
Data	Structures	of	the	Future:
Concurrent,	Optimistic,	and	Relaxed

Dan	Alistarh
ETH	Zurich	/	IST	Austria

Why	Concurrent?

Simple:	To	get	speedup	on	newer	hardware.
Scaling:more	threads should	imply	more	useful	work.

The	Problem	with	Concurrency

Concurrency	can	be	very	bad	value	for	money.

Is	this	problem	inherent?

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 10 20 30 40 50 60 70

Th
ro
ug

hp
ut
	(E
ve
nt
s/
Se
co
nd

)

Number	of	Threads

Throughput	of	Lock-Free	Queue	
(Packet	Processing)

<	$1000	/	
machine

>	$10000	/	
machine

Inherent	Sequential	Bottlenecks

Data	structures	with	strong	ordering	semantics
• Stacks,	Queues,	Priority	Queues,	Exact	Counters

This	is	bad	news because	of	Amdahl’s	Law
• Programs	whose	critical	path	contains	contended	data	structures	
won’t	parallelize	well

Theorem:Given	n	threads,	any deterministic,	strongly	ordered	
data	structure	has	an	execution	in	which	

a	processor	takes	linear	in	n	time	to	return.
[Ellen,	Hendler,	Shavit,	SICOMP	2013]

[Alistarh,	Aspnes,	Gilbert,	Guerraoui,	 JACM	2014]

To	get	performance,	it	is	critical	to	speed	up	
shared	data	structures.	

Today’s	Talk

How	can	we	scale	such	data	structures?	

Theory	↔	Software	↔	Hardware

New	Hardware	Instructions!

New	Data	Structure	Designs!

Theorem:Given	n	threads,	any deterministic,	strongly	ordered	
data	structure	has	an	execution	in	which	

a	processor	takes	linear	in	n	time	to	return.
[Ellen,	Hendler,	Shavit,	SICOMP	2013]

[Alistarh,	Aspnes,	Gilbert,	Guerraoui,	 JACM	2014]

Lock-Free	Data	Structures	101
• Optimistic	programming	patterns

• Do	not	use	locks,	but	atomic	instructions	(Compare&Swap)

• Blocking	of	one	thread	shouldn’t	 stop	the	whole	system
• Lots	of	implementations:	HashTables,	Lists,	Trees,	Queues,	Stacks,	etc.	

Memory location R;
void fetch-and-increment () {

int val;
do {

val = Read(R);
new_val = val + 1;

} while (! Compare&Swap (&R, val, new_val));
return val;

}

Example:	Lock-free	counter.

The	Lock-Free	Paradox

val 0

Thread 0 Thread 1

In	theory,	threads	could	starve in	optimistic	
lock-free	implementations.

Practice:	this	doesn’t	always	happen.	Threads	rarely	starve.

Why?

Use	more	complex	wait-free algorithms.

Memory location R;
void fetch-and-increment () {

int val;
do {

val = Read(R);
new_val = val + 1;

} while (! Compare&Swap (&R, val, new_val));
return val;

}

Example:	Lock-free	counter.

val 0

0

Counter Value R

1

val 1val 1

2

Analyzing	Lock-Free	Patterns
• Stochastic	Scheduler [STOC14,	Transact15]:

• At	each	scheduling	step,	the	next	scheduled	thread	picked	
from	a	distribution p	=	(p1,	p2,	…,	pn)	with	pi >	0	for	all	i

Theorem	1:	Under	any	stochastic	scheduler,	
any	lock-free	algorithm is	wait-free	with	probability	1.
[Alistarh,	Censor-Hillel,	 Shavit,	STOC	14	/	JACM	16].

Theorem	2:	Under	high	contention,	roughly	
one	in	ϴ (1	/	norm2(p)) ops	succeeds.	
[Alistarh,	Sauerwald,	Vojnovic,	PODC	15]

Lock-Free	AlgorithmStochastic	Scheduler
Stochastic	

Contention	Game

The Contention	Game

READ	(R)

CAS	(R,	old,	old	 +	1)

success

READ	(R)

CAS	(R,	old,	old	 +	1)

success

READ	(R)

CAS	(R,	old,	old	 +	1)

success

Register	
R

Value	=	0

READ	(R)

CAS	(R,	old,	old	 +	1)

success

Location	
R

Value	=	1

Distribution
(p1,	p2,	…,	pn)

Location	
R

Value	=	2

Given	arbitrary	p,	what	is	the	stationary	behaviour
of	this	system?

