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Summary of the talk

I Computable representation for real numbers need to be
redundant, i.e., most number have more than one code.

I (Pure) Gray-code for real numbers [T 2002] is a
non-redundant coding that can be used for computation.

I The code space is not Σω for some alphabet Σ, but we allow
at most one ⊥ in each sequence.

I A two-head nondeterministic machine is used for computation
over such “bottomed” sequences.

I Algorithms for simple functions like average are given, but it
does not have enough logical treatment.

I In this talk, we try to give logical background to such
computation by formalizing Gray-code in logical systems.

I We consider coalgebra of Gray-code and extract Gray-code
algorithms from proofs.
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1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code
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Gray code

I (Binary-reflected) Gray-code is a coding
of natural numbers.

I The Hamming distance between adjacent
numbers is always 1.

I We consider expansion of the unit
interval [-1, 1] based on Gray-code.

Binary Gray

0 0 0
1 1 1
2 10 11
3 11 10
4 100 110
5 101 111
6 110 101
7 111 100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

4 / 36



Pure Gray-code for real number

Information of Gray Code
• Digits 0 and 1 : Information about a point.
• � : No information.
• How we can input/output 0 and 1, skipping �.

tent(x)
0

1

2
3
54

0.0 0.5 1.0

10

1

0
0
0

⊥

⊥⊥

⊥ ⊥ ⊥ ⊥

-1 0 1

−1
−1 0			

I We use {1̄(= −1), 1} instead of {0, 1}.

I tent(x) =

{
1 + 2x (−1 ≤ x ≤ 0)
1− 2x (0 < x ≤ 1)

.

I P(x) =


1̄ (x < 0)
⊥ (x = 0)
1 (x > 0)

.

I The pure Gray code ϕ(x) ∈ {⊥, 1̄, 1}ω of x is defined as the
itinerary of the tent function. That is, ϕ(x)(n) = P(tentn(x))
(n = 0, 1, . . .)
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Gray-code (gray for 1̄, black for 1, green ball for ⊥)

10-1 -1/2 1/2

n=0

n=1

n=2

n=3
n=4
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10-1 -1/2 1/2

n=0

n=1

n=2

n=3
n=4

I ϕ is a topological embedding from [−1, 1] to {⊥, 1̄, 1}ω, with
the Scott topology of the domain {⊥, 1̄, 1}ω. (equal to the
product of the topology on T = {⊥, 1̄, 1} generated by
{{1̄}, {1}}.)
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Gray-code (gray for 1̄, black for 1, green ball for ⊥)

10-1 -1/2 1/2
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n=2

n=3
n=4

１

⊥

１
１
１

１

I The pure Gray-code ϕ(x) of a dyadic rational x contains one
⊥ and, after that, the sequence is always 11̄ω .
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Gray-code (gray for 1̄, black for 1, green ball for ⊥)

10-1 -1/2 1/2

n=0

n=1

n=2

n=3
n=4

１

⊥

１
１
１

１

１ １

I The pure Gray-code ϕ(x) of a dyadic rational x contains one
⊥ and, after that, the sequence is always 11̄ω .

I We mainly consider Gray-code which is a little redundant in
that all the three codes sa11̄ω for a ∈ {1̄, 1,⊥} for dyadic
rationals.
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IM2-machine

1 1̄ 1 1 1 1̄ 1 ⊥ 1 1̄ 1̄ 1̄ 1̄ ...

I ⊥ means undefinedness and it is not an ordinary character.
One cannot read or write a ⊥.

I If one tries to read a 1⊥-sequence from left to right, one
cannot access the subsequence after ⊥.

I IM2-machine is a machine which has two heads on each
input/output tape to acccess 1⊥-sequences.

I With the two heads, one can leave a cell undefined and go
ahead, and fill/read it later.
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guaranteed to have at most one unfilled cell.
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I With the two heads, one can leave a cell undefined and go
ahead, and fill/read it later.

I If there is an undefined cell, then one cannot make another
skip until the undefined cell is filled. In this way, it is
guaranteed to have at most one unfilled cell.

I If a cell is left undefined eternally, then it is ⊥ in the infinite
1⊥-sequence.
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Gray expansion

1 (=[-1,0]) 1 (=[0,1])

11 (=[0,1/2])11 (=[-1,-1/2]) 11 (=[-1/2,0]) 11 (=[1/2,1])

.........................................................................................................

