Asynchronous Robot Gathering (A Tiny Tutorial on Distributed Computing Through Combinatorial Topology)

Armando Castañeda
Instituto de Matemáticas, UNAM

Joint work with:
Manuel Alcántara, David Flores, Sergio Rajsbaum, UNAM
Matthieu Roy, LAAS-CNRS

Gathering

A collection of robots start on vertices of a connected graph. They can move on vertices.

- Termination. Correct robots decide a vertex.
- Validity. If participating robots start on the same vertex, they stay there.
- Agreement. All final vertices are the same

Asynchronous Luminous Robots (ALR)

- n fully asynchronous robots with low memory (the less the better).
- Luminous: Each robot has a light to communicate information (the less the better).
- Two available atomic operations:

1. Look: Takes a snapshot of the whole environment (position and lights colors).
2. Move: Robot moves to an adjacent or same vertex and changes light color.

- Up to $n-1$ crash failures (robots stop or disappear).

Asynchronous Luminous Robots (ALR)

Computation proceed in a sequence of asynchronous rounds.

```
Algorithm choose(v, G):
    r= non-negative integer
    view = empty
    undecided = true
    While undecided do
        Move(v,r)
        view = Look(G) U view
        (v,r, undecided) = Compute(view)
    endWhile
    return v
```

Robots can start at distinct times or do not even start.

Asynchronous Luminous Robots (ALR)

Computation proceed in a sequence of asynchronous rounds.

```
Algorithm choose(v,G):
    r= non-negative integer
    view = empty
    undecided = true
    While undecided do
        Move(v,r)
        view = Look(G) U view
        (v,r, undecided) = Compute(view)
    endWhile
    return v
```

Robots can start at distinct times or do not even start.

Related Work

- Gathering has been studied a lot, usually without failures and in continuous space.
[Flocchini et al. 2012, Agmon and Peleg 2006, Bramas and Tixeuil 2015, Cieliebak et al. 2012, Klasing et al. 2008, ...]
- ALR model introduced in the past, without failures and without distinct starting times. [Shantanu Das et al. 2016]
- First time gathering is studied considering full asynchrony+failures.

Impossibility of Gathering

For $n>1$, the gathering is solvable if and only if the base graph G is a single vertex

- Proof based on the topology approach to distributed computing.
- Enough to analyze the case $n=2$.

Distributed Computing and Topology

- Vertices represent robot/ process states.

Distributed Computing and Topology

- Vertices represent robot/ process states.
- Simplices (vertices, edges, triangles...) represent mutually compatible system states.

Distributed Computing and Topology

- Vertices represent robot/ process states.
- Simplices (vertices, edges, triangles...) represent mutually compatible system states.

- Complexes put all together.
- Target: Understand properties of the complexes.

Colorless Tasks

- A task is a triple $(\mathfrak{I}, \mathcal{O}, \mathfrak{F})$:

1. \mathfrak{I} : input complex with valid input sets. Each set represent several configurations.
2. O : Output complex with valid output sets. Each set represent several configurations.
3. \mathcal{F} : Input/Output function from input simplexes to output sub complexes.

2-Robot Gathering Task

- Input Complex: Graph modeling possible input sets.

q

2-Robot Gathering Task

- Input Complex: Graph modeling possible input sets.

Robots start
on the vertex
G

1

2-Robot Gathering Task

- Input Complex: Graph modeling possible input sets.

Robots start on the vertices (it does not matter which one*)
\mathfrak{q}

2-Robot Gathering Task

- Output Complex: Graph modeling possible output sets.

O

2-Robot Gathering Task

- Output Complex: Graph modeling possible output sets

Robots decide the vertex
G
O

2-Robot Gathering Task

- Input/Output Function: Relation between inputs and outputs.

1

O

2-Robot Gathering Task

- Input/Output Function: Relation between inputs and outputs.

2-Robot Gathering Task

- Input/Output Function: Relation between inputs and outputs.

1

2-Robot Gathering Task

- For a given graph \mathcal{G}, the 2-robot gathering task is the triple $(\mathfrak{I}, O, \mathcal{F})$:

1. \mathcal{I} : Complete graph with vertices $\mathcal{V}(\mathcal{G})$.
2. O : Empty graph with vertices $\mathcal{V}(\mathcal{G})$.
3. \mathcal{F} : For every vertex $v, \mathcal{F}(v)=v$;

For every edge $e, \mathcal{F}(e)=O$.