The	Contention	Game,	Balls&Bins view

Thread	1 Thread	2 Thread	3 Thread	4

Rules for	the	Counter
• Bins	=	threads
• Balls	=	steps
• Placement	according	to	p
• To	Complete	the	Operation

• 3	balls	before	others
• Resets	all	bins	with	2	Balls
• Winner	keeps	one	ball

READ	(R)

CAS	(R,	old,	old	 +	1)

success

How	many	balls	does	a	bin	receive	on	average
between	two	wins?

How	many	total	balls	are	distributed
between	two	wins,	on	average?

Step	Complexity

System	Latency

Distribution
(p1,	p2,	…,	pn)

The	Result

Examples:
1. Uniform	p	=	(1/n,	1/n,	…,	1/n):	

• System	latency	is	ϴ (sqrt n)	[ACHS,	JACM	16]
• Individual	latency	is	ϴ (n	sqrt n)

2. Non-uniform	p	=	(↗1,	↘0,	…,	↘0)
• System	latency	is	(close	to)	constant	
• Individual	latency	is	either	constant,	or	↘	0

3. Given	threads	i and	j,	
relative	throughputs	are	(pi /	pj)2

Theorem.	Given	arbitrary	distribution	p and	
constant-length	lock-free	algorithm,	the	following	hold:

• System	latency	is	ϴ (1	/	norm2(p))
• Individual	latency	is	ϴ (norm2	(p)	/	pi2)

Fairness-
Throughput	
Trade-off

Other	game	types	covered,	e.g.	
obstruction-free	algorithms.

Moral:	Under	high	contention,	roughly	one	in	sqrt (n)	ops	succeeds.	

Why	does	this	graph	look	so	bad?

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 10 20 30 40 50 60 70

Th
ro
ug

hp
ut
	(E
ve
nt
s/
Se
co
nd

)

Number	of	Threads

Throughput	of	Parallel	Event	Processing	Queue

What	Happens	at	the	Hardware	Level?

Directory-based	cache	
coherence	 (Intel,	AMD)

Resp(R)Read	
(R)

CAS	(R,	old,	new)

…

Failure
Read	(R)

CAS	(R,	old,	new)

Thread	0

Thread	1

13
We	waste	time	because	ownership	of	R	circulates	without	useful	work!
Example:	At	64	threads,	only one	in	8	message	exchanges	is	useful.	

Fixing	it:	Lease/Release	[Alistarh,	Haider,	Hasenplaugh,	 PPOPP	2016]

Directory-based	cache	
coherence	(Intel,	AMD)

Resp(R)Read	(R)

CAS	(R,	old,	new)

…

Read	(R)

CAS	(R,	old,	new)

Core	0

Core	1Lease	Interval	T

Lease	
Interval	T

success

Delayed

14

Each	transfer	results	in	
at	least	one	useful	

operation!

Doubling	down	
on	optimism!	

Lease/Release,	More	Precisely
• Programmer	optimistically	leases	variables	for	bounded	time

• void ReqLease(void* address,	int data_size,	time T);
• void ReqRelease(void*	address,	int data_size,	time T);
• Lease	time	in	the	order	of	1000	cycles

• Performance	penalty	if	leases	expire	before	operation	completion
• Usually	occurs	<	5%	of	the	time	

• Prototype	in	the	MIT	Graphite	Processor	Simulator
• Directory-based	MESI	Cache	Coherence	Protocol
• Protocol	remains	provably	correct
• Minimal	changes to	the	architecture

15

Does	it	work?

Packet	Processing	Queue	with	Lease-Release
(Simulated	in	Graphite)

16

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

0 10 20 30 40 50 60 70

Th
ro
ug
hp
ut

Number	of	Threads

Queue	Throughput

NO_LEASE

SINGLE_LEASE
4.5X

• Dequeue Operation

1. Top_Node=	Lease&Read(Head)
2. Next_Node =	Read(Top_Node.ptr)
3. ATOMIC

{
if	(Read(Head) == Top_Node)	then	
Write&Release(Head	, Next_Node)

else	
Releaseand	goto 1

}

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0 10 20 30 40 50 60 70

#Threads

Energy	for	the	Queue	(nJ /	operation)

NO_LEASE

SINGLE_LEASE

What	Else?	Locks

Can	we	avoid	the	wasted	coherence	messages?

Req(R,	EX)

Resp(R)

Directory-based	cache	
(Intel,	AMD)

Core	0
Core	1

Req(R,	EX)

Resp(R)
Resp(R)

Req(R,	EX)

Resp(R)
Req(R,	EX)

Resp(R)

Acquire	(L)

CAS	(L)Acquire	(L)

Write(L)
Unlock	 (L)

…
CAS	(L)

…

Resp(R)

Resp(R)

Spinning

CAS	(L)

Delayed

17

Lease	Interval	T

Simply	Lease	
the	lock	on	
acquire!