[-1,1]

111(=[-1,-3/4])

11ωω 1ω1 ω ω111 111 ω ω1111 1111

111 111 111 111111111111

=
-1 =

0

=

0

= =

2/3

=

3/4

=

3/4

=

1

I Each node is denoting an interval, which is shrinking
according to the input.
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IM2-machine input/output states for Gray code

1⊥1

1 1⊥1

1⊥11111 11 ⊥11 11

11⊥1 11⊥1111111 111 1⊥11 111 11⊥1 11⊥1111111 111 1⊥11 111⊥1１1

11ωω 1ω1 ω

ω ω

⊥11

111 111

ω

ω ω

1⊥11

1111 1111

........................................................................................................

1F1 1 1 1

Two states G (normal state) and H (auxiliary state, red in picture).

I LR1̄,LR1 : fill the next cell with 1 or 1̄. G⇒ G

I U(undefined): skip one cell and fill the next cell with 1. G⇒ H

I D(delay): fill yet next cell with 1̄. H⇒ H

I Fin1̄,Fin1: fill the skipped cell with 1 or 1̄. H⇒ G.
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IM2-machine input/output states for Gray code

1⊥1

1 1⊥1

1⊥11111 11 ⊥11 11

11⊥1 11⊥1111111 111 1⊥11 111 11⊥1 11⊥1111111 111 1⊥11 111⊥1１1

11ωω 1ω1 ω

ω ω

⊥11

111 111

ω

ω ω

1⊥11

1111 1111

........................................................................................................

1F1 1 1 1

I Finite states correspond to signed digit intervals.

I Limits of this finite states corresponds to ideal completion.

I It is a domain representation of the unit interval [Blanck].
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IM2-machine = skip and fill later

I It is nondeterministic depending on
which head is used when both of the
heads have values.

I IM2-machine algorithms are directly
executable in committed choice logic
programming languages.

I We express such a manipulation of
1⊥-sequence in Haskell syntax.

I Note that ⊥ is a valid data of type Int
in Haskell, and [Int] contain
1⊥-sequences.

IM2-Machine
(two-heads I/O)

1

0
1

1

1

0

Input

Output

01
0

0

0
0

0

1

%\%H%‘F~$jJ8;zNs$rMQ$$$?!"0LAj6u4V>e$N7W;;
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Example1: Signed digit to Gray-code conversion

itog(−1 : xs) = 1̄ : itog xs

itog(1 : xs) = 1 : nh (itog xs)
itog(0 : xs) = c : 1 : nh ds where c : ds = itog xs

nh(s : ds) = −s : ds

10-1 -1/2 1/2

n=0

n=1

n=2

n=3
n=4
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itog(1 : xs) = 1 : nh (itog xs)
itog(0 : xs) = c : 1 : nh ds where c : ds = itog xs

nh(s : ds) = −s : ds

10-1 -1/2 1/2

n=0

n=1
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n=3
n=4

I It is a correct Haskell program.
I itog([0,0,..]) does not output the first digit because it is
⊥.

I tail(itog([0,0,..])) outputs [1, 1̄, 1̄, 1̄, . . .
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Example2: Gray-code to signed digit conversion

gtoi(1 : xs) = 1 : gtoi(nh xs)
gtoi(1̄ : xs) = −1 : gtoi xs

gtoi(c : 1 : xs) = 0 : gtoi(c : nh xs)

I It is not correct as a Haskell program in that when the
argument is [⊥, 1, 1̄, 1̄, . . .], Haskell tries to evaluate the first
digit and it starts a non-terminating computation and fails to
apply the third rule.

I It is correct as equations, and one can execute it as
term-rewriting rule.
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Example3: Average function
av (1̄ : as) (1̄ : bs) = 1̄ : av as bs

av (1 : as) (1 : bs) = 1 : av as bs

av (1̄ : as) (1 : bs) = c : 1 : nh cs where c : cs = av as (nh bs)
av (1 : as) (1̄ : bs) = c : 1 : nh cs where c : cs = av (nh as) bs

av (a : 1 : as) (b : 1 : bs) = c : 1 : nh cs where c : cs = av (a : nh as) (b : nh bs)