Protocol Complex

- Complex \mathcal{P} modeling all (or some relevant subset of) executions.
- Vertices: Local states.
- Simplices: Mutually compatible states (state of robots at the end of an execution).
- For every input configuration simplex $s, \mathcal{E}(s)=$ sub complex of \mathcal{P} with all executions with initial state s.

Protocol Complex

- Complex $\mathcal{P} \mathrm{n}$ Tiny detail: levant subset of) execution full-information (roughly)
- $\begin{gathered}\text { Algorithm choose }(v, \mathcal{G}): \\ r=\text { non-negative integer }\end{gathered}$
- Vertices: L view = empty undecided = true
- Simplices robots at t While undecided do

Move((r)
view $=\operatorname{Look}(G) \cup$ view
(v, r, undecided) $=$ Compute $($ view $)$
endWhile

- For every return v

> Encode all it has seen
$\mathcal{E}(s)=$ sub
complex of \mathcal{P} with all executions with initial state s.

2-Robot Protocol

2-Robot Protocol

Two rounds

$$
\mathrm{A}_{2},\left(\left(\mathrm{~A}_{2},-\right)\left(\mathrm{A}_{1},-\right)\right)
$$

2-Robot Protocol

2-Robot Protocol

One round

2-Robot Protocol

One round

$A ; B$

2-Robot Protocol

One round
$A ; B$
$B \| A$

2-Robot Protocol

One round

$A ; B$
$B \| A$
B;A

2-Robot Protocol

One round

A;B
$B \| A$
B;A

2-Robot Protocol

One round

2-Robot Protocol

One round

$\mathrm{B}_{1},\left(\mathrm{~A}_{1}, \mathrm{~B}_{1}\right)$
$\mathrm{A}_{1},\left(\mathrm{~A}_{1}, \mathrm{~B}_{1}\right)$
$\left.B_{1,(-, ~} \mathrm{B}_{1}\right)$

Solo executions

2-Robot Protocol

Two Rounds

2-Robot Protocol

Two Rounds E

Solo executions

2-Robot Protocol

Two Roinds
And so on ...

E

Solo executions

Solvability Condition

Out. Comp. O
Inp. Comp. 1

Prot. Comp. \mathcal{P}

Solvability Condition

Out. Comp. O
Inp. Comp. 1

$$
\mathcal{F}(s)
$$

Prot. Comp. \mathcal{P}

Solvability Condition

Out. Comp. O
Inp. Comp. 1

Prot. Comp. \mathcal{P}
$\mathcal{E}(s)$

Solvability Condition

Out. Comp. O
Inp. Comp. 1

$$
\mathcal{F}(s)
$$

Solvability Condition

Out. Comp. O
Inp. Comp. 1

$$
\mathcal{F}(s)
$$

Prot. Comp. \mathcal{P}

$\mathcal{E}(\mathrm{s})$

Decision function maps Executions must be mapped to valid output sets $=>d$ is simplicial and respects the task specification

Solvability Condition

Out. Comp. O
Inp. Comp. I

$$
\mathcal{F}(s)
$$

s

Prot. Comp. \mathcal{P}

$\mathcal{E}(\mathrm{s})$

Decision function maps Executions must be mapped to valid output sets $=>$ d is simplicial and respects the task specification

Simplicial Maps

Simplicial Maps

Simplicial Maps

Simplicial Maps

Solvability Condition

Out. Comp. O
Inp. Comp. I

$$
\mathcal{F}(s)
$$

\square

Prot. Comp. \mathcal{P}

$E(s)$

Executions must be mapped to valid output sets $=>\delta$ is simplicial and respects the task specification

Gathering is Impossible

So ... Relax

- What about gathering on an edge?
- Edge Gathering:
- Termination. Correct robots decide a vertex.
- Validity. If participating robots start on the same vertex, they stay there. If start on an edge, decide vertices of the edge.
- Edge Agreement. Decided vertices belong to an edge (it could be the same vertex).