PageRank	with	L/R
• Works	with	lock-based	programs	as	well

• Lease	the	lock	before	acquiring	it	
• Release	before	giving	it	up

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

2 4 8 16 32

Co
m
pl
et
io
n	
Ti
m
e	
(n
s)

Parallel	PageRank	Running	Time
(lower	is	better)

NO_LEASE WITH_LEASE

9.5X

Lease/Release
• Hardware	Lock	Queues	[iQOLB:	Rajwar,	Kaegi,	Goodman;	HPCA	2000]

• Locks	using	Load-Linked	/	Store-Conditional
• Load-Linked	takes	a	“lease”	on	the	lock,	Store-Conditional	“releases”
• Applied automaticallyby	the	processor	speculation	mechanism

• Transient	Blocking	Synchronization	[Shalev,	Shavit;	Sun	Tech	Report	2004]
• Propose	Load&Lease /	Store&Release instructions	for	non-coherent	DSM	machines
• Different	semantics,	never	implemented

• The	paper	also	contains:
• Hardware	implementation	details	(no	directory	modifications!)
• Blueprint	for	implementing	multiple	concurrent	leases	(transactions)
• Lots	of	experiments

19

The	High-Level	View
• The	Problem	with	Concurrency

• Inherent	bottlenecks	lead	to	meltdowns	

• Why?
• Contention	hurts	optimistic	patterns,	quantifiably	so	

• Lease/Release:
• We	can	now	scale	bottlenecks,	within	reason
• Optimism	enforced	at	the	hardware	level

Can	we	scale	beyond	bottlenecks?

Let’s Relax!

Concurrent	Priority	Queues

1 task

3 task

4 task

5 task

7 task

8 task

Methods:
• Get	Top	Task
• Insert	a	Task				

• Search	for	Task
15 task

11 task

18 task

Priority	Queue
<key,	value>

Search(key)	

Insert/Delete(k,	v)

DeleteMin()

Extremely	useful:
• Graph	Operations	(Shortest	Paths)

• Operating	System	Kernel
• Time-Based	Simulations

We	are	looking	for	a	fast	concurrent Priority	Queue.

The	Problem

Target:	fast, concurrent Priority	Queue.

Lots of	work on	the	topic:
[Sanders97],	[Lotan&Shavit00],	[Sundell&Tsigas07],	

[Linden&Jonsson13],	 [Lenhart et	al.	14],	[Wimmer et	al.14]	

Current	solutions	are	hard	to	scale:
DeleteMin is highly	contended.

Everyone	wants	the	same	element!

Concurrent	Solution

head

● Linked	list,	sorted	by	priority
● Each	node	has	random	“height”	(geometrically	distributed	with	parameter	½)
● Elements	at	the	same	height	 form	their	own	lists

H 1 3 4 5 9 … T

● Linked	list,	sorted	by	priority
● Each	node	has	random	“height”	(geometrically	distributed	with	parameter	½)
● Elements	at	the	same	height	 form	their	own	lists
● Average	time Search,	Insert,	Delete	logarithmic,	 work	concurrently [Pugh98,	Fraser04]	

H 1 3 4 5 9 … T

head tail

Search(5)

!

Concurrent	Solution:	the	SkipList [Pugh90]

[H,	9]

[H,	9]

[1,	9]

[5,	9]
stop

I.	Lotan	and	N.	Shavit.	Skiplist-Based	Concurrent	Priority	Queues.	2000.

● DeleteMin:	simply	 remove	the	smallest	element	from	the	bottom	 list
● All	processors	compete	for	smallest	element
● Does	not	scale!

head tail

The	SkipList as	a	PQ

● We	want	to	choose	an	item	at	random	with	‘good’	 guarantees
● Minimize	 loss	of	exactness by	only	choosing	 items	near	the	front	of	the	list
● Minimize	contention by	keeping	collision	 probability	low

The	Idea:	Relax!

Two examples for starting height 4

procedure	Spray()
● At	each	skiplist	 level,	flip	coin	to	stay or	jump	forward
● Repeat	for	each	level	from	 log	n	down	to	1 (the	bottom)
● As	if	removing	a	random	priority	element	near	the	head

jump

stay
jump

jump

DeleteMin:	The	Spray	[Alistarh,	Kopinsky,	Li,	Shavit,	PPoPP	2015]

Spray and pray?

