Gray-code and Program Extraction based on pre-Gray code

Joint work with Ulrich Berger, Kenji Miyamoto, and Helmut Schwichtenberg

Hideki Tsuiki

Interval Analysis and Constructive Mathematics 11/13-18, 2016, CMO Workshop, Oaxaca

Computable representation for real numbers need to be redundant, i.e., most number have more than one code.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^ω for some alphabet Σ, but we allow at most one ⊥ in each sequence.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^ω for some alphabet Σ, but we allow at most one ⊥ in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^ω for some alphabet Σ, but we allow at most one ⊥ in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^ω for some alphabet Σ, but we allow at most one ⊥ in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.
- In this talk, we try to give logical background to such computation by formalizing Gray-code in logical systems.

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^ω for some alphabet Σ, but we allow at most one ⊥ in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.
- In this talk, we try to give logical background to such computation by formalizing Gray-code in logical systems.
- ► We consider coalgebra of Gray-code and extract Gray-code algorithms from proofs.

- 1. Gray code of real number
- 2. Algebra/coalgebra of (pre-)Gray code
- 3. Program extraction based on pre-Gray code
- 4. Pure Gray code

Gray code

- (Binary-reflected) Gray-code is a coding of natural numbers.
- The Hamming distance between adjacent numbers is always 1.
- We consider expansion of the unit interval [-1, 1] based on Gray-code.

	Binary	Gray
0	0	0
1	1	1
2	10	11
3	11	10
4	100	110
5	101	111
6	110	101
7	111	100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Pure Gray-code for real number

We use {
$$\overline{1}(=-1), 1$$
} instead of {0,1}.
 $tent(x) = \begin{cases} 1+2x & (-1 \le x \le 0) \\ 1-2x & (0 < x \le 1) \end{cases}$
 $P(x) = \begin{cases} \overline{1} & (x < 0) \\ \bot & (x = 0) \\ 1 & (x > 0) \end{cases}$
 $-1 = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & 1 \\ tent(x) \end{pmatrix}$

٠

The pure Gray code φ(x) ∈ {⊥, 1
[→], 1, 1}^ω of x is defined as the itinerary of the tent function. That is, φ(x)(n) = P(tentⁿ(x)) (n = 0, 1, ...)

Gray-code (gray for $\overline{1}$, black for 1, green ball for \perp)

Gray-code (gray for $\overline{1}$, black for 1, green ball for \perp)

• φ is a topological embedding from [-1,1] to $\{\perp,\overline{1},1\}^{\omega}$, with the Scott topology of the domain $\{\perp,\overline{1},1\}^{\omega}$. (equal to the product of the topology on $\mathbb{T} = \{\perp,\overline{1},1\}$ generated by $\{\{\overline{1}\},\{1\}\}.$)

Gray-code (gray for $\overline{1}$, black for 1, green ball for \bot)

The pure Gray-code φ(x) of a dyadic rational x contains one ⊥ and, after that, the sequence is always 11[¯]^ω.

Gray-code (gray for $\overline{1}$, black for 1, green ball for \perp)

- The pure Gray-code φ(x) of a dyadic rational x contains one ⊥ and, after that, the sequence is always 11[¯]^ω.
- We mainly consider Gray-code which is a little redundant in that all the three codes sa11^ω for a ∈ {1,1,⊥} for dyadic rationals.

 \blacktriangleright \perp means undefinedness and it is not an ordinary character. One cannot read or write a $\perp.$

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to acccess 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

- ► ⊥ means undefinedness and it is not an ordinary character. One cannot read or write a ⊥.
- If one tries to read a 1⊥-sequence from left to right, one cannot access the subsequence after ⊥.
- ► IM2-machine is a machine which has two heads on each input/output tape to access 1⊥-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.
- \blacktriangleright If a cell is left undefined eternally, then it is \bot in the infinite $1\bot{-}{\rm sequence.}$

 Each node is denoting an interval, which is shrinking according to the input.

Two states G (normal state) and H (auxiliary state, red in picture).

- ▶ $LR_{\overline{1}}, LR_1$: fill the next cell with 1 or $\overline{1}$. **G** \Rightarrow **G**
- U(undefined): skip one cell and fill the next cell with 1. $\mathbf{G} \Rightarrow \mathbf{H}$
- D(delay): fill yet next cell with $\overline{1}$. $\mathbf{H} \Rightarrow \mathbf{H}$
- ▶ $\operatorname{Fin}_{\overline{1}}, \operatorname{Fin}_{1}$: fill the skipped cell with 1 or $\overline{1}$. $\mathbf{H} \Rightarrow \mathbf{G}$.

- Finite states correspond to signed digit intervals.
- Limits of this finite states corresponds to ideal completion.
- It is a domain representation of the unit interval [Blanck].

