Deep Learning: A Bayesian Perspective

Vadim Sokolov
George Mason University
Joint work with Nick Polson

Synthesis of Statistics, Data Mining and Environmental Science
in Pursuit of Knowledge Discovery
October 31, 2017

Chicago Data

Speed, occupancy and flow, averaged over 5 minutes 1500 highway loop-detectors around Chicago area Approx 50 Mb per sensor (75Gb total)

Non-recurrent traffic patterns

Chicago Bears game

Impact on l-55 north bound travel

New York Giants at Bears on
Thursday October 10, 2013

Non-recurrent traffic conditions

Weather and Accidents
Impact of light snow and accidents travel times
Snow in DC area on January 21, 2016

Snapshot at 12:41am (traffic flow is very light at this time of the day)

Non-recurrent traffic conditions

Protesters

Impact of people protesting on a bridge over a highway Interstate I-55, 20 miles away from Chicago on February 27, 2016

Snapshot at 2:11 PM

Relations are Highly Nonlinear

Shockwawe effect in traffic flows

Forecast Fitting

model	bears game	weather day	normal day
DL+Filter			

Why do we care about DL?

Input space (X) includes numerical, text (word2vec), images, videos Vectors, matrices and tensors, ...

Google's translation algorithm
~1-2 billion parameters
Alexa's speech recognition: 100 million parameters
Networks will get larger and more efficient
Google Waymo
Advances in computing speed (Nvidia) lets us train and implement Deep Learning in real-time.
Google Waymo's Lidar processes 6MB Data per second ...

Multi-Layer Deep Models

NN models one layer!! Key is to use multi "deep" layers
Learn weight and connections in hidden layers
Predicting House Prices ...
$\operatorname{Input}(X)$
Factor
Output(Y)

Multi-Layer Faces

Deep neural networks learn
hierarchical feature representations

input layer

Kolmogorov-Arnold

There are no multivariate functions just superpositions of univariate ones

Let f_{1}, \ldots, f_{L} be given univariate activation functions. We set

$$
\begin{gathered}
F(X)=\left(f_{1} \circ \ldots \circ f_{L}\right)(X) \\
f_{l}=\sigma_{l}\left(\sum_{j=1}^{N_{l}} W_{l j} X_{j}+b_{l}\right)=\sigma_{l}\left(W_{l} X_{l}+b_{l}\right), \quad 1 \leq I \leq L
\end{gathered}
$$

Our deep predictor has hidden units N_{l} and depth L.
Put simply, we model a high dimensional mapping F via the superposition of univariate semi-affine functions.

Kolmogorov-Arnold Example

Interaction terms, $x_{1} x_{2}$ and $\left(x_{1} x_{2}\right)^{2}$, and max functions, $\max \left(x_{1}, x_{2}\right)$ can be expressed as nonlinear functions of semi-affine combinations. Specifically,

$$
\begin{gathered}
x_{1} x_{2}=\frac{1}{4}\left(x_{1}+x_{2}\right)^{2}-\frac{1}{4}\left(x_{1}-x_{2}\right)^{2} \\
\max \left(x_{1}, x_{2}\right)=\frac{1}{2}\left|x_{1}+x_{2}\right|+\frac{1}{2}\left|x_{1}-x_{2}\right| \\
\left(x_{1} x_{2}\right)^{2}=\frac{1}{4}\left(x_{1}+x_{2}\right)^{4}+\frac{7}{4 \cdot 3^{3}}\left(x_{1}-x_{2}\right)^{4}-\frac{1}{2 \cdot 3^{3}}\left(x_{1}+2 x_{2}\right)^{4}-\frac{2^{3}}{3^{3}}\left(x_{1}+\frac{1}{2} x_{2}\right)^{4}
\end{gathered}
$$

Shallow Learner

Our traditional model

$$
\hat{Y}=f_{1}^{W_{1}, b_{1}}\left(f_{2}\left(W_{2} X+b_{2}\right)\right)=f_{1}^{W_{1}, b_{1}}(Z)
$$

PCA: $Z=f_{2}(X)=W^{\top} X+b$
PPR: $Z=f_{2}(X)=\sum_{i=1}^{N_{1}} f_{i}\left(W_{i 1} X_{1}+\ldots+W_{i p} X_{p}\right)$
Examples: Principal component analysis (PCA), partial least squares (PLS), reduced rank regression (RRR), linear discriminant analysis (LDA), project pursuit regression (PPR), and logistic regression

Deep Learning Predictors

Smart conditional averaging

The competitors: Trees, RF, GP.