av (a : 1 : 1̄ : as) (1̄ : 1̄ : bs) = 1̄ : av (a : 1 : as) (1 : nh bs)
av (a : 1 : 1̄ : as) (1 : 1̄ : bs) = 1 : av (not a : 1 : as) (1 : nh bs)
av (a : 1 : 1̄ : as) (1̄ : b : 1 : bs) = 1̄ : 1 : av (not a : nh as) (not b : nh bs)
av (a : 1 : 1̄ : as) (1 : b : 1 : bs) = 1 : 1 : av (a : nh as) (not b : nh bs)

av (1̄ : 1̄ : as) (b : 1 : 1̄ : bs) = 1̄ : av (1 : nh as) (b : 1 : bs)
av (1 : 1̄ : as) (b : 1 : 1̄ : bs) = 1 : av (1 : nh as) (not b : 1 : bs)
av (1̄ : a : 1 : as) (b : 1 : 1̄ : bs) = 1̄ : 1 : av (not a : nh as) (not b : nh bs)
av (1 : a : 1 : as) (b : 1 : 1̄ : bs) = 1 : 1 : av (not a : nh as) (b : nh bs)

I Correct program (equality of the both sides, covering over all
the patterns, productivity check).

I How can we formally prove its correctness?
I What is the theory of computation over 1⊥-sequences.
I Our goal is to study coalgebra of 1⊥-sequences and consider

logic to manipulate real number through Gray-code, and
extract this kind of programs from proofs.
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Algebra and coalgebra of ordinary sequences.

I Two constructors consa (a ∈ {1̄, 1}) meaning to prepend a, in
addition to nil denoting the empty sequence.

I The term cons1(cons1(cons1̄(cons1 nil))) denotes 111̄1:

nil denotes ε,

(cons1 nil) denotes 1,

(cons1̄(cons1 nil)) denotes 1̄1,

(cons1(cons1̄(cons1 nil))) denotes 11̄1,

(cons1(cons1(cons1̄(cons1 nil)))) denotes 111̄1.

I It is a free algebra.

I For coalgebraic treatment, we read an infinite sequence of
constructors from left to right.

I Starting with ⊥ω on an infinite tape, consa is an operation to
fill the leftmost ⊥ with a.
⊥ω → 1⊥ω → 11⊥ω → 111̄⊥ω → 111̄1⊥ω

16 / 36



Algebra and coalgebra of 1⊥-sequences.
I Finite 1⊥-sequence: an infinite sequence with ⊥ω at the end

and at most one ⊥ before that.
I We use two constructors insa (a ∈ {1̄, 1}) meaning to insert a

as the 2nd character, in addition to consa (a ∈ {1̄, 1}) and nil
(meaning ⊥ω).

I The term ins1(ins1̄(cons1̄(ins1 nil))) denotes 1̄11̄⊥1:

nil denotes ⊥ω,

(ins1 nil) denotes ⊥1⊥ω,

(cons1̄(ins1 nil)) denotes 1̄⊥1⊥ω,

(ins1̄(cons1̄(ins1 nil))) denotes 1̄1̄⊥1⊥ω,

(ins1(ins1̄(cons1̄(ins1 nil)))) denotes 1̄11̄⊥1⊥ω.

I (cons1̄(cons1(cons1̄(ins1 nil)))) also denote the same sequence.
I insa ◦ consb = consb ◦ consa. It is not a free algebra.
I When read from left to right, one can prove that insa is an

operation to fill the 2nd ⊥ from the left with a.
⊥ω → ⊥1⊥ω → ⊥11̄⊥ω → 1̄11̄⊥ω → 1̄11̄⊥1⊥ω
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Algebra and coalgebra of Gray code
I We need to restrict so that only 11̄ω appear after ⊥.
I We consider mutually recursively defined subalgebras G and H

of the algebra of 1⊥-sequences

consa (a ∈ {1̄, 1}) ins1̄ ins1 nil

G LRa : G→ G U : H→ G nilG : G
H Fina : G→ H D : H→ H nilH : H

I The carrier set of G is the set of finite Gray-codes.
I Example: (ins1(ins1̄(cons1̄(ins1 nil)))), (cons1̄(cons1(cons1̄(ins1 nil)))).

U(D(Fin1̄(U(nilH)))) and LR1̄(LR1(LR1̄(U(nilH))))
both are terms of type G representing 1̄11̄⊥1⊥ω.

