Gray-code and Program Extraction based on pre-Gray code

Joint work with Ulrich Berger, Kenji Miyamoto, and Helmut Schwichtenberg

Hideki Tsuiki

Interval Analysis and Constructive Mathematics
11/13-18, 2016, CMO Workshop, Oaxaca

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^{ω} for some alphabet Σ, but we allow at most one \perp in each sequence.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^{ω} for some alphabet Σ, but we allow at most one \perp in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^{ω} for some alphabet Σ, but we allow at most one \perp in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^{ω} for some alphabet Σ, but we allow at most one \perp in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.
- In this talk, we try to give logical background to such computation by formalizing Gray-code in logical systems.

Summary of the talk

- Computable representation for real numbers need to be redundant, i.e., most number have more than one code.
- (Pure) Gray-code for real numbers [T 2002] is a non-redundant coding that can be used for computation.
- The code space is not Σ^{ω} for some alphabet Σ, but we allow at most one \perp in each sequence.
- A two-head nondeterministic machine is used for computation over such "bottomed" sequences.
- Algorithms for simple functions like average are given, but it does not have enough logical treatment.
- In this talk, we try to give logical background to such computation by formalizing Gray-code in logical systems.
- We consider coalgebra of Gray-code and extract Gray-code algorithms from proofs.

1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code

Gray code

- (Binary-reflected) Gray-code is a coding of natural numbers.
- The Hamming distance between adjacent numbers is always 1 .
- We consider expansion of the unit interval $[-1,1]$ based on Gray-code.

	Binary	Gray
0	0	0
1	1	1
2	10	11
3	11	10
4	100	110
5	101	111
6	110	101
7	111	100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Pure Gray-code for real number

- We use $\{\overline{1}(=-1), 1\}$ instead of $\{0,1\}$.
- tent $(x)=\left\{\begin{array}{ll}1+2 x & (-1 \leq x \leq 0) \\ 1-2 x & (0<x \leq 1)\end{array}\right.$.
- $P(x)= \begin{cases}\overline{1} & (x<0) \\ \perp & (x=0) \\ 1 & (x>0)\end{cases}$

- The pure Gray code $\varphi(x) \in\{\perp, \overline{1}, 1\}^{\omega}$ of x is defined as the itinerary of the tent function. That is, $\varphi(x)(n)=P\left(\right.$ tent $\left.^{n}(x)\right)$ $(n=0,1, \ldots)$

Gray-code (gray for $\overline{1}$, black for 1 , green ball for \perp)

Gray-code (gray for $\overline{1}$, black for 1 , green ball for \perp)

- φ is a topological embedding from $[-1,1]$ to $\{\perp, \overline{1}, 1\}^{\omega}$, with the Scott topology of the domain $\{\perp, \overline{1}, 1\}^{\omega}$. (equal to the product of the topology on $\mathbb{T}=\{\perp, \overline{1}, 1\}$ generated by $\{\{\overline{1}\},\{1\}\}$.)

Gray-code (gray for $\overline{1}$, black for 1 , green ball for \perp)

- The pure Gray-code $\varphi(x)$ of a dyadic rational x contains one \perp and, after that, the sequence is always $1 \overline{1}^{\omega}$

Gray-code (gray for $\overline{1}$, black for 1 , green ball for \perp)

- The pure Gray-code $\varphi(x)$ of a dyadic rational x contains one \perp and, after that, the sequence is always $1 \overline{1}^{\omega}$
- We mainly consider Gray-code which is a little redundant in that all the three codes sal $\overline{1}^{\omega}$ for $a \in\{\overline{1}, 1, \perp\}$ for dyadic rationals.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	\perp						
\cdots												

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	\perp	\perp	\perp	\perp	\perp
\ldots												

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	\perp	\perp	\perp	\perp

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	$\overline{1}$	\perp	\perp	\perp

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	$\overline{1}$	$\overline{1}$	\perp	\perp

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	$\overline{1}$	$\overline{1}$	$\overline{1}$	\perp
\ldots												

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.

IM2-machine

1	$\overline{1}$	1	1	$\overline{1}$	$\overline{1}$	1	\perp	1	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$	\ldots

- \perp means undefinedness and it is not an ordinary character. One cannot read or write a \perp.
- If one tries to read a $1 \perp$-sequence from left to right, one cannot access the subsequence after \perp.
- IM2-machine is a machine which has two heads on each input/output tape to acccess $1 \perp$-sequences.
- With the two heads, one can leave a cell undefined and go ahead, and fill/read it later.
- If there is an undefined cell, then one cannot make another skip until the undefined cell is filled. In this way, it is guaranteed to have at most one unfilled cell.
- If a cell is left undefined eternally, then it is \perp in the infinite $1 \perp$-sequence.

Gray expansion

- Each node is denoting an interval, which is shrinking according to the input.

IM2-machine input/output states for Gray GiliT $_{111 T}$

 T

Two states \mathbf{G} (normal state) and \mathbf{H} (auxiliary state, red in picture).

- $\mathrm{LR}_{\overline{1}}, \mathrm{LR}_{1}$: fill the next cell with 1 or $\overline{1} . \mathbf{G} \Rightarrow \mathbf{G}$
- U(undefined): skip one cell and fill the next cell with $1 . \mathbf{G} \Rightarrow \mathbf{H}$
- D (delay): fill yet next cell with $\overline{1} . \mathbf{H} \Rightarrow \mathbf{H}$
- $\mathrm{Fin}_{\overline{1}}, \mathrm{Fin}_{1}$: fill the skipped cell with 1 or $\overline{1} . \mathbf{H} \Rightarrow \mathbf{G}$.

