Data Structures of the Future:
 Concurrent, Optimistic, and Relaxed

Dan Alistarh

ETH Zurich / IST Austria

Why Concurrent?

Simple: To get speedup on newer hardware.
Scaling: more threads should imply more useful work.

The Problem with Concurrency

Concurrency can be very bad value for money.

Is this problem inherent?

Inherent Sequential Bottlenecks

Data structures with strong ordering semantics

- Stacks, Queues, Priority Queues, Exact Counters

Theorem: Given \mathbf{n} threads, any deterministic, strongly ordered data structure has an execution in which
a processor takes linear in n time to return.
[Ellen, Hendler, Shavit, SICOMP 2013]
[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]
This is bad news because of Amdahl's Law
To get performance, it is critical to speed up shared data structures.

Today's Talk

Theorem: Given \mathbf{n} threads, any deterministic, strongly ordered data structure has an execution in which
a processor takes linear in n time to return.
[Ellen, Hendler, Shavit, SICOMP 2013]
[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

New Data Structure Designs!

Lock-Free Data Structures 101

- Optimistic programming patterns
- Do not use locks, but atomic instructions (Compare\&Swap)
- Blocking of one thread shouldn't stop the whole system
- Lots of implementations:HashTables, Lists, Trees, Queues, Stacks, etc.

```
Memory location R;
void fetch-and-increment ( ) {
    int val;
    do {
            val = Read( R );
            new_val = val + 1;
    } while (! Compare&Swap ( &R, val, new_val ));
    return val;
}
```


The Lock-Free Paradox

```
Memory location R;
void fetch-and-increment ( ) {
    int val;
    do {
    va1 = Read( R );
            new_val = val + 1;
    } while (! Compare&Swap ( &R, val, new_val ));
    return val;
}
```


Example: Lock-free counter.
In theory, threads could starve in optimistic lock-free implementations.

Use more complex wait-free algorithms.
Practice: this doesn't always happen. Threads rarely starve.

Analyzing Lock-Free Patterns

- Stochastic Scheduler [sToc14, Transact15]:
- At each scheduling step, the next scheduled thread picked from a distribution $\mathbf{p}=\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}\right)$ with $\mathbf{p}_{\mathbf{i}}>\mathbf{0}$ for all \boldsymbol{i}

Stochastic Scheduler

Stochastic Contention Game

Theorem 1: Under any stochastic scheduler, any lock-free algorithm is wait-free with probability 1.
[Alistarh, Censor-Hillel, Shavit, STOC 14 / JACM 16].
Theorem 2: Under high contention, roughly one in Θ ($1 / \operatorname{norm}_{2}(p)$) ops succeeds.
[Alistarh, Sauerwald, Vojnovic, PODC 15]

The Contention Game

$$
\begin{aligned}
& \text { Distribution } \\
& \left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}\right)
\end{aligned}
$$

The Contention Game, Balls\&Bins view

Distribution
$\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Rules for the Counter

```
- Bins = threads
- Balls = steps
- Placement according top
- To Complete the Operation
Rules for the Counter
- 3 balls before others
```

- Resets all bins with 7 Rallc
- Winner keeps o

How many balls does a bin receive on average between two wins?

How many total balls are distributed between two wins, on average?

The Result

Theorem. Given arbitrary distribution p and

constant-length lock-free algorithm, the following hold:

- System latency is $\Theta\left(1 / \operatorname{norm}_{2}(p)\right)$
- Individual latency is $\theta\left(\operatorname{norm}_{2}(p) / p_{i}^{2}\right)$

Examples:

Other game types covered, e.g. obstruction-free algorithms.

- Individual latency is either constant, or $\searrow 0$

Moral: Under high contention, roughly one in sqrt (\mathbf{n}) ops succeeds.

Why does this graph look so bad?

Throughput of Parallel Event Processing Queue

What Happens at the Hardware Level?