Solvability of Edge Gathering

For $n=2$, edge gathering is solvable on any connected base graph \mathcal{G}

For $n>2$, edge gathering is solvable if and only if the base graph \mathcal{G} is acyclic

Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for \(N \geq 2\) robots on any tree \(T=(V, E)\). Code for robot \(p_{i}\).
Function GatheringTree \(\left(v_{i}, T\right)\)
    1: \(\operatorname{Move}\left(v_{i}, 0\right) \% p_{i}\) becomes visible to the others
    2: for \(r_{i} \leftarrow 1\) to \(\operatorname{diam}(T)-1\) do
        view \(_{i} \leftarrow \operatorname{Look}(T) \%\) positions and lights states of the others
        max_round \(_{i} \leftarrow \max \left\{r_{j}:\left(*, r_{j}\right) \in\right.\) view \(\left._{i}\right\}\)
        \(S_{i} \leftarrow\left\{v_{j}:\left(v_{j}\right.\right.\), max_round \(\left._{i}\right) \in\) view \(\left._{i} \vee v_{j}=v_{i}\right\} \%\) max round position and position of \(p_{i}\)
        \(T_{i} \leftarrow\) smallest subtree of \(T\) spanning all vertices in \(S_{i} \%\) subtree induced by positions in \(S_{i}\)
        if \(v_{i}\) is leaf of \(T_{i} \wedge \operatorname{diam}\left(T_{i}\right)>0\) then
            \(v_{i} \leftarrow\) vertex of \(T_{i}\) that is adjacent to \(v_{i}\)
        end if
            \(\operatorname{Move}\left(v_{i}, r_{i}\right) \% p_{i}\) makes visible its new position and updates its lights
    end for
    return \(v_{i}\)
```


Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for \(N \geq 2\) robots on any tree \(T=(V, E)\). Code for robot \(p_{i}\).
Function GatheringTree \(\left(v_{i}, T\right)\)
    1: \(\operatorname{Move}\left(v_{i}, 0\right) \% p_{i}\) becomes visible to the others
    2: for \(r_{i} \leftarrow 1\) to \(\operatorname{diam}(T)-1\) do
        3: \(\quad\) view \(_{i} \leftarrow \operatorname{Look}(T) \%\) positions and lights states of the o robots might be
The farthest two
        max_round \(_{i} \leftarrow \max \left\{r_{j}:\left(*, r_{j}\right) \in\right.\) view \(\left._{i}\right\}\)
```



```
        \(T_{i} \leftarrow\) smallest subtree of \(T\) spanning all vertices in \(S_{i} \%\) subtree induced by positions in \(S_{i}\)
        if \(v_{i}\) is leaf of \(T_{i} \wedge \operatorname{diam}\left(T_{i}\right)>0\) then
            \(v_{i} \leftarrow\) vertex of \(T_{i}\) that is adjacent to \(v_{i}\)
        end if
            \(\operatorname{Move}\left(v_{i}, r_{i}\right) \% p_{i}\) makes visible its new position and updates its lights
    end for
    return \(v_{i}\)
```


Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for N\geq2 robots on any tree T=(V,E). Code for robot pi
Function GatheringTree(vi,T)
    1: Move(vi,0) % pi becomes visible to the others
    2: for ri& & to diam(T)-1 do
    3: view }\leftarrow\textrm{Look}(T)%\mathrm{ positio
    : max_round }\mp@subsup{}{i}{}\leftarrow\operatorname{max}{\mp@subsup{r}{j}{}:(*,\mp@subsup{r}{j}{})\in\mp@subsup{\mathrm{ view }}{i}{}
        Si}\leftarrow{\mp@subsup{v}{j}{}:(\mp@subsup{v}{j}{},\mp@subsup{\mathrm{ max_round }}{i}{})\in\mp@subsup{\mathrm{ view }}{i}{}\vee\mp@subsup{v}{j}{}=\mp@subsup{v}{i}{}}}%\mathrm{ max round p
        Ti}\leftarrow\mathrm{ smallest subtree of T spanning all vertices in Si % subtree
        if }\mp@subsup{v}{i}{}\mathrm{ is leaf of Ti}\\\operatorname{diam}(\mp@subsup{T}{i}{})>0\mathrm{ then
            vi}\leftarrow\mathrm{ vertex of }\mp@subsup{T}{i}{}\mathrm{ that is adjacent to }\mp@subsup{v}{i}{
        end if
            Move(vi, ri})%\mp@subsup{p}{i}{}\mathrm{ makes visible its new position and updates its lights
        end for
        return }\mp@subsup{v}{i}{
```


Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for N\geq2 robots on any tree T=(V,E). Code for robot pi
Function GatheringTree(vi,T)
    1: Move(vi,0) % pi becomes visible to the others
    2: for }\mp@subsup{r}{i}{}\leftarrow1\mathrm{ to }\operatorname{diam}(T)-1 d
    3: view i}\leftarrow\mathbb{Look}(T)%\mathrm{ positions and lights states of the others
    4: }\quad\mp@subsup{\mathrm{ max_round }}{~}{}\leftarrow\operatorname{max}{\mp@subsup{r}{j}{}:(*,\mp@subsup{r}{j}{})\in\mp@subsup{\mathrm{ view }}{i}{}
        Si}\leftarrow{\mp@subsup{v}{j}{\prime}:(\mp@subsup{v}{j}{},\mp@subsup{\mathrm{ max_round }}{i}{})\in\mp@subsup{\mathrm{ view }}{i}{}\vee\mp@subsup{v}{j}{}=\mp@subsup{v}{i}{}}%%\mathrm{ max round pos
        Ti}\leftarrow\mathrm{ smallest subtree of T spanning all vertices in Si % %ubtectir
        if }\mp@subsup{v}{i}{}\mathrm{ is leaf of Ti}\\\operatorname{diam}(\mp@subsup{T}{i}{})>0\mathrm{ then
            vi}\leftarrow\mathrm{ vertex of Ti}\mathrm{ that is adjacent to vi
        end if
            Move(vi, ri )% porimakes visible its new position and updates its lights
    end for
    return }\mp@subsup{v}{i}{
```