IM2-machine = skip and fill later

- It is nondeterministic depending on which head is used when both of the heads have values.
- IM2-machine algorithms are directly executable in committed choice logic programming languages.
- ► We express such a manipulation of 1⊥-sequence in Haskell syntax.
- Note that ⊥ is a valid data of type Int in Haskell, and [Int] contain 1⊥-sequences.

Example1: Signed digit to Gray-code conversion

$$itog(-1:xs) = \overline{1}:itog xs$$

 $itog(1:xs) = 1:nh (itog xs)$
 $itog(0:xs) = c:1:nh ds where c:ds = itog xs$
 $nh(s:ds) = -s:ds$

$$itog(-1:xs) = \overline{1}:itog xs$$

 $itog(1:xs) = 1:nh (itog xs)$
 $itog(0:xs) = c:1:nh ds where c:ds = itog xs$
 $nh(s:ds) = -s:ds$

- It is a correct Haskell program.
- ▶ itog([0,0,..]) does not output the first digit because it is ⊥.
- ▶ tail(itog([0,0,..])) outputs [1, 1̄, 1̄, 1̄,...

Example2: Gray-code to signed digit conversion

```
gtoi(1:xs) = 1:gtoi(nh xs)
gtoi(\overline{1}:xs) = -1:gtoi xs
gtoi(c:1:xs) = 0:gtoi(c:nh xs)
```

- It is not correct as a Haskell program in that when the argument is [⊥, 1, 1, 1, 1, ...], Haskell tries to evaluate the first digit and it starts a non-terminating computation and fails to apply the third rule.
- It is correct as equations, and one can execute it as term-rewriting rule.

Example3: Average function

- $\begin{array}{l} \text{av} (a:1:\overline{1}:as) \ (\overline{1}:\overline{1}:bs) \ = \ \overline{1}:av \ (a:1:as) \ (1:nh \ bs) \\ \text{av} \ (a:1:\overline{1}:as) \ (1:\overline{1}:bs) \ = \ 1:av \ (not \ a:1:as) \ (1:nh \ bs) \\ \text{av} \ (a:1:\overline{1}:as) \ (\overline{1}:b:1:bs) \ = \ \overline{1}:1:av \ (not \ a:nh \ as) \ (not \ b:nh \ bs) \\ \text{av} \ (a:1:\overline{1}:as) \ (1:b:1:bs) \ = \ 1:1:av \ (a:nh \ as) \ (not \ b:nh \ bs) \end{array}$

$$\begin{array}{l} \text{av} (\bar{1}:\bar{1}:\text{as}) (b:1:\bar{1}:\text{bs}) = \bar{1}:\text{av} (1:\text{nh as}) (b:1:\text{bs}) \\ \text{av} (1:\bar{1}:\text{as}) (b:1:\bar{1}:\text{bs}) = 1:\text{av} (1:\text{nh as}) (\text{not } b:1:\text{bs}) \\ \text{av} (\bar{1}:a:1:\text{as}) (b:1:\bar{1}:\text{bs}) = \bar{1}:1:\text{av} (\text{not } a:\text{nh as}) (\text{not } b:\text{nh bs}) \\ \text{av} (1:a:1:\text{as}) (b:1:\bar{1}:\text{bs}) = \bar{1}:1:\text{av} (\text{not } a:\text{nh as}) (\text{not } b:\text{nh bs}) \\ \text{av} (1:a:1:\text{as}) (b:1:\bar{1}:\text{bs}) = 1:1:\text{av} (\text{not } a:\text{nh as}) (b:\text{nh bs}) \end{array}$$

- Correct program (equality of the both sides, covering over all the patterns, productivity check).
- How can we formally prove its correctness?
- What is the theory of computation over $1\perp$ -sequences.
- ► Our goal is to study coalgebra of 1⊥-sequences and consider logic to manipulate real number through Gray-code, and extract this kind of programs from proofs.

- 1. Gray code of real number
- 2. Algebra/coalgebra of (pre-)Gray code
- 3. Program extraction based on pre-Gray code
- 4. Pure Gray code

Algebra and coalgebra of ordinary sequences.

- ► Two constructors cons_a (a ∈ {1,1}) meaning to prepend a, in addition to nil denoting the empty sequence.
- ► The term cons₁(cons₁(cons₁ nil))) denotes 1111:

nil	denotes	$\epsilon,$
(cons ₁ nil)	denotes	1,
$(cons_{\overline{1}}(cons_1 \operatorname{nil}))$	denotes	$\overline{1}1,$
$(cons_1(cons_{\overline{1}}(cons_1 nil)))$	denotes	$1\overline{1}1,$
$(cons_1(cons_1(cons_1nil))))$	denotes	1111.