IM2-machine input/output states for Gray code

- Finite states correspond to signed digit intervals.
- Limits of this finite states corresponds to ideal completion.
- It is a domain representation of the unit interval [Blanck].

IM2-machine $=$ skip and fill later

- It is nondeterministic depending on which head is used when both of the heads have values.
- IM2-machine algorithms are directly executable in committed choice logic programming languages.
- We express such a manipulation of $1 \perp$-sequence in Haskell syntax.
- Note that \perp is a valid data of type Int in Haskell, and [Int] contain
 $1 \perp$-sequences.

Example1: Signed digit to Gray-code conversion

Example1: Signed digit to Gray-code conversion

Example1: Signed digit to Gray-code conversion

$$
\begin{aligned}
& \operatorname{itog}(-1: x s)=\overline{1}: i t o g x s \\
& \text { itog }(1: x s)=1: n h(i t o g x s) \\
& \text { itog(} 0: \mathrm{xs})=\mathrm{c}: 1: \mathrm{nh} \text { ds where } \mathrm{c}: \mathrm{ds}=\text { itog } \mathrm{xs} \\
& \mathrm{nh}(\mathrm{~s}: \mathrm{ds})=-\mathrm{s}: \mathrm{ds}
\end{aligned}
$$

Example1: Signed digit to Gray-code conversion

$$
\begin{aligned}
& \operatorname{itog}(-1: x s)=\overline{1}: i t o g x s \\
& \operatorname{itog}(1: x s)=1: n h(i t o g x s) \\
& \text { itog }(0: x s)=c: 1: n h \text { ds where } c: d s=i t o g x s \\
& \mathrm{nh}(\mathrm{~s}: \mathrm{ds})=-\mathrm{s}: \mathrm{ds}
\end{aligned}
$$

Example1: Signed digit to Gray-code conversion

$$
\begin{aligned}
& \operatorname{itog}(-1: x s)=\overline{1}: \text { itog } x s \\
& \text { itog }(1: x s)=1: \operatorname{nh}(\text { itog } x s) \\
& \text { itog }(0: x s)=c: 1: \text { nh ds where } c: d s=\text { itog } x s \\
& \operatorname{nh}(s: d s)=-s: d s
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}=4 \\
& \mathrm{n}=3 \\
& \mathrm{n}=2 \\
& \mathrm{n}=1
\end{aligned}
$$

- It is a correct Haskell program.
- itog([0,0,..]) does not output the first digit because it is \perp.
- $\operatorname{tail}(\operatorname{itog}([0,0, \ldots]))$ outputs $[1, \overline{1}, \overline{1}, \overline{1}, \ldots$

Example2: Gray-code to signed digit conversion

$$
\begin{aligned}
& \operatorname{gtoi}(1: x s)=1: \operatorname{gtoi}(\mathrm{nh} x s) \\
& \operatorname{gtoi}(\overline{1}: x s)=-1: \operatorname{gtoi} x s \\
& \operatorname{gtoi}(c: 1: x s)=0: \operatorname{gtoi}(c: n h x s)
\end{aligned}
$$

- It is not correct as a Haskell program in that when the argument is $[\perp, 1, \overline{1}, \overline{1}, \ldots]$, Haskell tries to evaluate the first digit and it starts a non-terminating computation and fails to apply the third rule.
- It is correct as equations, and one can execute it as term-rewriting rule.

Example3: Average function

$$
\begin{aligned}
& \text { av (} \overline{1}: \mathrm{as})(\overline{1}: \mathrm{bs})=\overline{1}: \mathrm{av} \text { as bs } \\
& \text { av (1: as) (1:bs) = } 1: \mathrm{av} \text { as bs } \\
& \text { av (} \overline{1}: \mathrm{as})(1: \mathrm{bs})=\mathrm{c}: 1: \mathrm{nh} \mathrm{cs} \text { where } \mathrm{c}: \mathrm{cs}=\mathrm{av} \text { as (nh bs) } \\
& \text { av (1: as) (} \overline{1}: \mathrm{bs})=\mathrm{c}: 1: \mathrm{nh} \mathrm{cs} \quad \text { where } \mathrm{c}: \mathrm{cs}=\mathrm{av}(\mathrm{nh} \text { as) } \mathrm{bs} \\
& \mathrm{av}(\mathrm{a}: 1: \mathrm{as})(\mathrm{b}: 1: \mathrm{bs})=\mathrm{c}: 1: \mathrm{nh} \mathrm{cs} \text { where } \mathrm{c}: \mathrm{cs}=\mathrm{av}(\mathrm{a}: \mathrm{nh} \mathrm{as})(\mathrm{b}: \mathrm{nh} \mathrm{bs}) \\
& \text { av (a: } 1: \overline{1}: a s)(\overline{1}: \overline{1}: b s)=\overline{1}: a v(a: 1: a s)(1: n h ~ b s) \\
& \text { av (a: } 1: \overline{1}: a s)(1: \overline{1}: b s)=1: a v \text { (not a: } 1: a s)(1: n h b s) \\
& \operatorname{av}(\mathrm{a}: 1: \overline{1}: \mathrm{as})(\overline{1}: \mathrm{b}: 1: \mathrm{bs})=\overline{1}: 1: \mathrm{av} \text { (not } \mathrm{a}: \mathrm{nh} \mathrm{as}) \text { (not } \mathrm{b}: \mathrm{nh} \mathrm{bs} \text {) } \\
& \mathrm{av}(\mathrm{a}: 1: \overline{1}: \mathrm{as})(1: \mathrm{b}: 1: \mathrm{bs})=1: 1: \mathrm{av}(\mathrm{a}: \mathrm{nh} \text { as) (not } \mathrm{b}: \mathrm{nh} \mathrm{bs}) \\
& \text { av (} \overline{1}: \overline{1}: a s)(b: 1: \overline{1}: b s)=\overline{1}: a v(1: n h ~ a s)(b: 1: b s) \\
& \text { av (1: } \overline{1}: \mathrm{as})(\mathrm{b}: 1: \overline{1}: \mathrm{bs})=1: \mathrm{av}(1: \mathrm{nh} \text { as) (not } \mathrm{b}: 1: \mathrm{bs}) \\
& \mathrm{av}(\overline{1}: \mathrm{a}: 1: \mathrm{as})(\mathrm{b}: 1: \overline{1}: \mathrm{bs})=\overline{1}: 1: \mathrm{av} \text { (not } \mathrm{a}: \text { nh as) (not } \mathrm{b}: \mathrm{nh} \mathrm{bs} \text {) } \\
& \mathrm{av}(1: \mathrm{a}: 1: \mathrm{as})(\mathrm{b}: 1: \overline{1}: \mathrm{bs})=1: 1: \mathrm{av} \text { (not } \mathrm{a}: \mathrm{nh} \mathrm{as})(\mathrm{b}: \mathrm{nh} \mathrm{bs})
\end{aligned}
$$