I Their meanings as left-to-right operation on 1⊥-sequences are
I LRa : 1̄1⊥ω 7→ 1̄1a⊥ω

I U : 1̄1⊥ω 7→ 1̄1⊥1⊥ω

I Fina : 1̄1⊥11̄⊥ω 7→ 1̄1a11̄⊥ω

I D : 1̄1⊥11̄⊥ω 7→ 1̄1⊥11̄1̄⊥ω

I We call an infinite term of type G a pre-Gray code.
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G and H as codings of [-1, 1]
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0 1-1 -1/2 1/2

n=0

n=1

n=2

n=3
n=4

0 1-1 -1/2 1/2

We study through these mutually-recursively defined codes of [-1, 1].

19 / 36



Meaning of Gray code
I For each constructor C , define fC : [−1, 1]→ [−1, 1] as

fLRa(x) = −a
x − 1

2
fFina(x) = a

x + 1

2
= fLRa(−x), (1)

fU(x) =
x

2
. fD(x) =

x

2
. (2)

I We define the meaning of a finite term v = [a1 . . . an]
(= a1(a2 . . . (an nil∗))) of G as the interval

fa1(fa2(. . . fan(I) . . . ))

I We define the meaning [[v ]]G of pre-Gray code v = [a1, a2, . . .]
as the unique real number in the intersection of the intervals
denoted by its finite truncations.

[[p]]G =
∞⋂
n=1

fa1(fa2(. . . fan(I) . . . ))

I Similarly for [[v ]]H and [[v ]]I.
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1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code
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Extraction of real number algorithms

I We represent Gray-code as pre-Gray code, that is, as an
infinite sequence of constructors of G and H.

I We formalize pre-Gray code in TCF (the Theory of
Computable Functionals) by means of coinductive definitions.
In TCF, infinite structures like pre-Gray code are treated as
cototal ideals.

I We use the proof assistant system Minlog, which is an
implementation of TCF, and make a constructive proof of a
formula. Minlog system will extract from the proof a program
as a term in an extension T + of Gödel’s T involving higher
type recursion and corecursion operators. We do not go into
the detail.

I I show the formulas to be proved and the extracted program
as a readable stream-transforming program.
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Predicates coG (x) and coH(x)

I We define the predicate coI (x) saying that x has a signed digit
representation as the greatest fixed point of a strictly positive
operator.

I We define the predicates coG (x) and coH(x) saying that x has
a G term (i.e., a pre-Gray code) and H term, respectively, as
the greatest fixed points of a mutually-defined strictly positive
operator.

I We use the following coalgebraic data type in programs

I = C {1̄, 0, 1} × I

G = LR {1̄, 1} × G + U H,

H = Fin {1̄, 1} × G + D H.

23 / 36



Signed digit to Gray-code conversion
Theorem ∀ncx (coI (x)→ coG (x)).

Lemma ∀ncx (∃acoI (ax)→ coG (x)), ∀ncx (∃acoI (ax)→ coH(x)).

Extracted Program: itoPreG : I→ G, g : {−1, 1} × I→ G,
h : {−1, 1} × I→ H
itoPreG(v) = g(1, v)

g(b,C−1(v)) = LR−b(g(1, v)), h(b,C−1(v)) = Fin−b(g(−1, v)),

g(b,C1(v)) = LRb(g(−1, v)), h(b,C1(v)) = Finb(g(1, v)),

g(b,C0(v)) = U(h(b, v)), h(b,C0(v)) = D(h(b, v)).

Recall the original Gray-code program we had is

itog(−1 : xs) = −1 : itog xs

itog(1 : xs) = 1 : nh (itog xs)
itog(0 : xs) = c : 1 : nh ds where c : ds = itog xs

nh(s : ds) = −s : ds

Through some program transformation, we can show

preGtoG(itoPreG(v)) = itog(v)

for preGtoG a program to transform a pre-Gray code to Gray code

preGtoG(D : p) = a : 0 : x where a : x = preGtoG(p)
... 24 / 36



Gray-code to Signed digit conversion
Theorem ∀ncx (coG (x)→ coI (x)).

Lemma ∀ncx (∃a(coG (ax) ∨ coH(ax))→ coIx).

Extracted Program: preGtoI : G→ I,
[f, g] : {−1, 1} × G + {−1, 1} ×H→ I

preGtoI(v) = f(1, v)

f(a,LRb(p)) = Ca∗b(f(−a ∗ b, p)), g(a,Finb(p)) = Ca∗b(f(a ∗ b, p)),

f(a,U(q)) = C0(g(a, q)), g(a,D(q)) = C0(g(a, q)).