- It is a free algebra.
- For coalgebraic treatment, we read an infinite sequence of constructors from left to right.
- Starting with ⊥^ω on an infinite tape, cons_a is an operation to fill the leftmost ⊥ with a. ⊥^ω → 1⊥^ω → 11⊥^ω → 111⊥^ω → 1111⊥^ω

Algebra and coalgebra of $1\perp$ -sequences.

- Finite 1⊥-sequence: an infinite sequence with ⊥^ω at the end and at most one ⊥ before that.
- We use two constructors ins_a (a ∈ {1,1}) meaning to insert a as the 2nd character, in addition to cons_a (a ∈ {1,1}) and nil (meaning ⊥^ω).
- The term $ins_1(ins_{\overline{1}}(cons_{\overline{1}}(ins_1 nil)))$ denotes $\overline{1}1\overline{1}\perp 1$:

nil	denotes	$\perp^{\omega},$
(ins ₁ nil)	denotes	$\perp 1 \perp^{\omega},$
$(cons_{\overline{1}}(ins_1 nil))$	denotes	$ar{1} ot 1 ot^{\omega},$
$(ins_{\overline{1}}(cons_{\overline{1}}(ins_1 nil)))$	denotes	$ar{1}ar{1}ot1ot1ot^\omega,$
$(ins_1(ins_{\overline{1}}(cons_{\overline{1}}(ins_1 nil))))$	denotes	$ar{1}1ar{1}ot1ar{1}ot\omega$.

- ▶ (cons₁(cons₁(ins₁ nil)))) also denote the same sequence.
- $ins_a \circ cons_b = cons_b \circ cons_a$. It is not a free algebra.
- When read from left to right, one can prove that ins_a is an operation to fill the 2nd ⊥ from the left with a. ⊥^ω → ⊥1⊥^ω → ⊥1Ī⊥^ω → Ī1Ī⊥^ω → Ī1Ī⊥1⊥^ω

Algebra and coalgebra of Gray code

- We need to restrict so that only $1\overline{1}^{\omega}$ appear after \perp .
- We consider mutually recursively defined subalgebras G and H of the algebra of 1⊥-sequences

	$cons_{a} \ (a \in \{\overline{1},1\})$	$ins_{\overline{1}}$	ins_1	nil
G	$LR_a : \mathbf{G} \to \mathbf{G}$		$\mathrm{U}\colon \mathbf{H}\to \mathbf{G}$	nil _G : G
Н	$\operatorname{Fin}_{a} \colon \mathbf{G} \to \mathbf{H}$	$\mathrm{D}\colon \boldsymbol{H}\to\boldsymbol{H}$		nil _H : H

- The carrier set of **G** is the set of finite Gray-codes.
- Example: (ins₁(ins₁(cons₁(ins₁ nil)))), (cons₁(cons₁(cons₁(ins₁ nil)))). U(D(Fin₁(U(nil_H)))) and LR₁(LR₁(LR₁(U(nil_H)))) both are terms of type **G** representing 111⊥1⊥^ω.
- Their meanings as left-to-right operation on $1\perp$ -sequences are
 - $\blacktriangleright \quad \mathrm{LR}_{\mathbf{a}}: \overline{1}1\bot^{\omega} \mapsto \overline{1}1_{\mathbf{a}}\bot^{\omega}$
 - $\bullet \qquad \mathrm{U}: \overline{1}1\bot^{\omega} \mapsto \overline{1}1\bot 1\bot^{\omega}$
 - $\blacktriangleright \operatorname{Fin}_{a}: \overline{1}1 \bot 1 \overline{1} \bot^{\omega} \mapsto \overline{1}1 \underline{a} 1 \overline{1} \bot^{\omega}$
 - $\blacktriangleright \qquad \mathbf{D}: \mathbf{\overline{1}1} \bot \mathbf{1}\mathbf{\overline{1}} \bot^{\omega} \mapsto \mathbf{\overline{1}1} \bot \mathbf{1}\mathbf{\overline{1}}\mathbf{\overline{1}} \bot^{\omega}$
- ► We call an infinite term of type **G** a pre-Gray code.

G and **H** as codings of [-1, 1]

We study through these mutually-recursively defined codes of [-1, 1].

Meaning of Gray code

▶ For each constructor *C*, define $f_C : [-1,1] \rightarrow [-1,1]$ as

$$f_{LR_a}(x) = -a \frac{x-1}{2} \quad f_{Fin_a}(x) = a \frac{x+1}{2} = f_{LR_a}(-x), \quad (1)$$

$$f_U(x) = \frac{x}{2}, \qquad f_D(x) = \frac{x}{2}. \quad (2)$$

We define the meaning of a finite term v = [a₁...a_n] (= a₁(a₂...(a_n nil_∗))) of G as the interval

$$f_{a_1}(f_{a_2}(\ldots f_{a_n}(\mathbb{I})\ldots))$$

▶ We define the meaning [[v]]_G of pre-Gray code v = [a₁, a₂, ...] as the unique real number in the intersection of the intervals denoted by its finite truncations.

$$\llbracket p \rrbracket_{\mathbf{G}} = \bigcap_{n=1}^{\infty} f_{a_1}(f_{a_2}(\dots f_{a_n}(\mathbb{I})\dots))$$

Similarly for $\llbracket v \rrbracket_{\mathbf{H}}$ and $\llbracket v \rrbracket_{\mathbf{I}}$.