- Correct program (equality of the both sides, covering over all the patterns, productivity check).
- How can we formally prove its correctness?
- What is the theory of computation over $1 \perp$-sequences.
- Our goal is to study coalgebra of $1 \perp$-sequences and consider logic to manipulate real number through Gray-code, and extract this kind of programs from proofs.

1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code

Algebra and coalgebra of ordinary sequences.

- Two constructors cons ${ }_{a}(a \in\{\overline{1}, 1\})$ meaning to prepend a, in addition to nil denoting the empty sequence.
- The term cons $_{1}\left(\right.$ cons $_{1}\left(\right.$ cons $_{\overline{1}}\left(\right.$ cons $_{1}$ nil $\left.\left.)\right)\right)$ denotes $11 \overline{1} 1$:

nil	denotes	ϵ,
$\left(\right.$ cons $_{1}$ nil $)$	denotes	1,
$\left(\right.$ cons $_{\overline{1}}\left(\right.$ cons $_{1}$ nil $\left.)\right)$	denotes	$\overline{1} 1$,
$\left(\right.$ cons $_{1}\left(\right.$ cons $_{\overline{1}}\left(\right.$ cons $_{1}$ nil $\left.\left.)\right)\right)$	denotes	$1 \overline{1} 1$,
$\left(\operatorname{cons}_{1}\left(\right.\right.$ cons $_{1}\left(\right.$ cons $_{\overline{1}}\left(\right.$ cons $_{1}$ nil $\left.\left.\left.)\right)\right)\right)$	denotes	$11 \overline{1} 1$.

- It is a free algebra.
- For coalgebraic treatment, we read an infinite sequence of constructors from left to right.
- Starting with \perp^{ω} on an infinite tape, cons ${ }_{a}$ is an operation to fill the leftmost \perp with a.
$\perp^{\omega} \rightarrow 1 \perp^{\omega} \rightarrow 11 \perp^{\omega} \rightarrow 11 \overline{1} \perp^{\omega} \rightarrow 11 \overline{1} 1 \perp^{\omega}$

Algebra and coalgebra of $1 \perp$-sequences.

- Finite $1 \perp$-sequence: an infinite sequence with \perp^{ω} at the end and at most one \perp before that.
- We use two constructors ins ${ }_{a}(a \in\{\overline{1}, 1\})$ meaning to insert a as the 2 nd character, in addition to cons $_{a}(a \in\{\overline{1}, 1\})$ and nil (meaning \perp^{ω}).
- The term $\operatorname{ins}_{1}\left(\right.$ ins $_{\overline{1}}\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil $\left.\left.)\right)\right)$ denotes $\overline{1} 1 \overline{1} \perp 1$:

nil	denotes	\perp^{ω},
$\left(\right.$ ins $_{1}$ nil)	denotes	$\perp 1 \perp^{\omega}$,
$\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil) $)$	denotes	$\overline{1} \perp 1 \perp^{\omega}$,
$\left(\right.$ ins $_{\overline{1}}\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil) $\left.)\right)$	denotes	$\overline{1} \overline{1} \perp 1 \perp^{\omega}$,
$\left(\right.$ ins $_{1}\left(\right.$ ins $_{\overline{1}}\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil) $\left.\left.)\right)\right)$	denotes	$\overline{1} 1 \overline{1} \perp 1 \perp^{\omega}$.