Fixing it: Lease/Release [Alistarr, Haider, Hasenplaugh, Ppopp 2016]

Lease/Release, More Precisely

- Programmer optimistically leases variables for bounded time
- void ReqLease(void* address, int data_size, time T);
- void ReqRelease(void* address, int data_size, time T);
- Lease time in the order of $\mathbf{1 0 0 0}$ cycles
- Performance penalty if leases expire before operation completion
- Usually occurs < 5% of the time
- Prototype in the MIT Graphite Processor Simulator
- Directory-based MESI Cache Coherence Protocol
- Protocol remains provably correct
- Minimal changes to the architecture

Does it work?

Packet Processing Queue with Lease-Release (Simulated in Graphite)

Queue Throughput

What Else? Locks

Can we avoid the wasted coherence messages?

PageRank with L/R

- Works with lock-based programs as well
- Lease the lock before acquiring it
- Release before giving it up

Parallel PageRank Running Time

Lease/Release

- Hardware Lock Queues [iQOLB: Rajwar, Kaegi, Goodman; HPCA 2000]
- Locks using Load-Linked / Store-Conditional
- Load-Linked takes a "lease" on the lock, Store-Conditional "releases"
- Applied automatically by the processor speculation mechanism
- Transient Blocking Synchronization [Shalev, Shavit; Sun Tech Report 2004]
- Propose Load\&Lease / Store\&Release instructions for non-coherent DSM machines
- Different semantics, never implemented
- The paper also contains:
- Hardware implementation details (no directory modifications!)
- Blueprint for implementing multiple concurrent leases (transactions)
- Lots of experiments

The High-Level View

- The Problem with Concurrency

- Inherent bottlenecks lead to meltdowns
- Why?
- Contention hurts optimistic patterns, quantifiably so
- Lease/Release:
- We can now scale bottlenecks, within reason
- Optimism enforced at the hardware level

Concurrent Priority Queues

Methods:

- Get Top Task
- Insert a Task
- Search for Task

We are looking for a fast concurrent Priority Queue.

The Problem

Target: fast, concurrent Priority Queue.

Lots of work on the topic:
[Sanders97], [Lotan\&Shavit00], [Sundell\&Tsigas07], [Linden\&Jonsson13], [Lenhart et al. 14], [Wimmer et al.14]

Current solutions are hard to scale:
DeleteMin is highly contended.
Everyone wants the same element!

Concurrent Solution

- Linked list, sorted by priority
- Each node has random "height" (geometrically distributed with parameter $1 / 2$)
- Elements at the same height form their own lists

Concurrent Solution: the SkipList [Pugh90]

- Linked list, sorted by priority
- Each node has random "height" (geometrically distributed with parameter $1 / 2$)
- Elements at the same height form their own lists
- Average time Search, Insert, Delete logarithmic, work concurrently [Pugh98, Fraser04]

The SkipList as a PQ

- DeleteMin: simply remove the smallest element from the bottom list
- All processors compete for smallest element
- Does not scale!

[^0]
The Idea: Relax!

- We want to choose an item at random with 'good' guarantees
- Minimize loss of exactness by only choosing items near the front of the list
- Minimize contention by keeping collision probability low

DeleteMin: The Spray [Alistarh, Kopinsky, Li, Shavit, PPopP 2015]

procedure Spray()

- At each skiplist level, flip coin to stay or jump forward
- Repeat for each level from $\log \mathrm{n}$ down to 1 (the bottom)
- As if removing a random priority element near the head

SprayList Probabilistic Guarantees

\checkmark Maximum value returned by Spray has rank $\mathrm{O}\left(n \log ^{3} n\right)$

- Sprays aren't too wide
$\checkmark \quad$ For all $\mathrm{x}, \mathrm{p}(\mathrm{x})=\mathrm{O}(1 / n)$
$p(x)=$ probability that a
spray returns value at
index x
- Sprays don't cluster too much
\checkmark If $\mathrm{x}>\mathrm{y}$ is returned by some Spray, then $\mathrm{p}(\mathrm{y})=\widetilde{\Omega}(1 / n)$

One Benchmark

- Discrete Event Simulation
- Exact algorithms have negative scaling after 8 threads
- SprayList competitive with the random remover (no guarantees, incorrect execution)

In many practical settings (D.E.S., shortest paths), priority inversions are not expensive.