- 1. Gray code of real number
- 2. Algebra/coalgebra of (pre-)Gray code
- 3. Program extraction based on pre-Gray code
- 4. Pure Gray code

Extraction of real number algorithms

- ► We represent Gray-code as pre-Gray code, that is, as an infinite sequence of constructors of G and H.
- We formalize pre-Gray code in TCF (the *Theory of Computable Functionals*) by means of coinductive definitions. In TCF, infinite structures like pre-Gray code are treated as cototal ideals.
- We use the proof assistant system Minlog, which is an implementation of TCF, and make a constructive proof of a formula. Minlog system will extract from the proof a program as a term in an extension T⁺ of Gödel's T involving higher type recursion and corecursion operators. We do not go into the detail.
- I show the formulas to be proved and the extracted program as a readable stream-transforming program.

Predicates ${}^{co}G(x)$ and ${}^{co}H(x)$

- We define the predicate ^{co}I(x) saying that x has a signed digit representation as the greatest fixed point of a strictly positive operator.
- ► We define the predicates ^{co}G(x) and ^{co}H(x) saying that x has a G term (i.e., a pre-Gray code) and H term, respectively, as the greatest fixed points of a mutually-defined strictly positive operator.
- ► We use the following coalgebraic data type in programs

$$\begin{split} \mathbf{I} &= \mathrm{C} \ \{ \bar{\mathbf{1}}, \mathbf{0}, \mathbf{1} \} \times \mathbf{I} \\ \mathbf{G} &= \mathrm{LR} \ \{ \bar{\mathbf{1}}, \mathbf{1} \} \times \mathbf{G} \ + \ \mathrm{U} \ \mathbf{H}, \\ \mathbf{H} &= \mathrm{Fin} \ \{ \bar{\mathbf{1}}, \mathbf{1} \} \times \mathbf{G} \ + \ \mathrm{D} \ \mathbf{H}. \end{split}$$

Signed digit to Gray-code conversion

 $\begin{array}{ll} \textbf{Theorem} \ \forall_x^{nc}({}^{co}\!I(x) \to {}^{co}\!G(x)). \\ \textbf{Lemma} \ \forall_x^{nc}(\exists_a{}^{co}\!I(ax) \to {}^{co}\!G(x)), \ \ \forall_x^{nc}(\exists_a{}^{co}\!I(ax) \to {}^{co}\!H(x)). \\ \textbf{Extracted Program: itoPreG: } \textbf{I} \to \textbf{G}, \ \textbf{g}: \{-1,1\} \times \textbf{I} \to \textbf{G}, \\ \textbf{h}: \{-1,1\} \times \textbf{I} \to \textbf{H} \\ \text{itoPreG}(v) = \textbf{g}(1,v) \\ \textbf{g}(\textbf{b}, \textbf{C}_{-1}(v)) = L\textbf{R}_{-b}(\textbf{g}(1,v)), \quad \textbf{h}(\textbf{b}, \textbf{C}_{-1}(v)) = Fin_{-b}(\textbf{g}(-1,v)), \\ \textbf{g}(\textbf{b}, \textbf{C}_{1}(v)) = U(\textbf{h}(\textbf{b},v)), \quad \textbf{h}(\textbf{b}, \textbf{C}_{0}(v)) = D(\textbf{h}(\textbf{b},v)). \end{array}$

Recall the original Gray-code program we had is

 $\begin{aligned} &\text{itog}(-1:xs) = -1:\text{itog } xs\\ &\text{itog}(1:xs) = 1:nh (\text{itog } xs)\\ &\text{itog}(0:xs) = c:1:nh \, ds \text{ where } c:ds = \text{itog } xs\\ &nh(s:ds) = -s:ds \end{aligned}$

Through some program transformation, we can show

preGtoG(itoPreG(v)) = itog(v)
for preGtoG a program to transform a pre-Gray code to Gray code
 preGtoG(D:p) = a:0:x where a:x = preGtoG(p)