- $\left(\right.$ cons $_{1}\left(\right.$ cons $_{1}\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil $\left.\left.\left.)\right)\right)\right)$ also denote the same sequence.
$-\mathrm{ins}_{a} \circ$ cons $_{b}=$ cons $_{b} \circ$ cons $_{a}$. It is not a free algebra.
- When read from left to right, one can prove that ins ${ }_{a}$ is an operation to fill the 2 nd \perp from the left with a. $\perp^{\omega} \rightarrow \perp 1 \perp^{\omega} \rightarrow \perp 1 \overline{1} \perp^{\omega} \rightarrow \overline{1} 1 \overline{1} \perp^{\omega} \rightarrow \overline{1} 1 \overline{1} \perp 1 \perp^{\omega}$

Algebra and coalgebra of Gray code

- We need to restrict so that only $1 \overline{1}^{\omega}$ appear after \perp.
- We consider mutually recursively defined subalgebras \mathbf{G} and \mathbf{H} of the algebra of $1 \perp$-sequences

	cons $_{a}(a \in\{\overline{1}, 1\})$	ins $_{\overline{1}}$	ins $_{1}$	nil
\mathbf{G}	$\operatorname{LR}_{a}: \mathbf{G} \rightarrow \mathbf{G}$		$\mathrm{U}: \mathbf{H} \rightarrow \mathbf{G}$	nil $_{\mathbf{G}}: \mathbf{G}$
\mathbf{H}	$\operatorname{Fin}_{\mathrm{a}}: \mathbf{G} \rightarrow \mathbf{H}$	$\mathrm{D}: \mathbf{H} \rightarrow \mathbf{H}$		nil $_{\mathbf{H}}: \mathbf{H}$

- The carrier set of \mathbf{G} is the set of finite Gray-codes.
- Example: $\left(\right.$ ins $_{1}\left(\right.$ ins $_{\overline{1}}\left(\operatorname{cons}_{\overline{1}}\left(\right.\right.$ ins $_{1}$ nil) $\left.\left.)\right)\right)$, $\left(\operatorname{cons}_{\overline{1}}\left(\right.\right.$ cons $_{1}\left(\right.$ cons $_{\overline{1}}\left(\right.$ ins $_{1}$ nil) $\left.\left.)\right)\right)$. $\mathrm{U}\left(\mathrm{D}\left(\operatorname{Fin}_{\overline{1}}\left(\mathrm{U}\left(\right.\right.\right.\right.$ nil $\left.\left.\left.\left._{\mathbf{H}}\right)\right)\right)\right)$ and $\mathrm{LR}_{\overline{1}}\left(\mathrm{LR}_{1}\left(\mathrm{LR}_{\overline{1}}\left(\mathrm{U}\left(\right.\right.\right.\right.$ nil $\left.\left.\left.\left._{\mathbf{H}}\right)\right)\right)\right)$ both are terms of type \mathbf{G} representing $\overline{1} 1 \overline{1} \perp 1 \perp^{\omega}$.
- Their meanings as left-to-right operation on $1 \perp$-sequences are
- $\mathrm{LR}_{\mathrm{a}}: \overline{1} 1 \perp^{\omega} \mapsto \overline{1} 1 \mathrm{a} \perp^{\omega}$
- $\mathrm{U}: \overline{1} 1 \perp^{\omega} \mapsto \overline{1} 1 \perp 1 \perp^{\omega}$
- $\operatorname{Fin}_{a}: \overline{1} 1 \perp 1 \overline{1} \perp^{\omega} \mapsto \overline{1} 1 a 11 \overline{1} \perp^{\omega}$
- $\quad \mathrm{D}: \overline{1} 1 \perp 1 \overline{1} \perp^{\omega} \mapsto \overline{1} 1 \perp 1 \overline{1} \overline{1} \perp^{\omega}$
- We call an infinite term of type G a pre-Gray code.

\mathbf{G} and \mathbf{H} as codings of $[-1,1]$

We study through these mutually-recursively defined codes of $[-1,1]$.

Meaning of Gray code

- For each constructor C, define $f_{C}:[-1,1] \rightarrow[-1,1]$ as

$$
\begin{align*}
f_{\mathrm{LR}_{\mathrm{a}}}(x) & =-a \frac{x-1}{2} & f_{\mathrm{Fin}_{\mathrm{a}}}(x) & =a \frac{x+1}{2}=f_{\mathrm{LR}_{\mathrm{a}}}(-x) \tag{1}\\
f_{\mathrm{U}}(x) & =\frac{x}{2} . & f_{\mathrm{D}}(x) & =\frac{x}{2} \tag{2}
\end{align*}
$$

- We define the meaning of a finite term $v=\left[a_{1} \ldots a_{n}\right]$ $\left(=a_{1}\left(a_{2} \ldots\left(a_{n}\right.\right.\right.$ nil $\left.\left.\left._{*}\right)\right)\right)$ of \mathbf{G} as the interval

$$
f_{a_{1}}\left(f_{a_{2}}\left(\ldots f_{a_{n}}(\mathbb{I}) \ldots\right)\right)
$$

- We define the meaning $\llbracket v \rrbracket_{\mathbf{G}}$ of pre-Gray code $v=\left[a_{1}, a_{2}, \ldots\right]$ as the unique real number in the intersection of the intervals denoted by its finite truncations.

$$
\llbracket p \rrbracket_{\mathbf{G}}=\bigcap_{n=1}^{\infty} f_{\mathrm{a}_{1}}\left(f_{\mathrm{a}_{2}}\left(\ldots f_{\mathrm{a}_{n}}(\mathbb{I}) \ldots\right)\right)
$$

- Similarly for $\llbracket v \rrbracket_{\boldsymbol{H}}$ and $\llbracket v \rrbracket_{\mathbf{I}}$.