The MultiQueue [Rihani, Dementiev, Sanders, SPAA 15]

- n lock-free or lock-based queues
- Insert: pick a random queue, lock, and insert into it
- Remove: pick two queues at random, lock and remove the better element

Looks good, but does it actually guarantee anything?

The Random Process

WLOG, elements are consecutive labels.

1. Insert Elements u.a.r.
2. Remove using two choices

- Cost = rank of element removed among remaining elements
$\operatorname{Cost}(2)=2$
$\operatorname{Cost}(4)=3$
$\operatorname{Cost}(1)=1$

Q1	Q2	Q3	Q4
1	4	2	5
6	7	3	9
10	12	8	11
13	16	15	14

We are interested in the average rank removed at each step.

The Result

Theorem: Given \boldsymbol{n} queues, for any $\boldsymbol{t} \boldsymbol{>} \boldsymbol{0}$, the cost at \boldsymbol{t} is $\mathbf{O}(\mathrm{n})$ in expectation, and $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ w.h.p.

- Strategy 1: reduction to power of two-choices analysis? [Azar et al., SICOMP 99]
- Would apply if we could equate queue size with top label (round-robin insert)

The reduction does not hold in general, and in fact experimentally height and top priority appear to be uncorrelated.

The Result

Theorem: For any $\boldsymbol{t}>\mathbf{0}$, the cost at \boldsymbol{t} is $\mathbf{O}(\mathbf{n})$ in expectation, and $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ w.h.p.

- Strategy 2: some simple sort of induction
- The initial cost distribution is nice; can we prove it always stays nice?

$$
2
$$

```
:
```

Hard case: over time, we'll eventually get arbitrary distributions. We have to prove that the algorithm gets out of those reasonably fast.

The Result

Theorem 1: For any $\boldsymbol{t}>\mathbf{0}$, the cost at \boldsymbol{t} is $\mathbf{O (n)}$ in expectation, and $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ w.h.p.

- Strategy 3: some simple complicated sort of induction / potential argument
- Idea: characterize what's going on step-by-step

Problem: the behavior at a step is highly correlated with what happened in previous steps.

Proof Strategy

Theorem 1: For any $\boldsymbol{t}>\mathbf{0}$, the cost at \boldsymbol{t} is $\mathbf{O (n)}$ in expectation, and $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ w.h.p.

- Step 1: reduce to an uncorrelated exponential process
- Prove that the rank distribution is preserved
- Step 2: characterize the exponential process
- Characterize average weight on top of queues via potential argument
- Step 3: characterize rank distribution of exponential process
- Prove that average rank is $\mathrm{O}(\mathrm{n})$

Step 1: The exponential process

- Insert: pick a random queue
- Insert exponentially distributed increment with mean \mathbf{n} into it
- Remove: pick two queues at random, remove the lower label
- Cost: the rank of the element removed (still)

Theorem: The distribution of removed ranks is the same in the discrete process and in the exponential process.
$\operatorname{Pr}[$ rank k is in queue j$]=1 / \mathrm{n}$.