Gray-code to Signed digit conversion Theorem $\forall_{x}^{nc}({}^{co}G(x) \rightarrow {}^{co}I(x)).$ Lemma $\forall_{\mathbf{x}}^{\mathrm{nc}}(\exists_{a}({}^{\mathrm{co}}G(ax) \vee {}^{\mathrm{co}}H(ax)) \rightarrow {}^{\mathrm{co}}Ix).$ **Extracted Program:** preGtoI : $\mathbf{G} \rightarrow \mathbf{I}$, $[f,g]: \{-1,1\} \times \mathbf{G} + \{-1,1\} \times \mathbf{H} \rightarrow \mathbf{I}$ preGtoI(v) = f(1, v) $f(a, LR_b(p)) = C_{a*b}(f(-a*b, p)),$ $g(a, Fin_b(p)) = C_{a*b}(f(a*b, p))$ $f(a, U(q)) = C_0(g(a, q)),$ $g(a, D(q)) = C_0(g(a, q)).$

Recall the original Gray-code program we had is

$$egin{aligned} extsf{gtoi}(1: extsf{xs}) &= 1: extsf{gtoi}(extsf{nh xs}) \ extsf{gtoi}(-1: extsf{xs}) &= -1: extsf{gtoi xs} \ extsf{gtoi}(extsf{c}:1: extsf{xs}) &= 0: extsf{gtoi}(extsf{c}: extsf{nh xs}) \end{aligned}$$

Through some program transformation, we can show

$$preGtoI(v) = gtoi(preGtoG(v))$$

Average

Lemma $\forall_x^{nc}({}^{co}G(-x) \to {}^{co}Gx), \forall_x^{nc}({}^{co}H(-x) \to {}^{co}Hx).$ Extracted Program: ming: $\mathbf{G} \to \mathbf{G}$ and minh: $\mathbf{H} \to \mathbf{H}$

$$\begin{split} & \min(\mathrm{LR}_a(p)) = \mathrm{LR}_{-a}(p), & \min(\mathrm{Fin}_a(p)) = \mathrm{Fin}_{-a}(p), \\ & \min(\mathrm{U}(q)) = \mathrm{U}(\min(q)), & \min(\mathrm{D}(q)) = \mathrm{D}(\min(q)). \end{split}$$

Lemma $\forall_x^{\mathrm{nc}}({}^{\mathrm{co}}Hx \rightarrow {}^{\mathrm{co}}Gx), \forall_x^{\mathrm{nc}}({}^{\mathrm{co}}Gx \rightarrow {}^{\mathrm{co}}Hx).$

Extracted Program: htog: $\textbf{H} \rightarrow \textbf{G} \text{ and gtoh} \colon \textbf{G} \rightarrow \textbf{H} \colon$

$$\begin{split} htog(\operatorname{Fin}_a(p)) &= \operatorname{LR}_a(\operatorname{ming}(p)), \qquad gtoh(\operatorname{LR}_a(p)) = \operatorname{Fin}_a(\operatorname{ming}(p)), \\ htog(\operatorname{D}(q)) &= \operatorname{U}(q), \qquad \qquad gtoh(\operatorname{U}(q)) = \operatorname{D}(q) \end{split}$$

Lemma B $\forall_i \forall_{x,y \in coG}^{nc} \exists_{x',y' \in coG}^{r} \exists_{j,d} (\frac{x+y+i}{4} = \frac{\frac{x'+y'+j}{4} + d}{2}).$ Extracted Program: lemB: $\{-2, -1, 0, 1, 2\} \times \mathbf{G} \times \mathbf{G} \rightarrow \{-2, -1, 0, 1, 2\} \times \{-1, 0, 1\} \times \mathbf{G} \times \mathbf{G}$

$$\begin{split} & lemB(i, LR_a(p), LR_{a'}(p')) &= (J(a, a', i), K(a, a', i), \texttt{mult}(-a, p), \texttt{mult}(-a,$$

Lemma C $\forall_z^{\mathrm{nc}}(\exists_{x,y\in^{\mathrm{co}}G}^{\mathrm{r}}\exists_i(z=\frac{x+y+i}{4}) \rightarrow {}^{\mathrm{co}}G(z)), \forall_z^{\mathrm{nc}}(\exists_{x,y\in^{\mathrm{co}}G}^{\mathrm{r}}\exists_i(z=\frac{x+y+i}{4}) \rightarrow {}^{\mathrm{co}}H(z)).$

 $\begin{array}{l} \mbox{Extracted Program:lemCg: } \{-2,-1,0,1,2\}\times {\textbf{G}}\times {\textbf{G}}\rightarrow {\textbf{G}}, \\ \mbox{lemCh: } \{-2,-1,0,1,2\}\times {\textbf{G}}\times {\textbf{G}}\rightarrow {\textbf{H}}. \end{array}$