Few points will be neighbors in a high dimensional input space.

Whats wrong with Kernels?

2D image of 1000 uniform samples from a 50 -dimensional ball B_{50}.

Marginal distribution shrinks as dimensionality of the space grows

(a) $p=100$

(b) $p=200$

(c) $p=300$

(d) $p=400$

ReLU

Affine transformation defines a plane
ReLU: $f(x)=\max (0, x)$ "fires up" if point X in on the "right" side of this plane
Bias terms allow for hyperplanes not to go through 0 .

Example: Three-Layer Network

It takes 3 neurons to define 8 regions in 2D

Hyperplanes defined by three neurons with ReLU activation functions

$$
\hat{Y}(X)=\sum_{k \in K} w_{k}(X) \hat{Y}_{k}(X)
$$

Tree vs DL example

$$
\begin{gathered}
Y=\operatorname{softmax}\left(w^{0} Z^{2}+b^{0}\right) \\
Z^{2}=\tanh \left(w^{2} Z^{1}+b^{2}\right) \quad Z^{1}=\tanh \left(w^{1} X+b^{1}\right) .
\end{gathered}
$$

An advantage of deep architectures is that the number of hyper-planes grow exponentially with the number of layers.

Academic Curiosity? ... but it works so well!!

Growing Use of Deep Learning at Google

Across many products/areas:
Android
Apps
drug discovery
Gmail
Image understanding Maps
Natural language understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ..

Still a niche? ... becoming mainstream

- Deep learning

Worldwide, 9/3/06-9/3/17.

- Deep learning Boosting
- Regression analysis

Training, Validation, and Testing

Given the training dataset $D=\left\{Y^{(i)}, X^{(i)}\right\}_{i=1}^{T}$ of input-output pairs and a loss function $\mathcal{L}(Y, \hat{Y})$, we compute

$$
\hat{W}=\left(\hat{W}_{0}, \ldots, \hat{W}_{L}\right) \text { and } \hat{b}=\left(\hat{b}_{0}, \ldots, \hat{b}_{L}\right)
$$

by solving

$$
\arg \min _{W, b} \frac{1}{T} \sum_{i=1}^{T} \mathcal{L}\left(Y_{i}, \hat{Y}^{W, b}\left(X_{i}\right)\right)
$$

For the L_{2}-norm for a traditional least squares

$$
\mathcal{L}\left(Y_{i}, \hat{Y}\left(X_{i}\right)\right)=\left\|Y_{i}-\hat{Y}\left(X_{i}\right)\right\|_{2}^{2}
$$

our target function becomes the mean-squared error (MSE).

Back-Propagation

Stochastic gradient descent adapted to a deep learning setting.
Proximal Newton Algorithm: $\nabla \mathcal{L}$ available for deep learners.
One caveat of back-propagation is the multi-modality of the system to be solved (and the resulting slow convergence properties).

Deep learning methods heavily rely on the availability of large computational power: NVIDIA GPU and Google's TPU.

Tensor Processing Unit

The problem: Deep Learning is typically applied to large datasets.

