

On the Complexity of Local Distributed Graph Problems

Fabian Kuhn

University of Freiburg Germany

joint work with Mohsen Ghaffari (ETH Zurich) & Yannic Maus (U. Freiburg)

The LOCAL Model

• Synchronous message passing on a graph G = (V, E)

- message size / internal computations per round are unbounded
- each node has a unique $O(\log n)$ -bit ID
- time complexity = number of rounds
- Model was first studied by Nati Linial [FOCS '87; SICOMP '92]
 - Upper and lower bounds for distributed graph coloring

N N N

Distributed Graph Problems

Distributed Graph Problem on G = (V, E)

- each node $v \in V$ has an input x_v
- each node $v \in V$ needs to compute an output y_v
- problem defined by pairs of valid input / output vectors

Classic Distributed Graph Problems

• Distributed Graph Coloring

- typical goal: Δ + 1 colors (Δ : max. degree of *G*)
- sequential greedy algorithm colors with $\leq \Delta + 1$ colors

Distributed Graph Problems

Classic Distributed Graph Problems

Maximal Independent Set (MIS)

- Maximal Matching
 Operation of the second secon
- Minimum dominating set / vertex cover approximation
- Matching / independent set approximation
- Many graph coloring variants

$(\Delta + 1)$ -Coloring: Current State

Lower Bound

• $\Omega(\log^* n)$ rounds needed even on the ring [Linial '87]

Efficient Randomized Algorithms

- Simple randomized O(log n)-time algorithms
 [Luby '86; Alon, Isreali, Itai '86; Linial '87]
- Best current upper bound: $O\left(\sqrt{\log \Delta}\right) + 2^{O\left(\sqrt{\log \log n}\right)}$ [Harris, Schneider, Su '16]

Best Deterministic Algorithm

• Based on network decomposition: $2^{O(\sqrt{\log n})}$

[Panconesi, Srinivasan '92]

Maximal Independent Set: Current State

Lower Bound

• $\Omega\left(\sqrt{\log n / \log \log n}\right)$ rounds needed

[Kuhn, Moscibroda, Wattenhofer '04]

Efficient Randomized Algorithms

• Simple randomized $O(\log n)$ -time algorithms

[Luby '86; Alon, Isreali, Itai '86]

• Best current upper bound: $O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$

[Ghaffari '16]

Best Deterministic Algorithm

• Based on network decomposition: $2^{O(\sqrt{\log n})}$

[Panconesi, Srinivasan '92]

Exponential Gap

Current State for $(\Delta + 1)$ -coloring & MIS

- O(log n)-time randomized algorithms
- Best **deterministic** algorithm: $2^{O(\sqrt{\log n})}$

There is an exponential separation between the best randomized and deterministic algorithms

- The same is true for many other distributed graph problems
 - Dominating set / independent set approximation
 - $(2\Delta 1)$ -edge coloring
 - Network decomposition
- A major open problem already mentioned in [Linial '87]

Challenges in the LOCAL Model

r-Round Algorithm:

Each node computes its **output** as a **function** of the initial state of its *r*-neighborhood

Challenges in the LOCAL Model

Local Coordination / Symmetry Breaking

- Nearby (symmetric) nodes need to output different values
 - Neighboring nodes need different colors
 - No adjacent nodes in MIS, each node not in MIS has neighbor in MIS

• Nodes decide in parallel based on their *r*-neighborhoods

Main Challenge:

Locally coordinate among nearby nodes

- Randomization naturally helps
 - E.g., choose random color, keep if no conflict with neighbors

UNI FREIBL

Sequential LOCAL Model

SLOCAL Model

- locality parameter r(n)
- sequentially go over all nodes
- compute output of a node based on the current state of its r(n)-neighborhood

SLOCAL Model

SLOCAL model is much more powerful than LOCAL model

- $(\Delta + 1)$ -coloring and MIS can easily be solved with locality 1
 - The sequential greedy algorithm is an SLOCAL-algorithm
 - The output a node v only depends on the outputs of neighbors which were processed before v
- SLOCAL is a generalization of sequential greedy algorithms
 - if for each node, one only looks at previous nearby nodes

Network Decomposition

Introduced in [Awerbuch, Goldberg, Luby, Plotkin '89]

Definition: (d(n), c(n))-decomposition of G = (V, E)

- Partition of V into clusters of diameter $\leq d(n)$
- Coloring of cluster graph with c(n) colors

[AGLP '89]: Can be computed deterministically in $2^{O(\sqrt{\log n \log \log n})}$ rounds for $d(n) = c(n) = 2^{O(\sqrt{\log n \log \log n})}$

UNI FREIBL

Distributed Comp. & Network Decomp.

Claim: Given a (d(n), c(n))-decomp. of G = (V, E), one can compute a $(\Delta + 1)$ -coloring or MIS in $c(n) \cdot d(n)$ rounds.

- Iterate through c(n) colors
- For each cluster, compute solution in d(n) rounds
- This works for all SLOCAL algorithms with locality 1

Lemma:

Given a (d(n), c(n))-decomp. of $G^{r(n)}$, one can run any SLOCAL alg. with locality $\leq r(n)$ in $r(n) \cdot c(n) \cdot d(n)$ rounds.