$$\begin{split} & \texttt{lemCg}(\texttt{i},\texttt{p},\texttt{p}') = \texttt{let} \; (\texttt{i}_1,\texttt{d},\texttt{p}_1,\texttt{p}'_1) = \texttt{lemB}(\texttt{i},\texttt{p},\texttt{p}') \; \texttt{in} \\ & \texttt{case} \; (\texttt{d}) \; \texttt{of} \\ & \texttt{0} \to \texttt{U}(\texttt{lemCh}(\texttt{i},\texttt{p}_1,\texttt{p}'_1)) \\ & \texttt{a} \to \texttt{LR}_{\texttt{a}}(\texttt{lemCg}(-\texttt{ai},\texttt{mult}(-\texttt{a},\texttt{p}_1),\texttt{mult}(-\texttt{a},\texttt{p}'_1))), \\ & \texttt{lemCh}(\texttt{i},\texttt{p},\texttt{p}') = \texttt{let} \; (\texttt{i}_1,\texttt{d},\texttt{p}_1,\texttt{p}'_1) = \texttt{lemB}(\texttt{i},\texttt{p},\texttt{p}') \; \texttt{in} \\ & \texttt{case} \; (\texttt{d}) \; \texttt{of} \\ & \texttt{0} \to \texttt{D}(\texttt{lemCh}(\texttt{i},\texttt{p}_1,\texttt{p}'_1)) \\ & \texttt{a} \to \texttt{Fin}_{\texttt{a}}(\texttt{lemCg}(-\texttt{a}*\texttt{i},\texttt{mult}(-\texttt{a},\texttt{p}_1),\texttt{mult}(-\texttt{a},\texttt{p}'_1))). \end{split}$$

Theorem $\forall_{x,y}^{nc}({}^{co}G(x) \rightarrow {}^{co}G(y) \rightarrow {}^{co}G(\frac{x+y}{2})).$

Extracted Program: average: $\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$

```
\texttt{average}(p,p') = \texttt{lemCg}(\texttt{lemA}(p,p'))
```

```
Recall the original Gray-code program we had is

av (0:as) (0:bs) = 0:av as bs

av (1:as) (1:bs) = 1:av as bs

av (0:as) (1:bs) = c:1:nh cs where c:cs = av as (nh bs)

av (1:as) (0:bs) = c:1:nh cs where c:cs = av (nh as) bs

av (a:as) (b:bs) = c:1:nh cs where c:cs = av (a:nh as) (b:nh bs)

av (a:1:0:as) (0:0:bs) = 0:av (a:1:as) (1:nh bs)

av (a:1:0:as) (1:0:bs) = 1:av (not a:1:as) (1:nh bs)

av (a:1:0:as) (0:0:bis) = 0:1:av (not a:nh as) (not b:nh bs)

av (a:1:0:as) (1:b:1:bs) = 1:1:av (a:nh as) (not b:nh bs)

av (a:1:0:as) (b:1:0:bs) = 0:av (1:nh as) (not b:1:bs)

av (0:0:as) (b:1:0:bs) = 1:av (1:nh as) (not b:1:bs)

av (1:a:as) (b:1:0:bs) = 1:1:av (not a:nh as) (not b:nh bs)

av (1:a:1:as) (b:1:0:bs) = 1:1:av (not a:nh as) (b:nh bs)
```

It seems like a non-equivalent program. Pre-Gray code is redundant and there are many different ways to output the same Gray-code.

- 1. Gray code of real number
- 2. Algebra/coalgebra of (pre-)Gray code
- 3. Program extraction based on pre-Gray code
- 4. Pure Gray code

Pure-Gray code

- We studied algorithms based on (a bit redundant) Gray-code rather than pure Gray-code. Gray-code allowed all the increasing sequences in the domain of finite pre-Gray codes.
- However, we are interested in Gray-code because it is not redundant.
- Can we input/output pure Gray-code?

Pure-Gray code

- We studied algorithms based on (a bit redundant) Gray-code rather than pure Gray-code. Gray-code allowed all the increasing sequences in the domain of finite pre-Gray codes.
- However, we are interested in Gray-code because it is not redundant.
- Can we input/output pure Gray-code?

▶ We extract this conversion from a constructive proof.

• We define variants Γ' , Δ' of the operators Γ , Δ by $\Gamma'(X, Y) := \{ y \mid \exists_{x \in X}^{r} \exists_{a} (y = -a \frac{x-1}{2} \land y \neq 0) \lor \exists_{x \in Y}^{r} (y = \frac{x}{2} \land y \neq \pm \frac{1}{2}) \},$ $\Delta'(X, Y) := \{ y \mid \exists_{x \in X}^{r} \exists_{a} (y = a \frac{x+1}{2} \land y \neq 0) \lor \exists_{x \in Y}^{r} (y = \frac{x}{2} \land y \neq \pm \frac{1}{2}) \}$

• We define $({}^{\operatorname{co}}\mathcal{M}, {}^{\operatorname{co}}\mathcal{N}) := \nu_{(X,Y)}(\Gamma'(X,Y), \Delta'(X,Y)).$

• **Proposition** For cototal ideals p in **G** and $x \in \mathbb{I}$

 $({}^{\mathrm{co}}\mathcal{M})^{\mathsf{r}}(p,x) \leftrightarrow \varphi(p)$ is a pure Gray code of x.