A driverless car processes 6GB data per second.
Applications need computational speed
The solution: A specialized processor called Tensor Processing Unit (TPU, GPU, CPU)

Processing advances tied to TPU not CPU
Google TPU 2.0 and Nvidia TeslaV100

Image recognition has improved

\qquad

Application: Identifying Skin Cancer

Dataset: 130,000 images of skin lesions/2,000 different diseases
Test data: 370 high-quality, biopsy-confirmed images

Better performance than Stanford dermatologists 10,000 hours no match for deep learning and large datasets

Application：Training A New Rembrandt

Analyze all 346 of Rembrandt＇s paintings Identify all geometric patterns used by Rembrandt．
Reassemble into a fully formed face and bust

Google: α Go

Supervised and Reinforcement Learning
 Value Function and Tree Search

Convenient
Fullyobserved
Discrete action space
Perfectsimulator
Relativelyshort game
Trial-and errorexperience

Largehuman datasets

Inconvenient
Actions executed awkwardly Incomplete information
Imperfectsimulator
Longer tasks, hard to assess value
Hard to practice millions of times

Small human data sources

Google Data Center Cooling Costs Reduced by 40\%

Monitoring real-time conditions and adjusting data center climate control based on past experience

What is Wrong with DL

Point estimates
No model selection mechanism
No regularization mechanism

What is Bayes?

Incorporate prior knowledge about unknown θ before data X is observed
Understand uncertainty about θ after data is observed

$$
p(\theta \mid X)=\frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta) p(\theta) d \theta}
$$

Posterior $p(\theta \mid X)$ has all the information about θ we can extract from X, given the prior

Bayesian Learning

Given training data $D=(X, Y)$, the goal is to build a model $p(y \mid x, \theta, X, Y)$
Define prior $p(\theta)$
Find posterior (training)

$$
p(\theta \mid X, Y)=\frac{p(Y \mid \theta, X) p(\theta)}{\int p(x \mid \theta, Y) p(\theta) d \theta}
$$

Predict using total probability

$$
p\left(y_{\text {new }} \mid x_{\text {new }}, X, Y\right)=\int p\left(y_{\text {new }} \mid x_{\text {new }}, \theta\right) p(\theta \mid X, Y) d \theta
$$

Bayes predictor averages over all of the models parametrized by θ
equation $=$ intractable

Probabilistic Interpretation

In a traditional probabilistic setting, view the output Y as a random variable generated by a probability model $p\left(Y \mid Y^{W, b}(X)\right)$ with conditioning is on the predictor $\hat{Y}(X)$.

The loss function is then

$$
\mathcal{L}(Y, \hat{Y})=-\log p\left(Y \mid Y^{\hat{W}, \hat{b}}(X)\right)
$$

the negative log-likelihood.
When predicting the probability of congestion, we have a multinomial logistic regression model with cross-entropy loss function.

Bayes + DL

Bayesian inference for DL: reparameterization
Calculate Monte Carlo gradients using variational inference.
The variation inference approximates the posterior $p(\theta \mid X, Y)$ with a variation distribution $q(\theta \mid \phi), \theta=(W, b)$.

$$
\mathrm{KL}(q \| p)=\int q(\theta \mid D, \phi) \log \frac{q(\theta \mid D, \phi)}{p(\theta \mid D)} d \theta
$$

Variational Inference

KL requires intractable $\log p(\theta \mid D)$
Useful identity

$$
\log p(D)=\operatorname{ELBO}(\phi)+\operatorname{KL}(q \| p)
$$

The sum does not depend on ϕ, thus minimizing $\operatorname{KL}(q \| p)$ is the same that maximizing

$$
\operatorname{ELBO}(\phi)=\int q(\theta \mid D, \phi) \log \frac{p(Y \mid X, \theta) p(\theta)}{q(\theta \mid D, \phi)} d \theta
$$

$\operatorname{ELBO}(\phi) \rightarrow \max _{\phi}$ is solved using stochastic gradient descent.

Gradient of ELBO

To calculate the gradient, it is convenient to write the ELBO as

$$
\begin{gathered}
\operatorname{ELBO}(\phi)=\int q(\theta \mid D, \phi) \log p(Y \mid X, \theta) d \theta- \\
\int q(\theta \mid D, \phi) \log \frac{q(\theta \mid D, \phi)}{p(\theta)} d \theta \\
\nabla_{\phi} \int q(\theta \mid D, Y, \phi) \log p(Y \mid X, \theta) d \theta=\nabla_{\phi} E_{\theta \sim q} \log p(Y \mid X, \theta)
\end{gathered}
$$

Is not a expectation!