✓ Maximum	value	returned	by	Spray	has	rank	O(𝑛 log3𝑛)
- Sprays	aren’t	too	wide

✓ For	all	x,	p(x)	=	Õ(1/𝑛)	
- Sprays	don’t	cluster	too	much

✓ If	x	>	y	is	returned	by	some	Spray,	then	p(y)	=	Ω,(1/𝑛)	
- Elements	do	not	starve	in	the	list

p(x) = probability that a
spray returns value at

index x

Õ(𝑛)

SprayList	Probabilistic	Guarantees

• Discrete	Event	Simulation	
• Exact	algorithms have	negative	scaling	after	8	threads
• SprayList competitive	with	the	random	remover	

(no	guarantees,	incorrect	execution)

In	many	practical settings	(D.E.S.,	shortest	paths),	
priority	 inversions	are	not	expensive.	

One	Benchmark

The	MultiQueue [Rihani,	Dementiev,	Sanders,	SPAA	15]

• n	lock-free	or	lock-based	queues
• Insert:	pick	a	random	queue,	lock,	and	insert	into	it
• Remove:	pick	two	queues	at	random,	lock	and	remove	the	better	element

0

20

40

60

80

0 7 14 21 28 35 42 49 56
Threads

Th
ro

ug
hp

ut
 (M

O
ps

/s
)

MultiQ c=2
MultiQ HT c=2
MultiQ c=4
Spraylist
Linden
Lotan

Figure 3: Throughput of 50% insert 50% deleteMin operations of uniformly distributed
keys

0

20

40

60

80

0 7 14 21 28 35 42 49 56
Threads

Th
ro

ug
hp

ut
 (M

O
ps

/s
)

MultiQ c=2
MultiQ HT c=2
MultiQ c=4
Spray

Figure 4: Throughput of 50% insert 50% deleteMin operations of monotonic keys

8

Looks good, but does it actually guarantee anything?

The	Random	Process

1

6

10

13

4

7

12

16

2

3

8

15

5

9

11

14

We are interested in the average rank removed at each step.

Q1 Q2 Q3 Q4WLOG, elements are consecutive labels.
1. Insert Elements u.a.r.
2. Remove using two choices
• Cost = rank of element removed

among remaining elements

Cost(2) = 2

Cost(4) = 3

Cost(1) = 1

Intuitively, the distance from optimal.

The	Result

Theorem: Given n queues, for	any	t	>	0,	the	cost	at	t is	
O(n)	in	expectation,	and	O(n	log	n) w.h.p.	

• Strategy	1:	reduction	to	power	of	two-choices	analysis?	[Azar	et	al.,	SICOMP	99]
• Would	apply	if	we	could	equate	queue	size	with	top	label	
(round-robin	insert)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4The reduction does not hold in general, and in fact
experimentally height and top priority appear to be uncorrelated.

• Strategy	2:	some	simple sort	of	induction	
• The	initial	cost	distribution	is	nice;	can	we	prove	it	always	stays	nice?

The	Result

Theorem: For	any	t	>	0,	the	cost	at	t is	O(n)	in	expectation,	
and	O(n	log	n) w.h.p.	

1

2

…

K K+1 K + 2 K+3Hard case: over time, we’ll eventually get arbitrary distributions.
We have to prove that the algorithm gets out of those reasonably fast.

• Strategy	3:	some	simple complicated sort	of	induction	/	potential	argument
• Idea:	characterize	what’s	going	on	step-by-step

The	Result

Theorem 1: For	any	t	>	0,	the	cost	at	t is	O(n)	in	expectation,	
and	O(n	log	n) w.h.p.	

1

7

?

3

11

?

?

?

4 2 5

9

In expectation,
increment is n.

Problem: the behavior at a step is highly correlated with
what happened in previous steps.

Proof	Strategy

Theorem 1: For	any	t	>	0,	the	cost	at	t is	O(n)	in	expectation,	
and	O(n	log	n) w.h.p.	

• Step	1:	reduce	to	an	uncorrelated exponential	process
• Prove	that	the	rank	distribution	is	preserved

• Step	2:	characterize	the	exponential	process
• Characterize	average	weight	on	top	of	queues	via	potential	argument

• Step	3:	characterize	rank	distribution	of	exponential	process
• Prove	that	average	rank	is	O(n)

• Insert:	pick	a	random	queue
• Insert	exponentially	distributed	increment	with	mean	n	into	it
• Remove:	pick	two	queues	at	random,	remove	the	lower	label
• Cost:	the	rank	of	the	element	removed	(still)

Step	1:	The	exponential	process	

1.8

5.9

10.2

13.2

4.7

7.3

12.5

16.8

2.2

3.2

8.3

15.2

5.1

9.5

11.7

14.2

Theorem: The	distribution	of	removed	ranks	is	the	same	in	the	
discrete	process	and	in	the	exponential	process.	