1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code

Extraction of real number algorithms

- We represent Gray-code as pre-Gray code, that is, as an infinite sequence of constructors of \mathbf{G} and \mathbf{H}.
- We formalize pre-Gray code in TCF (the Theory of Computable Functionals) by means of coinductive definitions. In TCF, infinite structures like pre-Gray code are treated as cototal ideals.
- We use the proof assistant system Minlog, which is an implementation of TCF, and make a constructive proof of a formula. Minlog system will extract from the proof a program as a term in an extension T^{+}of Gödel's T involving higher type recursion and corecursion operators. We do not go into the detail.
- I show the formulas to be proved and the extracted program as a readable stream-transforming program.

Predicates ${ }^{\text {co }} G(x)$ and ${ }^{\text {co }} H(x)$

- We define the predicate ${ }^{\text {col }}(x)$ saying that x has a signed digit representation as the greatest fixed point of a strictly positive operator.
- We define the predicates ${ }^{\text {co }} G(x)$ and ${ }^{\text {co }} H(x)$ saying that x has a \mathbf{G} term (i.e., a pre-Gray code) and \mathbf{H} term, respectively, as the greatest fixed points of a mutually-defined strictly positive operator.
- We use the following coalgebraic data type in programs

$$
\begin{aligned}
\mathbf{I} & =\mathrm{C}\{\overline{1}, 0,1\} \times \mathbf{I} \\
\mathbf{G} & =\operatorname{LR}\{\overline{1}, 1\} \times \mathbf{G}+\mathrm{U} \mathbf{H}, \\
\mathbf{H} & =\operatorname{Fin}\{\overline{1}, 1\} \times \mathbf{G}+\mathrm{D} \mathbf{H} .
\end{aligned}
$$

Signed digit to Gray-code conversion

Theorem $\forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}}(x) \rightarrow{ }^{\mathrm{co}} G(x)\right)$.
Lemma $\forall_{x}^{\mathrm{nc}}\left(\exists_{a}{ }^{\mathrm{co}}(a x) \rightarrow{ }^{\mathrm{co}} G(x)\right), \quad \forall_{x}^{\mathrm{nc}}\left(\exists_{a}{ }^{\mathrm{co}}(a x) \rightarrow{ }^{\mathrm{co}} H(x)\right)$.
Extracted Program: itoPreG: $\mathbf{I} \rightarrow \mathbf{G}, \mathrm{g}:\{-1,1\} \times \mathbf{I} \rightarrow \mathbf{G}$, $\mathrm{h}:\{-1,1\} \times \mathbf{I} \rightarrow \mathbf{H}$

$$
\begin{aligned}
& \text { itoPreG }(v)=g(1, v) \\
& \mathrm{g}\left(\mathrm{~b}, \mathrm{C}_{-1}(\mathrm{v})\right)=\operatorname{LR}_{-\mathrm{b}}(\mathrm{~g}(1, \mathrm{v})), \quad \mathrm{h}\left(\mathrm{~b}, \mathrm{C}_{-1}(\mathrm{v})\right)=\operatorname{Fin}_{-\mathrm{b}}(\mathrm{~g}(-1, \mathrm{v})), \\
& \mathrm{g}\left(\mathrm{~b}, \mathrm{C}_{1}(\mathrm{v})\right)=\operatorname{LR}_{\mathrm{b}}(\mathrm{~g}(-1, \mathrm{v})), \quad \mathrm{h}\left(\mathrm{~b}, \mathrm{C}_{1}(\mathrm{v})\right)=\operatorname{Fin}_{\mathrm{b}}(\mathrm{~g}(1, \mathrm{v})), \\
& \mathrm{g}\left(\mathrm{~b}, \mathrm{C}_{0}(\mathrm{v})\right)=\mathrm{U}(\mathrm{~h}(\mathrm{~b}, \mathrm{v})), \quad \mathrm{h}\left(\mathrm{~b}, \mathrm{C}_{0}(\mathrm{v})\right)=\mathrm{D}(\mathrm{~h}(\mathrm{~b}, \mathrm{v})) \text {. }
\end{aligned}
$$

Recall the original Gray-code program we had is

$$
\begin{aligned}
& \operatorname{itog}(-1: x s)=-1: \text { itog } x s \\
& \operatorname{itog}(1: x s)=1: \operatorname{nh}(\text { itog xs }) \\
& \text { itog}(0: x s)=c: 1: \text { nh ds where } c: d s=\text { itog } x s \\
& \operatorname{nh}(s: d s)=-s: d s
\end{aligned}
$$

Through some program transformation, we can show

$$
\operatorname{preGtoG}(i t o \operatorname{PreG}(\mathrm{v}))=\text { itog(v) }
$$

for preGtoG a program to transform a pre-Gray code to Gray code

$$
\operatorname{preGtoG}(\mathrm{D}: \mathrm{p})=\mathrm{a}: 0: \mathrm{x} \quad \text { where } \mathrm{a}: \mathrm{x}=\operatorname{preGtoG}(\mathrm{p})
$$

