-\int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{0}(x)\right) d P_{n}(x),
$$

then

$$
n \operatorname{Var}\left(R_{n}\right) \rightarrow 0
$$

CLTs for empirical transportation cost

Theorem

If $P, Q \in \mathcal{F}_{4+\delta}$ and satisfy (1), φ_{0} o.t. potential from P to Q and P_{n} empirical measure on X_{1}, \ldots, X_{n}, i.i.d. P r.v.'s then

$$
n \operatorname{Var}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)\right) \rightarrow \sigma^{2}(P, Q)
$$

with

$$
\sigma^{2}(P, Q)=\int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{0}(x)\right)^{2} d P(x)-\left(\int_{\mathbb{R}^{d}}\left(\|x\|^{2}-2 \varphi_{0}(x)\right) d P(x)\right)^{2}
$$

and

$$
\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)-E \mathcal{W}_{2}^{2}\left(P_{n}, Q\right)\right) \underset{w}{\rightarrow} N\left(0, \sigma^{2}(P, Q)\right)
$$

Furthermore, if Q_{m} empirical measure on Y_{1}, \ldots, Y_{m} i.i.d. Q r.v. 's, independent of the X_{i} 's, $n \rightarrow \infty, m \rightarrow \infty$ with $\frac{n}{n+m} \rightarrow \lambda \in(0,1)$, then

$$
\frac{n m}{n+m} \operatorname{Var}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q_{m}\right)\right) \rightarrow(1-\lambda) \sigma^{2}(P, Q)+\lambda \sigma^{2}(Q, P)
$$

- Limiting variances well-defined (independent of choice of o.t. potentials)
- Covers optimal matching setup
- Dimension free (but dimension plays a role on centering constants)
- No assumption of compact support
- If $P=Q, \sigma^{2}(P, P)=0$;

$$
\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{n}, P\right)-E \mathcal{W}_{2}^{2}\left(P_{n}, P\right)\right) \rightarrow 0
$$

in probability

- Smoothness of P not really important; with a different approach

Theorem

If P has finite support, $Q \in \mathcal{F}_{4}$ and satisfies (1) then

$$
\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{n}, Q\right)-\mathcal{W}_{2}^{2}(P, Q)\right) \underset{w}{\rightarrow} N\left(0, \sigma^{2}(P, Q)\right)
$$

Open problems

- Most of approach works for other costs $c(x, y)=\|x-y\|^{p}, p>1$; need for stability results for optimal c-concave potentials
- What if c not stricly convex? If $c(x, y)=\|x-y\|$ nonnormal limits may happen ($d=1$)
- Related functionals: optimal partial transportation and matching, variation around empirical Wasserstein barycenters

References

Ajtai , M., Komlós , J. and Tusnády , G. (1984). On optimal matchings. Combinatorica, 4 259-264.
del Barrio, E. and Loubes, J.-M. (2017). Central limit theorems for the empirical transportation cost in general dimension. Submitted.

Dobrić, V. and Yukich, J. E. (1995). Asymptotics for transportation cost in high dimensions. J. Theoret. Probab., 8, 97-118.

Sommerfeld, M. and Munk, A. (2016). Inference for Empirical Wasserstein Distances on Finite Spaces. Preprint. https://arxiv.org/abs/1610.03287v1

Talagrand, M. (1992). Matching random samples in many dimensions. Ann. Appl. Probab., 2, 846-856.

Talagrand, M. (1994). The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3. Ann. Probab., 22, 919-959.