Extraction of the conversion from Gray to Pure Gray Theorem $\forall_x^{nc}({}^{co}G(x) \rightarrow {}^{co}M(x)), \forall_x^{nc}({}^{co}H(x) \rightarrow {}^{co}N(x)).$ Extracted Program: g: G \rightarrow G and h: H \rightarrow H, defined by (with *a* for LR_a)

$g(a(\overline{1}(p)))$	$= a(g(\overline{1}(p)))$	$\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\bar{\mathtt{l}}(\mathtt{p})))) \ = \mathrm{D}(\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\bar{\mathtt{l}}(\mathtt{p}))))$
$g(a(1(\overline{1}(p))))$	$= \mathrm{U}(h(\mathrm{Fin}_{a}(1(p))))$	$\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\mathtt{\bar{1}(1(p))})) \ = \mathrm{Fin}_\mathtt{a}(\mathtt{g}(\mathtt{\bar{1}(1(p))}))$
g(a(1(1(p))))	= a(g(1(1(p))))	$\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\bar{\mathtt{1}}(\mathrm{U}(\mathtt{q})))) \ = \mathrm{Fin}_\mathtt{a}(\mathtt{g}(\bar{\mathtt{1}}(\mathrm{U}(\mathtt{q}))))$
g(a(1(U(q))))	$= \mathtt{a}(\mathtt{g}(\mathtt{1}(\mathrm{U}(\mathtt{q}))))$	$\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\mathtt{1}(\mathtt{p}))) \qquad = \mathrm{Fin}_\mathtt{a}(\mathtt{g}(\mathtt{1}(\mathtt{p})))$
g(a(U(q)))	= a(g(U(q)))	$\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\mathrm{U}(\mathtt{q}))) \qquad = \mathrm{Fin}_\mathtt{a}(\mathtt{g}(\mathrm{U}(\mathtt{q})))$
$g(U(Fin_a(1(p))))$	$= \mathrm{U}(h(\mathrm{Fin}_{a}(1(p))))$	$\mathtt{h}(\mathrm{D}(\mathrm{Fin}_\mathtt{a}(\mathtt{\bar{1}}(\mathtt{p})))) \ = \mathrm{D}(\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\mathtt{\bar{1}}(\mathtt{p}))))$
$g(U(Fin_a(1(p))))$	= a(g(1(1(p))))	$\mathtt{h}(\mathrm{D}(\mathrm{Fin}_\mathtt{a}(\mathtt{1}(\mathtt{p})))) \ = \mathrm{Fin}_\mathtt{a}(\mathtt{g}(\mathtt{\bar{1}}(\mathtt{1}(\mathtt{p}))))$
$g(U(\operatorname{Fin}_{a}(U(q))))$	$) = U(h(Fin_a(U(q))))$	$\mathtt{h}(\mathrm{D}(\mathrm{Fin}_\mathtt{a}(\mathrm{U}(\mathtt{q})))) = \mathrm{D}(\mathtt{h}(\mathrm{Fin}_\mathtt{a}(\mathrm{U}(\mathtt{q}))))$
g(U(D(q)))	= U(h(D(q)))	h(D(D(q))) = D(h(D(q)))

- When f is a program which input/output Gray-code, g ∘ f is a program which outputs pure Gray-code to pure Gray-code.
- Therefore, every program that handles Gray-code can be converted to a program handling pure Gray-code.

Concluding remarks

What kind of benefits do we have with non-redundant codes? Though it looks difficult to make efficient programs,

- subspace is easier to imagine than quotient,
- a program is directly operating on real number,
- it is a direct working application of domain theory,
- (I hope some practical meaning...)
- We used representation of Gray-code in pre-Gray code, i.e., ordinary sequences and applied the standard theory of coinduction and program extraction. Is there a theory that manipulate Gray-code and 1⊥-sequences more directly? Ulrich's talk is in that direction.

References

[1] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Hideki Tsuiki. Logic for Gray-code computation. In D. Probst and P. Schuster (eds), Concepts of Proof in Mathematics, Philosophy, and Computer Science, De Gruyter, 2017.

- [2] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press, 2012.
- [3] Hideki Tsuiki. Real number computation through Gray code embedding. Theoretical Computer Science, 284:467485, 2002.

Thank you very much.