Recall the original Gray-code program we had is

gtoi(1 : xs) = 1 : gtoi(nh xs)
gtoi(−1 : xs) = −1 : gtoi xs

gtoi(c : 1 : xs) = 0 : gtoi(c : nh xs)

Through some program transformation, we can show

preGtoI(v) = gtoi(preGtoG(v))
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Average

Lemma ∀ncx (coG (−x)→ coGx), ∀ncx (coH(−x)→ coHx).

Extracted Program: ming : G→ G and minh : H→ H

minf (LRa(p)) = LR−a(p), minh(Fina(p)) = Fin−a(p),

minf (U(q)) = U(minh(q)), minh(D(q)) = D(minh(q)).

Lemma ∀ncx (coHx → coGx),∀ncx (coGx → coHx).

Extracted Program: htog : H→ G and gtoh : G→ H:

htog(Fina(p)) = LRa(ming(p)), gtoh(LRa(p)) = Fina(ming(p)),

htog(D(q)) = U(q), gtoh(U(q)) = D(q)
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Lemma A ∀ncx ,y∈coG∃rx ′,y ′∈coG∃i (
x+y

2 = x ′+y ′+i
4 ).

Extracted Program: lemA : G× G→ {−2,−1, 0, 1, 2} × G× G

lemA(LRa(p),LRa′(p′)) = (a + a′, mult(−a, p), mult(−a′, p′)),

lemA(LRa(p),U(q)) = (a, mult(−a, p), htog(q)),

lemA(U(q),LRa(p)) = (a, htog(q), mult(−a, p)),

lemA(U(q),U(q′)) = (0, htog(q), htog(q′)).

Lemma B ∀i∀ncx ,y∈coG∃rx ′,y ′∈coG∃j ,d( x+y+i
4 =

x′+y′+j
4

+d

2 ).

Extracted Program: lemB : {−2,−1, 0, 1, 2} × G× G→
{−2,−1, 0, 1, 2} × {−1, 0, 1} × G× G

lemB(i ,LRa(p),LRa′(p′)) = (J(a, a′, i), K(a, a′, i), mult(−a, p), mult(−a′, p′)),

lemB(i ,LRa(p),U(q)) = (J(a, 0, i), K(a, 0, i), mult(−a, p), htog(q)),

lemB(i ,U(q),LRa(p)) = (J(0, a, i), K(0, a, i), htog(q), mult(−a, p)),

lemB(i ,U(q),U(q′)) = (J(0, 0, i), K(0, 0, i), htog(q), htog(q′)).
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Lemma C ∀ncz (∃rx ,y∈coG∃i (z = x+y+i
4 )→

coG (z)),∀ncz (∃rx ,y∈coG∃i (z = x+y+i
4 )→ coH(z)).

Extracted Program:lemCg: {−2,−1, 0, 1, 2} × G× G→ G,
lemCh : {−2,−1, 0, 1, 2} × G× G→ H.

lemCg(i, p, p′) = let (i1, d, p1, p
′
1) = lemB(i, p, p′) in

case (d) of

0→ U(lemCh(i, p1, p
′
1))

a→ LRa(lemCg(−ai, mult(−a, p1), mult(−a, p′1))),

lemCh(i, p, p′) = let (i1, d, p1, p
′
1) = lemB(i, p, p′) in

case (d) of

0→ D(lemCh(i, p1, p
′
1))

a→ Fina(lemCg(−a ∗ i, mult(−a, p1), mult(−a, p′1))).
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Theorem ∀ncx ,y (coG (x)→ coG (y)→ coG ( x+y
2 )).

Extracted Program: average: G× G→ G

average(p, p′) = lemCg(lemA(p, p′))

Recall the original Gray-code program we had is
av (0:as) (0:bs) = 0:av as bs

av (1:as) (1:bs) = 1:av as bs

av (0:as) (1:bs) = c:1:nh cs where c:cs = av as (nh bs)

av (1:as) (0:bs) = c:1:nh cs where c:cs = av (nh as) bs

av (a:1:as) (b:1:bs) = c:1:nh cs where c:cs = av (a:nh as) (b:nh bs)

av (a:1:0:as) (0:0:bs) = 0:av (a:1:as) (1:nh bs)

av (a:1:0:as) (1:0:bs) = 1:av (not a:1:as) (1:nh bs)

av (a:1:0:as) (0:b:1:bs) = 0:1:av (not a:nh as) (not b:nh bs)

av (a:1:0:as) (1:b:1:bs) = 1:1:av (a:nh as) (not b:nh bs)

av (0:0:as) (b:1:0:bs) = 0:av (1:nh as) (b:1:bs)

av (1:0:as) (b:1:0:bs) = 1:av (1:nh as) (not b:1:bs)

av (0:a:1:as) (b:1:0:bs) = 0:1:av (not a:nh as) (not b:nh bs)

av (1:a:1:as) (b:1:0:bs) = 1:1:av (not a:nh as) (b:nh bs)