Step 2: Analyzing the exponential process

- Fix a removal step \boldsymbol{t}. Let $\boldsymbol{w}_{\boldsymbol{i}}(\boldsymbol{t})$ be the label (real value) on top of bin \boldsymbol{i}.
- Let $\boldsymbol{x}_{i}(t)=\frac{\boldsymbol{w}_{i}(t)}{n}$ (normalized weights), and $\mu(t)=\sum_{i=1}^{n} x_{i}(t) / n$
- Let $\Phi(t)=\sum_{i=1}^{n} \exp \left(\boldsymbol{x}_{i}(t)-\mu(t)\right)$ and $\Psi(t)=\sum_{i=1}^{n} \exp \left(-\left(x_{i}(t)-\mu(t)\right)\right)$.

$$
\text { Theorem: For any } t>0, \mathbb{E}[\boldsymbol{\Phi}(\boldsymbol{t})+\boldsymbol{\Psi}(\boldsymbol{t})]=\boldsymbol{O}(\boldsymbol{n})
$$

Uses tools from [Peres, Talwar, Wieder, R.S.A. 14]

- No more correlations: since weight increments are independent of previous steps, we can bound the expected increase in potential at each step.
- Bad configurations: $\Phi(t)$ and $\Psi(t)$ cannot both be large at the same time. If their sum breaks the $O(n)$ barrier, then the large potential will decrease very fast.
- $\boldsymbol{\Phi}(\boldsymbol{t})+\boldsymbol{\Psi}(\boldsymbol{t})$ is then a super-martingale, which implies the bound.

Step 3: What does all this have to do with ranks?

- Let $\boldsymbol{B}_{>s}(\boldsymbol{t})$ be the number of bins with weight $>\mu+s$ at time t.
- Let $\boldsymbol{B}_{<-\boldsymbol{s}}(\boldsymbol{t})$ be the number of bins with weight $<\mu-s$ at time t.

Theorem: For any $t>0, \mathbb{E}\left[B_{>s}(t)\right]=O\left(\frac{n}{\exp _{n}^{s}}\right)$ and $\mathbb{E}\left[B_{<-s}(t)\right]=O\left(\frac{n}{\exp _{n}^{s}}\right)$.
Weights become "rarefied" at ranks s-higher and s-lower than the mean value.

- But on average, we'll choose something close to the mean value! So, we conclude:

Theorem: For any $\boldsymbol{t}>\mathbf{0}$, the rank cost at \boldsymbol{t} is $\mathbf{O}(\mathbf{n})$ in expectation.

Applications

We can use this for approximate queues, stacks, counters, timestamps.

$$
\text { What if we do two choices only } \beta \% \text { of the time? }
$$

(one choice otherwise)
Theorem: For any $\boldsymbol{t}>\mathbf{0}$, the cost at \boldsymbol{t} is $\mathbf{O}\left(\mathbf{n} / \boldsymbol{\beta}^{*}\right)$ in expectation, and $\mathbf{O}\left(\mathrm{n} \log \mathrm{n} / \boldsymbol{\beta}^{*}\right)$ w.h.p.

Works well in practice.

What if the input distribution is biased?

Still works (within reason).

Concurrent Data Structures

"The data structures of our childhood are changing."
Nir Shavit

Data structures such as the Spraylist and the MultiQueue merge both relaxed semantics and optimistic progress to achieve scalability.

A relaxation renaissance

[KarpZhang93], [DeoP92], [Sanders98], [HenzingerKPSS13], [NguyenLP13], [WimmerCVTT14], [LenhartNP15], [RihaniSD15], [JeffreySYES16]

The Last Slide

Theorem: Strongly ordered data structures won't scale.

[Ellen, Hendler, Shavit, SICOMP 2013] [Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

How do we specify and prove relaxed data structures correct?
How do these data structures interact with existing applications?
What new data structures are out there?

Can we prove stronger lower bounds?

Workshop Announcement

- Theory \& Practice in Concurrent Data Structures
- Co-located with DISC 2017 (Vienna)
- Overall goals
- Fostering collaboration between practically-minded (PPoPP, SOSP etc) conferences, and the PODC/DISC community
- New challenges in concurrent data structure design
- Precise goals
- Better benchmarks for concurrent data structures
- Real applications and practical issues (e.g. memory management)
- Usefulness of relaxed designs

[^0]: I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority Queues. 2000.