Edge Gathering on Trees

Algorithm 1 Edge Gathering for $N \geq 2$ robots on any tree $T=(V, E)$. Code for robot p_{i}.		
Function GatheringTree(v_{i}, T)		
1: $\operatorname{Move}\left(v_{i}, 0\right) \% p_{i}$ becomes visible to the others		
2: for $r_{i} \leftarrow 1$ to $\operatorname{diam}(T)-1$ do		
3: $\quad v i e w_{i} \leftarrow \operatorname{Look}(T) \%$ positions and lights states of the others		
4: max_round $_{i} \leftarrow \max \left\{r_{j}:\left(*, r_{j}\right) \in\right.$ view $\left._{i}\right\}$		
5: $\quad S_{i} \leftarrow\left\{v_{j}:\left(v_{j}\right.\right.$, max_round $\left._{i}\right) \in$ view $\left._{i} \vee v_{j}=v_{i}\right\} \%$ max round		
6: $\quad T_{i} \leftarrow$ smallest subtree of T spanning all vertices in $S_{i} \%$ subtre		
		Need to move?
10: $\operatorname{Move}\left(v_{i}, r_{i}\right) \% p_{i}$ makes visible its new position and updates		
11: end for		
	return v_{i}	

Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for \(N \geq 2\) robots on any tree \(T=(V, E)\). Code for robot \(p_{i}\).
Function GatheringTree \(\left(v_{i}, T\right)\)
    1: \(\operatorname{Move}\left(v_{i}, 0\right) \% p_{i}\) becomes visible to the others
2: for \(r_{i} \leftarrow 1\) to \(\operatorname{diam}(T)-1\) do
3: \(\quad v i e w_{i} \leftarrow \operatorname{Look}(T) \%\) positions and lights states of the others
4: \(\quad\) max_round \(_{i} \leftarrow \max \left\{r_{j}:\left(*, r_{j}\right) \in\right.\) view \(\left._{i}\right\}\)
5: \(\quad S_{i} \leftarrow\left\{v_{j}:\left(v_{j}\right.\right.\), max_round \(\left._{i}\right) \in\) view \(\left._{i} \vee v_{j}=v_{i}\right\} \%\) max round position and position of \(p_{i}\)
6: \(\quad T_{i} \leftarrow\) smallest subtree of \(T\) spanning all vertices in \(S_{i} \%\) subtree induced by positions in \(S_{i}\)
7: \(\quad\) if \(v_{i}\) is leaf of \(T_{i} \wedge \operatorname{diam}\left(T_{i}\right)>0\) then
8: \(\quad v_{i} \leftarrow\) vertex of \(T_{i}\) that is adjacent to \(v_{i}\)
9: end if
10: \(\quad \operatorname{Move}\left(v_{i}, r_{i}\right)\)
11: end for
12: return \(v_{i}\)
```


Edge Gathering on Trees