It seems like a non-equivalent program. Pre-Gray code is redundant
and there are many different ways to output the same Gray-code.
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Pure-Gray code
I We studied algorithms based on (a bit redundant) Gray-code

rather than pure Gray-code. Gray-code allowed all the
increasing sequences in the domain of finite pre-Gray codes.

I However, we are interested in Gray-code because it is not
redundant.

I Can we input/output pure Gray-code?

1⊥1

1 1⊥1

1⊥11111 11 ⊥11 11

11⊥1 11⊥1111111 111 1⊥11 111 11⊥1 11⊥1111111 111 1⊥11 111⊥1１1

11ωω 1ω1 ω

ω ω

⊥11

111 111

ω

ω ω

1⊥11

1111 1111

........................................................................................................

1F1 1 1 1

31 / 36



Pure-Gray code
I We studied algorithms based on (a bit redundant) Gray-code

rather than pure Gray-code. Gray-code allowed all the
increasing sequences in the domain of finite pre-Gray codes.

I However, we are interested in Gray-code because it is not
redundant.

I Can we input/output pure Gray-code?

1⊥1

1 1⊥1

1⊥11111 11 ⊥11 11

11⊥1 11⊥1111111 111 1⊥11 111 11⊥1 11⊥1111111 111 1⊥11 111⊥1１1

11ωω 1ω1 ω

ω ω

⊥11

111 111

ω

ω ω

1⊥11

1111 1111

........................................................................................................

1F1 1 1 1

31 / 36



Conversion from Gray code to pure-Gray code

I There is a conversion from Gray-code to Pure Gray-code.

1⊥1

1 1⊥1

1⊥11111 11 ⊥11 11

11⊥1 11⊥1111111 111 1⊥11 111 11⊥1 11⊥1111111 111 1⊥11 111⊥1１1

11ωω 1ω1 ω

ω ω

⊥11

111 111

ω

ω ω

1⊥11

1111 1111

........................................................................................................

1F1 1 1 1
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Conversion from Gray code to pure-Gray code
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Conversion from Gray code to pure-Gray code

I There is a conversion from Gray-code to Pure Gray-code.
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I We extract this conversion from a constructive proof.
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Conversion from Gray code to pure-Gray code

I We define variants Γ′, ∆′ of the operators Γ, ∆ by

Γ′(X ,Y ) := { y | ∃rx∈X∃a(y = −a x−1
2 ∧ y 6= 0)∨ ∃rx∈Y (y = x

2 ∧ y 6= ± 1
2 ) },

∆′(X ,Y ) := { y | ∃rx∈X∃a(y = a x+1
2 ∧ y 6= 0) ∨ ∃rx∈Y (y = x

2 ∧ y 6= ± 1
2 ) }

I We define (coM, coN) := ν(X ,Y )(Γ′(X ,Y ),∆′(X ,Y )).

I Proposition For cototal ideals p in G and x ∈ I

(coM)r(p, x)↔ ϕ(p) is a pure Gray code of x .
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Extraction of the conversion from Gray to Pure Gray
Theorem ∀ncx (coG (x)→ coM(x)), ∀ncx (coH(x)→ coN(x)).

Extracted Program: g : G→ G and h : H→ H, defined by (with
a for LRa)

g(a(1̄(p))) = a(g(1̄(p))) h(Fina(1̄(1̄(p)))) = D(h(Fina(1̄(p))))

g(a(1(1̄(p)))) = U(h(Fina(1̄(p)))) h(Fina(1̄(1(p)))) = Fina(g(1̄(1(p))))

g(a(1(1(p)))) = a(g(1(1(p)))) h(Fina(1̄(U(q)))) = Fina(g(1̄(U(q))))

g(a(1(U(q)))) = a(g(1(U(q)))) h(Fina(1(p))) = Fina(g(1(p)))

g(a(U(q))) = a(g(U(q))) h(Fina(U(q))) = Fina(g(U(q)))

g(U(Fina(1̄(p)))) = U(h(Fina(1̄(p)))) h(D(Fina(1̄(p)))) = D(h(Fina(1̄(p))))

g(U(Fina(1(p)))) = a(g(1(1(p)))) h(D(Fina(1(p)))) = Fina(g(1̄(1(p))))

g(U(Fina(U(q)))) = U(h(Fina(U(q)))) h(D(Fina(U(q)))) = D(h(Fina(U(q))))

g(U(D(q))) = U(h(D(q))) h(D(D(q))) = D(h(D(q)))