- 1. Gray code of real number
- 2. Algebra/coalgebra of (pre-)Gray code
- 3. Program extraction based on pre-Gray code
- 4. Pure Gray code
- 5. Appendix

Extraction of real number algorithms (Signed Digit case)

For signed digit rep., we consider the strictly positive operator

$$\Phi(X) := \{ x \mid \exists_{x' \in X}^{\mathrm{r}} \exists_{d \in \{-1,0,1\}} (x = \frac{x' + d}{2}) \}.$$

- We define ${}^{col} := \nu_X \Phi(X)$ as the greatest fixed point of Φ .
- ^{co}l satisfies the (strengthened) coinduction axiom. That is, $X \subseteq \Phi({}^{co}l \cup X) \to X \subseteq {}^{co}l.$
- Next, we consider an operator on pairs (v, x) where v is a signed digit stream and x is a real number.

$$\Phi^{\mathsf{r}}(Y) := \{ (v,x) \mid \exists_{(v',x')\in Y}^{\mathrm{nc}} \exists_d (x = \frac{x'+d}{2} \land v = C_d(v')) \}.$$

As its greatest fixed point, we have a relation (^{co}*I*)^r called the realizability extension of ^{co}*I* between signed digit streams v = [a₁a₂...] and real numbers x.

$$({}^{\operatorname{co}}l)^{\mathbf{r}} := \nu_{Y} \Phi^{\mathbf{r}}(Y).$$

- Proposition: $({}^{\mathrm{co}}l)^{\mathsf{r}}(v, x) \leftrightarrow x = \llbracket v \rrbracket_{\mathsf{SD}}.$
- In order to extract a program that computes a function, for example the average function, we prove

$$orall_{\mathrm{x},\mathrm{x}'}({}^{\mathrm{col}}(\mathrm{x}) o {}^{\mathrm{col}}(\mathrm{x}') o {}^{\mathrm{col}}(rac{\mathrm{x}+\mathrm{x}'}{2})).$$

Then, Minlog system will (by the Soundness theorem) extract from the proof a function term f which satisfies

$$({}^{\mathrm{co}}l)^{\mathsf{r}}(v,x) \to ({}^{\mathrm{co}}l)^{\mathsf{r}}(v',x') \to ({}^{\mathrm{co}}l)^{\mathsf{r}}(f(v,v'),\frac{x+x'}{2}).$$

From the above proposition, this term is a program for the average function,

Extraction of real number algorithms (pre-Gray code case)

For the case of pre-Gray code, G and H are mutually recursively defined cototal ideals. Therefore, we consider the binary strictly positive operator

$$\Gamma(X,Y) := \{ y \mid \exists_{x \in X}^{\mathrm{r}} \exists_a (y = -a\frac{x-1}{2}) \lor \exists_{x \in Y}^{\mathrm{r}} (y = \frac{x}{2}) \},$$

$$\Delta(X,Y) := \{ y \mid \exists_{x \in X}^{\mathrm{r}} \exists_a (y = a\frac{x+1}{2}) \lor \exists_{x \in Y}^{\mathrm{r}} (y = \frac{x}{2}) \}.$$

- Define (^{co}G, ^{co}H) := ν_(X,Y)(Γ(X, Y), Δ(X, Y)) as the greatest fixed point of (Γ, Δ).
- ► We have the (strengthened) simultaneous coinduction axiom. $(X, Y) \subseteq (\Gamma({}^{co}G \cup X, {}^{co}H \cup Y), \Delta({}^{co}G \cup X, {}^{co}H \cup Y))$ $\rightarrow (X, Y) \subseteq ({}^{co}G, {}^{co}H).$
- ► The realizability extension ((^{co}G)^r, (^{co}H)^r) is a pair of binary predicates on cototal ideals p in G or q in H (respectively) and real numbers x.

For $x \in \mathbb{I}$ and cototal ideals p in **G** and q in **H**

$$({}^{\mathrm{co}}G)^{\mathsf{r}}(p,x) \leftrightarrow x = \llbracket p \rrbracket_{\mathsf{G}},$$

 $({}^{\mathrm{co}}H)^{\mathsf{r}}(q,x) \leftrightarrow x = \llbracket p \rrbracket_{\mathsf{H}}$

From a proof of

$$\forall_{x,y}^{\mathrm{nc}}({}^{\mathrm{co}}G(x) \rightarrow {}^{\mathrm{co}}G(y) \rightarrow {}^{\mathrm{co}}G(\frac{x+y}{2})),$$

for exmaple, we obtain a program for the average, which transforms pre-Gray codes of the arguments to a pre-Gray code of the result.

Coalgebras appearing in the program

$$\begin{split} \mathbf{I} &= \mathrm{C} \ \{ \overline{\mathbf{1}}, \mathbf{0}, \mathbf{1} \} \times \mathbf{I} \\ \mathbf{G} &= \mathrm{LR} \ \{ \overline{\mathbf{1}}, \mathbf{1} \} \times \mathbf{G} \ + \ \mathrm{U} \ \mathbf{H}, \\ \mathbf{H} &= \mathrm{Fin} \ \{ \overline{\mathbf{1}}, \mathbf{1} \} \times \mathbf{G} \ + \ \mathrm{D} \ \mathbf{H}. \end{split}$$