Pr[rank k is in queue j] = 1 / n. Holds since the exponential is memoryless.

Expected value n

Uses tools from [Peres, Talwar, Wieder, R.S.A. 14]

Step	2:	Analyzing	the	exponential	process
• Fix	a	removal	step t.	Let	𝒘𝒊(𝒕) be	the	label	(real	value)	on	top	of	bin	i.
• Let	𝒙𝒊 𝒕 = 𝒘𝒊 𝒕

𝒏 (normalized	weights),	and	𝝁(𝒕) = ∑ 𝒙𝒊(𝒕)/𝒏𝒏
𝒊6𝟏

• Let	𝜱 𝒕 = ∑ 𝐞𝐱𝐩	(𝒙𝒊 𝒕 −𝒏
𝒊6𝟏 𝝁(𝒕)) and	𝜳 𝒕 = ∑ 𝒆𝒙𝒑	(−(𝒙𝒊 𝒕 −𝒏

𝒊6𝟏 𝝁(𝒕))).

• No	more	correlations: since	weight	increments	are	independent	of	previous	steps,	
we	can	bound	the	expected	increase	in	potential	at	each	step.	

• Bad	configurations:	Φ 𝑡 and	Ψ 𝑡 cannot	both	be	large	at	the	same	time.	
If	their	sum	breaks	the	O(n)	barrier,	then	the	large	potential	will	decrease	very	fast.	

• 𝜱 𝒕 +𝜳 𝒕 is	then	a	super-martingale,	which	implies	the	bound.	

Theorem: For any t > 0, 𝔼[𝜱 𝒕 +𝜳 𝒕] = 𝑶 𝒏 .

Step	3:	What	does	all	this	have	to	do	with	ranks?	

• Let	𝑩H𝒔(𝒕) be	the	number	of	bins	with	weight	> µ + 𝑠 at	time	t.
• Let	𝑩NO𝒔(𝒕) be	the	number	of	bins	with	weight	< µ− 𝑠 at	time	t.

• But	on	average,	we’ll	choose	something	close	to	the	mean	value!	So,	we	conclude:

Theorem: For any t > 0, 𝔼 𝐵HR 𝑡 = 𝑂 T
UVWX

Y

and 𝔼 𝐵NOR 𝑡 = 𝑂 T
UVWX

Y

.

Weights become “rarefied” at ranks
s-higher and s-lower than the mean value.

Theorem: For	any	t	>	0,	the	rank	cost	at	t is	O(n)	in	expectation.	

Worst-case bound follows in a similar way.

Applications

What if we do two choices only 𝜷% of the time?
(one choice otherwise)

Theorem: For	any	t	>	0,	the	cost	at	t is	O(n	/	𝜷*)	in	expectation,	
and	O(n	log	n	/	𝜷*) w.h.p.	

What if the input distribution is biased?
Still works (within reason).

Works well in practice.

We can use this for approximate queues, stacks, counters, timestamps.

Concurrent	Data	Structures

“The	data	structures	of	our	childhood	are	changing.”
Nir Shavit

A	relaxation	renaissance
[KarpZhang93],	 [DeoP92],	[Sanders98],	

[HenzingerKPSS13],	[NguyenLP13],	[WimmerCVTT14],	
[LenhartNP15],	 [RihaniSD15],	[JeffreySYES16]

Data	structures	such	as	the	Spraylist and	the	
MultiQueuemerge	both	relaxed	semantics and	

optimistic	progress	to	achieve	scalability.

The	Last	Slide

How	can	we	scale	them?	

Theory ↔ Software ↔ Hardware

How	do	we	specify and	prove relaxed	data	structures	correct?

What	new	data	structures	are	out	there?

Theorem: Strongly ordered data structures won’t scale.
[Ellen, Hendler, Shavit, SICOMP 2013]

[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

How	do	these	data	structures	interact	with	existing	applications?

Can	we	prove	stronger	lower	bounds?

Workshop	Announcement

• Theory	&	Practice	in	Concurrent	Data	Structures
• Co-located	with	DISC	2017	(Vienna)

• Overall goals
• Fostering	collaboration	between	practically-minded (PPoPP,	SOSP	etc)	
conferences,	and	the	PODC/DISC	community

• New	challenges	in	concurrent	data	structure	design

• Precise	goals
• Better	benchmarks	for	concurrent	data	structures
• Real	applications	and	practical	issues	(e.g.	memory	management)
• Usefulness	of	relaxed	designs