```
Algorithm 1 Edge Gathering for \(N \geq 2\) robots on any tree \(T=(V, E)\). Code for robot \(p_{i}\).
Function GatheringTree \(\left(v_{i}, T\right)\)
    Move \(\left(v_{i}, 0\right) \% p_{i}\) becomes visible to the others
    for \(r_{i} \leftarrow 1\) to \(\operatorname{diam}(T)-1\) do
            view \(_{i} \leftarrow \operatorname{Look}(T) \%\) positions and lights states of the others
            max_round \(_{i} \leftarrow \max \left\{r_{j}:\left(*, r_{j}\right) \in\right.\) view \(\left._{i}\right\}\)
            \(S_{i} \leftarrow\left\{v_{j}:\left(v_{j}\right.\right.\), max_round \(\left._{i}\right) \in\) view \(\left._{i} \vee v_{j}=v_{i}\right\} \%\) max round position and position of \(p_{i}\)
            \(T_{i} \leftarrow\) smallest subtree of \(T\) spanning all vertices in \(S_{i} \%\) subtree induced by positions in \(S_{i}\)
            if \(v_{i}\) is leaf of \(T_{i} \wedge \operatorname{diam}\left(T_{i}\right)>0\) then
            \(v_{i} \leftarrow\) vertex of \(T_{i}\) that is adjacent to \(v_{i}\)
            end if
            \(\operatorname{Move}\left(v_{i}, r_{i}\right) \% p_{i}\) makes visible its new position and updates its lights
    end for
    return \(v_{i}\)
```


Edge Agreement. For every prefix of an execution: $\operatorname{dist}(\operatorname{pos}(i), \operatorname{pos}(j))<=\operatorname{diam}(\tau)-\min \{\operatorname{round}(i), \operatorname{round}(j)\}$

2-Robot Edge Gathering

1. Precompute a spanning tree \mathcal{T} of \mathcal{G}
2. Algorithm \mathcal{A} : Algorithm for trees.
3. For $r=1$ to $\operatorname{diam}(G)$ do
4. $\operatorname{Look}(G)$
5. If distance of current positions on $\mathcal{G}>1$ then
6. \quad Simulate a round of \mathcal{A} on \mathcal{T}^{\prime}
7. Move to next vertex
8. Return current position

Cycles are Obstacles

For $\mathrm{n}>2$, if the base graph G is has cycles, then edge gathering is unsolvable

Proof:

1. The case $n=3$ is enough.
2. Prove the triangle is impossible.
3. Solve the triangle from any cyclic graph.

The Triangle is Impossible

1
O

The Triangle is Impossible

The Triangle is Impossible

The Triangle is Impossible

The Triangle is Impossible

\mathcal{F}
O

The Triangle is Impossible

\mathcal{F}
O

The Triangle is Impossible

The Triangle is Impossible

The Triangle is Impossible

Immediate Snapshot Executions (ISE)

- Subset of nice structured executions.
- Robots proceed in a sequence of concurrency classes:

$$
\{A, B, C\}\{B\}\{A, C\}\{B\}\{B\}\{A, C\} \ldots
$$

- Concurrency class: concurrent move, then concurrent look.

$$
\begin{array}{ll}
A=0 & \{A\}\{B\}\{C\} \\
B=0 & \\
C=0 &
\end{array}
$$

$\{A\}\{B\}\{C\}$
$\{A\}\{B, C\}$

$$
\begin{aligned}
& A=O \\
& B=O \\
& C=0
\end{aligned}
$$

$\{A\}\{B\}\{C\}$

$A=0$
$B=0$
$C=0$
$\{A\}, B\}\{C\}$

$A=?$
$B=?$
$C=0$
$\{A\}, B\}\{C\}$

$\{A\}\{B, C\}$

$$
\mathrm{B}_{1}\left(\mathrm{~A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right) \quad \mathrm{C}_{1}\left(\mathrm{~A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right)
$$

$A_{1}\left(A_{1}, B_{1}, C_{1}\right)$
$\{A, B, C\}$

\{A\}|B|,C\}

$\{A\}, B, C\}$
And so on ...

$A_{1}\left(A_{1}, B_{1}, C_{1}\right)$
$\{A, B, C\}$
$\mathrm{A}_{1}\left(\mathrm{~A}_{1},-,-\right)$

$\mathrm{B}_{1}\left(\mathrm{~A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right)$

$\{A\}|B|, C\}$

1-Round ISE Complex

The Triangle is Impossible

The Triangle is Impossible

If there is an algorithm => there is a simplicial map

$$
\begin{gathered}
d: \mathcal{V}(\mathcal{P}) \rightarrow \mathcal{V}(O) \\
\text { respecting } \mathcal{F}
\end{gathered}
$$

The Triangle is Impossible