I When f is a program which input/output Gray-code, g ◦ f is a
program which outputs pure Gray-code to pure Gray-code.

I Therefore, every program that handles Gray-code can be
converted to a program handling pure Gray-code.
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Concluding remarks

I What kind of benefits do we have with non-redundant codes?
Though it looks difficult to make efficient programs,

I subspace is easier to imagine than quotient,
I a program is directly operating on real number,
I it is a direct working application of domain theory,
I (I hope some practical meaning...)

I We used representation of Gray-code in pre-Gray code, i.e.,
ordinary sequences and applied the standard theory of
coinduction and program extraction. Is there a theory that
manipulate Gray-code and 1⊥-sequences more directly?
Ulrich’s talk is in that direction.
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Extraction of real number algorithms (Signed Digit case)
I For signed digit rep., we consider the strictly positive operator

Φ(X ) := { x | ∃rx ′∈X∃d∈{−1,0,1}(x =
x ′ + d

2
) }.

I We define coI := νXΦ(X ) as the greatest fixed point of Φ.
I coI satisfies the (strengthened) coinduction axiom. That is,

X ⊆ Φ(coI ∪ X )→ X ⊆ coI .

I Next, we consider an operator on pairs (v , x) where v is a
signed digit stream and x is a real number.

Φr(Y ) := { (v , x) | ∃nc(v ′,x ′)∈Y ∃d(x =
x ′ + d

2
∧ v = Cd(v ′))) }.

I As its greatest fixed point, we have a relation (coI )r called the
realizability extension of coI between signed digit streams
v = [a1a2 . . .] and real numbers x .

(coI )r := νY Φr(Y ).
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I Proposition: (coI )r(v , x)↔ x = [[v ]]SD.

I In order to extract a program that computes a function, for
example the average function, we prove

∀ncx ,x ′(coI (x)→ coI (x ′)→ coI (
x + x ′

2
)).

I Then, Minlog system will (by the Soundness theorem) extract
from the proof a function term f which satisfies

(coI )r(v , x)→ (coI )r(v ′, x ′)→ (coI )r(f (v , v ′),
x + x ′

2
).

From the above proposition, this term is a program for the
average function,
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Extraction of real number algorithms (pre-Gray code case)
I For the case of pre-Gray code, G and H are mutually

recursively defined cototal ideals. Therefore, we consider the
binary strictly positive operator

Γ(X ,Y ) := { y | ∃rx∈X∃a(y = −a
x − 1

2
) ∨ ∃rx∈Y (y =

x

2
) },

∆(X ,Y ) := { y | ∃rx∈X∃a(y = a
x + 1

2
) ∨ ∃rx∈Y (y =

x

2
) }.

I Define (coG , coH) := ν(X ,Y )(Γ(X ,Y ),∆(X ,Y )) as the greatest
fixed point of (Γ,∆).

I We have the (strengthened) simultaneous coinduction axiom.

(X ,Y ) ⊆ (Γ(coG ∪ X , coH ∪ Y ),∆(coG ∪ X , coH ∪ Y ))

→ (X ,Y ) ⊆ (coG , coH).

I The realizability extension ((coG )r, (coH)r) is a pair of binary
predicates on cototal ideals p in G or q in H (respectively)
and real numbers x .
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I For x ∈ I and cototal ideals p in G and q in H

(coG )r(p, x)↔ x = [[p]]G,

(coH)r(q, x)↔ x = [[p]]H

I From a proof of

∀ncx ,y (coG (x)→ coG (y)→ coG (
x + y

2
)),

for exmaple, we obtain a program for the average, which
transforms pre-Gray codes of the arguments to a pre-Gray
code of the result.

I Coalgebras appearing in the program

I = C {1̄, 0, 1} × I

G = LR {1̄, 1} × G + U H,

H = Fin {1̄, 1} × G + D H.
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