Reparametrization

Reparametrization trick represents θ as a value of a deterministic function, $\theta=g(\epsilon, X, \phi)$, where $\epsilon \sim r(\epsilon)$ does not depend on ϕ. Now, the derivative is given by

$$
\begin{aligned}
& \nabla_{\phi} E_{q} \log p(Y \mid X, \theta)=\int r(\epsilon) \nabla_{\phi} \log p(Y \mid g(\epsilon, x, \phi)) d \epsilon= \\
& E_{\epsilon}\left[\nabla_{g} \log p(Y \mid g(\epsilon, X, \phi)) \nabla_{\phi} g(\epsilon, X, \phi)\right]
\end{aligned}
$$

The reparametrization is trivial in the case when $q(\theta \mid D, \phi)=N(\theta \mid \mu(D, \phi), \Sigma(D, \phi))$, than $\theta=\mu(D, \phi)+\epsilon \Sigma(D, \phi), \epsilon \sim N(0, I)$.

Bayesian Regularisation

Typically we find MAP (poor man's version of Bayes) estimator via

$$
\log p(Y \mid X, \theta)+\log p(\theta) \rightarrow \max _{\theta}
$$

Via VI we search for distribution over θ

$$
\int q(\theta \mid D, \phi) \log p(Y \mid X, \theta) d \theta-\mathrm{KL}(q(\theta \mid \phi) \| p(\theta)) \rightarrow \max _{\phi}
$$

Equivalent to adding noise to the DL parameters θ at each iteration

Normal Dropout

Dropout is a model selection technique designed to avoid over-fitting in the training process.

Normal dropout add normal noise to θ at each iteration.
The dropout architecture becomes

$$
\begin{aligned}
D_{i}^{(I)} & \sim \mathrm{N}\left(1, \sigma^{2}\right), \\
W^{(I)} & =W^{(I)} \star D^{(I)}, \\
Z_{i}^{(I)} & =W_{i}^{(I)} X^{(I)}+b_{i}^{(I)} .
\end{aligned}
$$

Bayesian Regularization for DL

Take $q(\theta \mid \alpha, \gamma)=N\left(\theta \mid \alpha, \gamma \alpha^{2}\right)$
Then Bayesian regularization (ELBO)

$$
\int N\left(\theta \mid \alpha, \gamma \alpha^{2}\right) \log p(Y \mid X, \theta) d \theta-\mathrm{KL}(\mathrm{q} \| \mathrm{p}(\theta)) \rightarrow \max _{\alpha}
$$

First term is the objective function of the DL + Normal Dropout training procedure We have additional KL term!
Need to find $p(\theta)$ so that KL does not depend on α

Bayes DL Classification

2-layer network (MLP) with tanh activation
5-neurons
1000 observations (. 5 for training)

Toy binary classification data set

Prediction

Used automated variational inference (AVI)
Can calculate uncertainty in predicted value!

Bayes DL Classification II

2-layer network (MLP) with tanh activation
5-neurons
60k observations (60k for training)

$$
\begin{aligned}
& 000000000000000 \\
& 11111111111111 \\
& 222222222222220 \\
& 333333333333333 \\
& 444444444444444 \\
& 555555155555555 \\
& 666666666666666 \\
& 777777777777777 \\
& 888888888888888 \\
& 999999999999999
\end{aligned}
$$

Discussion

Many successful applications. Extremely high dimensionality SGD is very powerful tool to obtain point estimates Recently: first steps towards Bayes + DL: Dropout + VI Still baby steps, methods are not scalable (4 hours to train DL for MNIST vs 2 minutes for Chicago Traffic)
Uncertainty assertion for deep predictors?
Decision making and policy under uncertainty?