The Triangle is Impossible

is there such a d ?

2-Dim Sperner's Lemma

Every subdivision of a triangle with a Sperner coloring

 has an odd number of 3-chromatic triangles

2-Dim Sperner’s Lemma

Every subdivision of a triangle with a Sperner coloring

 has an odd number of 3-chromatic triangles

The Triangle is Impossible

Solving Triangle from Cyclic Graphs

Solving Triangle from Cyclic Graphs

$\mathrm{f}_{\mathrm{in}}(x)$:
$\mathcal{A}=$ Edge gath. alg. on \mathcal{P}
if $\quad x==1$ then return w
elseif $x==2$ then return \mathcal{A}.decide(u)
elseif $x==3$ then return \mathcal{A}. decide (v)

Solving Triangle from Cyclic Graphs

$\mathrm{f}_{\mathrm{in}}(x)$:
$\mathcal{A}=$ Edge gath. alg. on \mathcal{P}
if $\quad x==1$ then return w
elseif $x==2$ then return \mathcal{A}.decide(u) elseif $x==3$ then return \mathcal{A}. decide (v)

EdgeGathTriangle(x):

$\mathcal{B}=$ Edge gath. alg. on \mathcal{G} return $f_{\text {out }}\left(\mathcal{B}\right.$. decide $\left.\left(f_{\text {in }}(x)\right)\right)$

Let's Do More

- Edge Covering:

- Termination. Correct robots decide a vertex.
- Validity. If participating robots start on the same vertex, they stay there. If start on an edge, decide vertices of the edge.
- Edge Covering. If more than one decided vertex, decisions cover an edge.

Solvability of Edge Covering

For $n=2$, edge covering is solvable if and only if the base graph G is not bipartite

For $n>2$, edge covering is imposible on every base graph G

2-Robot Edge Covering Algorithm

For $n=2$, if the base graph G is is not bipartite then edge covering is possible

There is an odd length path or cycle between any pair of nodes.

1) $\left|\mathcal{P}_{1}-\mathcal{P}_{2}\right|$ is odd.

Done
2) $\left|P_{1}-\mathcal{P}_{2}\right|$ is even.

Take $\mathcal{P}_{1}-C-\mathcal{P}_{2}$.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Algorithm

Protocol complex (path) can be mapped to those paths. Why? Length of the complex (path) is odd.

2-Robot Edge Covering Impossibility

For $\mathrm{n}=2$, if the base graph G is bipartite, then edge covering is impossible

- Bipartite => for some pair, there is no odd length path or cycle
- Protocol complex cannot be mapped to even length paths: Endpoints to endpoints and edges to edges.

2-Robot Edge Covering Impossibility

For $\mathrm{n}=2$, if the base graph G is bipartite, then edge covering is impossible

Proof:

1. Prove the edge is impossible.
2. Solve the edge from any bipartite graph.

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Solving Edge from Bipartite Graphs

EdgeCoveringEdge(x):
$\mathcal{B}=$ Edge covering alg. on \mathcal{G}
return $f_{\text {out }}\left(\mathcal{B}\right.$. decide $\left.\left(f_{\text {in }}(x)\right)\right)$

Edge Covering Impossibility

For $n>2$, edge covering is imposible on every base graph G

Proof:

1. Suppose there is an edge covering algorithm \mathfrak{A} on \mathcal{G}.
2. \mathcal{A} solves 2 -robot edge covering on \mathcal{G}.
3. \mathcal{G} is not bipartite $=>\mathcal{G}$ has cycles.
4. \mathcal{A} solves edge gathering on \mathcal{G} for $n>2$ robots. Contradiction!!

Summary

1. Gathering. Impossible
2. Edge Gathering:

- For $n=2$, solvable on any graph.
- For $n>2$, solvable if an only if acyclic.

3. Edge Covering:

- For $n=2$, solvable if an only if not bipartite.
- For $n>2$, impossible.

ALR = R/W Wait-Free

A task (maybe non-colorless) is solvable in ALR
 if and only if it is solvable in Async. R/W Wait-Free

Reduction based proofs:

1. Same connectivity properties.
2. Gathering $=>$ Consensus
3. Edge Gathering =>2-Set Consensus
4. Edge Covering => WSB