Gray-code to Signed digit conversion

Theorem $\forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} G(x) \rightarrow{ }^{\mathrm{co}}(x)\right)$.
Lemma $\forall_{x}^{\mathrm{nc}}\left(\exists_{a}\left({ }^{\mathrm{co}} G(a x) \vee^{\mathrm{co}} H(a x)\right) \rightarrow{ }^{\mathrm{co}} / x\right)$.
Extracted Program: preGtoI : G $\rightarrow \mathbf{I}$,
$[\mathrm{f}, \mathrm{g}]:\{-1,1\} \times \mathbf{G}+\{-1,1\} \times \mathbf{H} \rightarrow \mathbf{I}$
preGtoI(v) $=f(1, v)$
$f\left(\mathrm{a}, \mathrm{LR}_{\mathrm{b}}(\mathrm{p})\right)=\mathrm{C}_{\mathrm{a} * \mathrm{~b}}(\mathrm{f}(-\mathrm{a} * \mathrm{~b}, \mathrm{p})), \quad \mathrm{g}\left(\mathrm{a}, \operatorname{Fin}_{\mathrm{b}}(\mathrm{p})\right)=\mathrm{C}_{\mathrm{a} * \mathrm{~b}}(\mathrm{f}(\mathrm{a} * \mathrm{~b}, \mathrm{p}))$,
$f(\mathrm{a}, \mathrm{U}(\mathrm{q}))=\mathrm{C}_{0}(\mathrm{~g}(\mathrm{a}, \mathrm{q})), \quad \mathrm{g}(\mathrm{a}, \mathrm{D}(\mathrm{q})) \quad=\mathrm{C}_{0}(\mathrm{~g}(\mathrm{a}, \mathrm{q}))$.
Recall the original Gray-code program we had is

$$
\begin{aligned}
& \operatorname{gtoi}(1: x s)=1: \operatorname{gtoi}(\mathrm{nh} x s) \\
& \operatorname{gtoi}(-1: x s)=-1: \operatorname{gtoi} x s \\
& \operatorname{gtoi}(c: 1: x s)=0: \operatorname{gtoi}(c: n h x s)
\end{aligned}
$$

Through some program transformation, we can show

$$
\operatorname{preGtoI}(\mathrm{v})=\operatorname{gtoi}(\operatorname{preGtoG}(\mathrm{v}))
$$

Average

Lemma $\forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} G(-x) \rightarrow{ }^{\mathrm{co}} G x\right), \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} H(-x) \rightarrow{ }^{\mathrm{Co}} H x\right)$.
Extracted Program: ming: $\mathbf{G} \rightarrow \mathbf{G}$ and minh: $\mathbf{H} \rightarrow \mathbf{H}$

$$
\begin{array}{lll}
\operatorname{minf}\left(\mathrm{LR}_{\mathrm{a}}(p)\right)=\mathrm{LR}_{-\mathrm{a}}(\mathrm{p}), & & \operatorname{minh}\left(\operatorname{Fin}_{\mathrm{a}}(p)\right)=\operatorname{Fin}_{-\mathrm{a}}(\mathrm{p}), \\
\operatorname{minf}(\mathrm{U}(q)) & =\mathrm{U}(\operatorname{minh}(q)), & \operatorname{minh}(\mathrm{D}(q))=\mathrm{D}(\operatorname{minh}(\mathrm{q})) .
\end{array}
$$

Lemma $\forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} H x \rightarrow{ }^{\mathrm{co}} G x\right), \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} G x \rightarrow{ }^{\mathrm{Co}} H x\right)$.
Extracted Program: htog: $\mathbf{H} \rightarrow \mathbf{G}$ and gtoh: $\mathbf{G} \rightarrow \mathbf{H}$:

$$
\begin{aligned}
\operatorname{htog}\left(\operatorname{Fin}_{\mathrm{a}}(p)\right) & =\mathrm{LR}_{\mathrm{a}}(\operatorname{ming}(\mathrm{p})), & & \operatorname{gtoh}\left(\mathrm{LR}_{\mathrm{a}}(p)\right)=\operatorname{Fin}_{\mathrm{a}}(\operatorname{ming}(\mathrm{p})), \\
\operatorname{htog}(\mathrm{D}(q)) & =\mathrm{U}(\mathrm{q}), & & \operatorname{gtoh}(\mathrm{U}(q))=\mathrm{D}(\mathrm{q})
\end{aligned}
$$

Lemma A $\forall x, y \in{ }^{\mathrm{co} G} G \exists_{x^{\prime}, y^{\prime} \in{ }^{\mathrm{co} G} G}^{\mathrm{nc}} \nexists_{i}\left(\frac{x+y}{2}=\frac{x^{\prime}+y^{\prime}+i}{4}\right)$.
Extracted Program: lemA: $\mathbf{G} \times \mathbf{G} \rightarrow\{-2,-1,0,1,2\} \times \mathbf{G} \times \mathbf{G}$ $\operatorname{lem} A\left(\operatorname{LR}_{a}(p), \operatorname{LR}_{a^{\prime}}\left(p^{\prime}\right)\right)=\left(\mathrm{a}+\mathrm{a}^{\prime}, \operatorname{mult}(-\mathrm{a}, \mathrm{p}), \operatorname{mult}\left(-\mathrm{a}^{\prime}, \mathrm{p}^{\prime}\right)\right)$, $\operatorname{lem} A\left(\operatorname{LR}_{a}(p), \mathrm{U}(q)\right)=(\mathrm{a}, \operatorname{mult}(-\mathrm{a}, \mathrm{p}), \operatorname{htog}(\mathrm{q}))$,
$\operatorname{lem} A\left(\mathrm{U}(q), \mathrm{LR}_{a}(p)\right)=(\mathrm{a}, \operatorname{htog}(\mathrm{q}), \operatorname{mult}(-\mathrm{a}, \mathrm{p}))$, $\operatorname{lem} A\left(\mathrm{U}(q), \mathrm{U}\left(q^{\prime}\right)\right) \quad=\left(0\right.$, htog (q), htog $\left.\left(\mathrm{q}^{\prime}\right)\right)$.