- $G^{r(n)}$: edge between any two nodes at dist. $\leq r(n)$ in G

Network Decomposition Algorithms

Existential Result

N N N

[Awerbuch, Peleg '90], [Linial, Saks '93]

- Every graph G has an $(O(\log n), O(\log n))$ -decomposition
 - clusters of diameter $O(\log n)$, clusters colored with $O(\log n)$ colors

Complexity of computing $(O(\log n), O(\log n))$ -decomposition

- Deterministic SLOCAL Model: locality O(log² n)
 - simple adaptation of alg. by [Awerbuch, Peleg '90], [Linial, Saks '93]
- Deterministic LOCAL Model: $2^{O(\sqrt{\log n})}$ rounds
 - combination of algorithms by [Panconesi, Srinivasan '92] and [Awerbuch, Berger, Cowen, Peleg '96]
- Randomized LOCAL Model: $O(\log^2 n)$ rounds
 - randomized distributed algorithm by [Linial, Saks '93]

Complexity Classes

$\mathsf{LOCAL}(t(n))$

 graph problems that can be solved deterministically in t(n) rounds in the LOCAL model

$\mathsf{SLOCAL}(t(n))$

- graph problems that can be solved deterministically with locality t(n) in the SLOCAL model
 - MIS, $(\Delta + 1)$ -coloring \in SLOCAL(1)

P-LOCAL \coloneqq **LOCAL**(**poly log** *n*)

P-SLOCAL := **SLOCAL**(poly log n)

Randomized classes: RLOCAL, RSLOCAL, P-RLOCAL, P-RSLOCAL

Exponential Separation Revisited

Basic Facts

- $LOCAL(t(n)) \subseteq SLOCAL(t(n))$
- P-LOCAL \subseteq P-SLOCAL

 $(O(\log n), O(\log n))$ -decomposition of $G^{\operatorname{poly} \log(n)}$

 \Rightarrow deterministic poly log *n*-round algorithm for any problem in P-SLOCAL in the LOCAL model.

• **P-SLOCAL**
$$\subseteq$$
 LOCAL $\left(2^{O(\sqrt{\log n})}\right)$

- deterministic $2^{O(\sqrt{\log n})}$ -round distr. alg. for all problems in P-SLOCAL

• P-SLOCAL \subseteq P-RLOCAL

- randomized poly $\log n$ -round distr. alg. for all problems in P-SLOCAL

Exponential Separation Revisited

All P-SLOCAL problems have deterministic $2^{O(\sqrt{\log n})}$ -round and randomized poly log *n*-round algorithms in the LOCAL model.

Open Problem

 Is there an asymptotic separation for deterministic algorithms between P-LOCAL and P-SLOCAL in the LOCAL model?

$$\mathbf{P}\text{-}\mathbf{LOCAL} \stackrel{?}{=} \mathbf{P}\text{-}\mathbf{SLOCAL}$$

• There is no separation for rand. alg.: P-RLOCAL = P-RSLOCAL

Are there any complete problems in P-SLOCAL?

- If $(O(\log n), O(\log n))$ -decomposition is in P-LOCAL, all problems in P-SLOCAL are in P-LOCAL.

UNI FREIBL

P-SLOCAL Completeness

Local Reduction

 We say that a distr. graph problem P₁ is polylog-reducible to P₂ if a deterministic poly log n-round distr. algorithm for P₂ implies a deterministic poly log n-round distr. algorithm for P₁.

P-SLOCAL Completeness

 A problem P in P-SLOCAL is called P-SLOCAL-complete if every problem P' in P-SLOCAL is polylog-reducible to P

$(O(\log n), O(\log n))$ -decomposition is P-SLOCAL-complete

- $(O(\log n), O(\log n))$ -decomp. is in SLOCAL $(O(\log^2 n))$
- polylog-round decomp. alg. \Rightarrow polylog-round P-SLOCAL alg.

Local Splitting Problem

λ-Local Splitting (λ ∈ [0, 1/2]): Every v ∈ L has ≥ [λ deg(v)]neighbors of each color.

Weak Local Splitting:

Every $v \in L$ has at least one neighbor of each color

Trivial Randomized Solution:

Independently color red/blue with probability 1/2

• works w.h.p. if all degrees in L are $\Omega(\log n)$ and if λ is not too close to 1/2

Local Splitting is P-SLOCAL-Complete

Theorem: If all nodes in *L* have degree $\Omega(\log^2 n)$,

a) weak local splitting is P-SLOCAL-complete and

b) λ -local splitting is P-SLOCAL-complete for any $\lambda = \frac{1}{\operatorname{poly} \log n}$.

- There is a 0-round randomized algorithm for both problems
- Can be seen as a rounding fractional values to integer values
 initially, each node in *R* is red and blue with value ½ each

Coarsely rounding fractional values to integer values is the only obstacle to obtaining efficient (polylog-time) deterministic algorithms in the LOCAL model.

Complexity of Local Decision Problems

[Fraigniaud, Korman, Peleg '11]

- Studies complexity classes for distributed decision problems
- Our basic complexity classes can be seen as a generalization: $LD(t(n)) \subset LOCAL(t(n))$

Exponential Separation [Chang, Kopelowitz, Pettie '16]

- If we do not ignore log-factors, there is an exponential separation between rand. and det. alg. In the LOCAL model
- There are problems with $O(\log \log n)$ -round randomized algorithms and an $\Omega(\log n)$ deterministic lower bound

UNI FREI F

Open Problems

- Is $(\Delta + 1)$ -coloring / MIS P-SLOCAL-complete?
 - Local splitting seems an important problem:
 Can we solve it efficiently for special cases
 - existing polylog-time maximal matching and edge coloring algorithms use variants of local splitting (split edges of each node)
 - generalizing this to 3-uniform hypergraphs would already lead to interesting results
 - Simple complete problems might help to develop lower bounds or find better deterministic distributed algorithms
 - Use SLOCAL model to develop new rand. distributed alg.
 - allowed us to obtain polylog-round approximation schemes for minimum dominating set / maximum independent set