Lemma B $\forall_{i} \forall_{x, y \in \in^{\mathrm{co}} G}^{\mathrm{nc}} \exists_{x^{\prime}, y^{\prime} \in{ }^{\mathrm{co} G} G}^{\mathrm{r}} \exists_{j, d}\left(\frac{x+y+i}{4}=\frac{\frac{x^{\prime}+y^{\prime}+j}{4}+d}{2}\right)$.
Extracted Program: lemB: $\{-2,-1,0,1,2\} \times \mathbf{G} \times \mathbf{G} \rightarrow$ $\{-2,-1,0,1,2\} \times\{-1,0,1\} \times \mathbf{G} \times \mathbf{G}$ $\operatorname{lem} B\left(i, \operatorname{LR}_{a}(p), \operatorname{LR}_{a^{\prime}}\left(p^{\prime}\right)\right)=\left(J\left(\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{i}\right), \mathrm{K}\left(\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{i}\right), \operatorname{mult}(-\mathrm{a}, \mathrm{p}), \operatorname{mult}(\right.$ $\operatorname{lem} B\left(i, \mathrm{LR}_{a}(p), \mathrm{U}(q)\right)=(\mathrm{J}(\mathrm{a}, 0, \mathrm{i}), \mathrm{K}(\mathrm{a}, 0, \mathrm{i}), \operatorname{mult}(-\mathrm{a}, \mathrm{p}), \operatorname{htog}(\mathrm{q}$ $\operatorname{lem} B\left(i, \mathrm{U}(q), \mathrm{LR}_{\mathrm{a}}(p)\right)=(\mathrm{J}(0, \mathrm{a}, \mathrm{i}), \mathrm{K}(0, \mathrm{a}, \mathrm{i}), \operatorname{htog}(\mathrm{q}), \operatorname{mult}(-\mathrm{a}, \mathrm{p}$ $\operatorname{lem} B\left(i, \mathrm{U}(q), \mathrm{U}\left(q^{\prime}\right)\right) \quad=\left(\mathrm{J}(0,0, \mathrm{i}), \mathrm{K}(0,0, \mathrm{i})\right.$, htog (q), htog $\left.\left(\mathrm{q}^{\prime}\right)\right)$.

Lemma C $\forall_{z}^{\text {nc }}\left(\exists_{x, y E^{\mathrm{cog}}}^{\mathrm{r}} \exists_{i}\left(z=\frac{x+y+i}{4}\right) \rightarrow\right.$ $\left.{ }^{\mathrm{co}} G(z)\right), \forall_{z}^{\mathrm{nc}}\left(\exists_{x, y \in{ }^{\mathrm{r}} G} \exists_{i}\left(z=\frac{x+y+i}{4}\right) \rightarrow{ }^{\mathrm{co}} H(z)\right)$.

Extracted Program:lemCg: $\{-2,-1,0,1,2\} \times \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$, lemCh: $\{-2,-1,0,1,2\} \times \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{H}$.

$$
\begin{aligned}
& \operatorname{lemCg}\left(\mathrm{i}, \mathrm{p}, \mathrm{p}^{\prime}\right)=\operatorname{let}\left(\mathrm{i}_{1}, \mathrm{~d}, \mathrm{p}_{1}, \mathrm{p}_{1}^{\prime}\right)=\operatorname{lemB}\left(\mathrm{i}, \mathrm{p}, \mathrm{p}^{\prime}\right) \text { in } \\
& \text { case (d) of } \\
& 0 \rightarrow \mathrm{U}\left(\mathrm{lemCh}\left(\mathrm{i}, \mathrm{p}_{1}, \mathrm{p}_{1}^{\prime}\right)\right) \\
& \mathrm{a} \rightarrow \operatorname{LR}_{\mathrm{a}}\left(\operatorname{lemCg}\left(-\mathrm{ai}, \operatorname{mult}\left(-\mathrm{a}, \mathrm{p}_{1}\right), \operatorname{mult}\left(-\mathrm{a}, \mathrm{p}_{1}^{\prime}\right)\right)\right) \text {, } \\
& \operatorname{lemCh}\left(i, p, p^{\prime}\right)=\operatorname{let}\left(i_{1}, d, p_{1}, p_{1}^{\prime}\right)=\operatorname{lemB}\left(i, p, p^{\prime}\right) \text { in } \\
& \text { case (d) of } \\
& 0 \rightarrow \mathrm{D}\left(\operatorname{lemCh}\left(\mathrm{i}, \mathrm{p}_{1}, \mathrm{p}_{1}^{\prime}\right)\right) \\
& \mathrm{a} \rightarrow \operatorname{Fin}_{\mathrm{a}}\left(\operatorname{lemCg}\left(-\mathrm{a} * \mathrm{i}, \operatorname{mult}\left(-\mathrm{a}, \mathrm{p}_{1}\right), \operatorname{mult}\left(-\mathrm{a}, \mathrm{p}_{1}^{\prime}\right)\right)\right) \text {. }
\end{aligned}
$$

Theorem $\forall_{x, y}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G(x) \rightarrow{ }^{\mathrm{co}} G(y) \rightarrow{ }^{\mathrm{co}} G\left(\frac{x+y}{2}\right)\right)$.
Extracted Program: average: $\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$

$$
\operatorname{average}\left(p, p^{\prime}\right)=\operatorname{lemCg}\left(\operatorname{lemA}\left(p, p^{\prime}\right)\right)
$$

Recall the original Gray-code program we had is
av $(0: a s)(0: b s)=0: a v$ as $b s$
av ($1: \mathrm{as}$) ($1: \mathrm{bs}$) $=1: \mathrm{av}$ as bs
av ($0: a s$) ($1: \mathrm{bs}$) = $\mathrm{c}: 1: \mathrm{nh}$ cs where $\mathrm{c}: \mathrm{cs}=\mathrm{av}$ as (nh bs)
av (1:as) (0:bs) = c:1:nh cs where c:cs $=$ av (nh as) bs
av (a:1:as) (b:1:bs) = c:1:nh cs where $c: c s=a v(a: n h ~ a s)(b: n h ~ b s)$
av (a:1:0:as) ($0: 0: \mathrm{bs}$) $=0: a v(a: 1: a s)(1: n h$ bs)
av (a:1:0:as) ($1: 0: \mathrm{bs}$) = $1: \mathrm{av}$ (not a:1:as) ($1: \mathrm{nh}$ bs)

av (a:1:0:as) ($1: \mathrm{b}: 1: \mathrm{bs}$) = 1:1:av (a:nh as) (not b:nh bs)

```
av (0:0:as) (b:1:0:bs) = 0:av (1:nh as) (b:1:bs)
av (1:0:as) (b:1:0:bs) = 1:av (1:nh as) (not b:1:bs)
av (0:a:1:as) (b:1:0:bs) = 0:1:av (not a:nh as) (not b:nh bs)
av (1:a:1:as) (b:1:0:bs) = 1:1:av (not a:nh as) (b:nh bs)
```

It seems like a non-equivalent program. Pre-Gray code is redundant and there are many different ways to output the same Gray-code.

1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code

Pure-Gray code

- We studied algorithms based on (a bit redundant) Gray-code rather than pure Gray-code. Gray-code allowed all the increasing sequences in the domain of finite pre-Gray codes.
- However, we are interested in Gray-code because it is not redundant.
- Can we input/output pure Gray-code?

Pure-Gray code

- We studied algorithms based on (a bit redundant) Gray-code rather than pure Gray-code. Gray-code allowed all the increasing sequences in the domain of finite pre-Gray codes.
- However, we are interested in Gray-code because it is not redundant.
- Can we input/output pure Gray-code?

Conversion from Gray code to pure-Gray code

- There is a conversion from Gray-code to Pure Gray-code.

Conversion from Gray code to pure-Gray code

- There is a conversion from Gray-code to Pure Gray-code.

Conversion from Gray code to pure-Gray code

- There is a conversion from Gray-code to Pure Gray-code.

- We extract this conversion from a constructive proof.

Conversion from Gray code to pure-Gray code

- We define variants $\Gamma^{\prime}, \Delta^{\prime}$ of the operators Γ, Δ by
$\Gamma^{\prime}(X, Y):=\left\{y \left\lvert\, \exists_{x \in X}^{\mathrm{r}} \exists_{a}\left(y=-a \frac{x-1}{2} \wedge y \neq 0\right) \vee \exists_{x \in Y}^{\mathrm{r}}\left(y=\frac{x}{2} \wedge y \neq \pm \frac{1}{2}\right)\right.\right\}$,
$\Delta^{\prime}(X, Y):=\left\{y \left\lvert\, \exists_{x \in X}^{\mathrm{r}} \exists_{a}\left(y=a \frac{x+1}{2} \wedge y \neq 0\right) \vee \exists_{x \in Y}^{\mathrm{r}}\left(y=\frac{x}{2} \wedge y \neq \pm \frac{1}{2}\right)\right.\right\}$
- We define $\left({ }^{\mathrm{co}} M,{ }^{\mathrm{co}} N\right):=\nu_{(X, Y)}\left(\Gamma^{\prime}(X, Y), \Delta^{\prime}(X, Y)\right)$.
- Proposition For cototal ideals p in \mathbf{G} and $x \in \mathbb{I}$ $\left({ }^{\mathrm{co}} M\right)^{r}(p, x) \leftrightarrow \varphi(p)$ is a pure Gray code of x.

Extraction of the conversion from Gray to Pure Gray

Theorem $\forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G(x) \rightarrow{ }^{\mathrm{co}} M(x)\right), \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} H(x) \rightarrow{ }^{\mathrm{co}} N(x)\right)$.
Extracted Program: g: $\mathbf{G} \rightarrow \mathbf{G}$ and $\mathrm{h}: \mathbf{H} \rightarrow \mathbf{H}$, defined by (with a for LR_{a})

$$
\begin{array}{llll}
\mathrm{g}(\mathrm{a}(\overline{\mathrm{I}}(\mathrm{p}))) & =\mathrm{a}(\mathrm{~g}(\overline{1}(\mathrm{p}))) & \mathrm{h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\overline{\mathrm{I}}(\mathrm{p})))\right) & =\mathrm{D}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right) \\
\mathrm{g}(\mathrm{a}(1(\overline{1}(\mathrm{p})))) & =\mathrm{U}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right) & \mathrm{h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(1(\mathrm{p})))\right)=\operatorname{Fin}_{\mathrm{a}}(\mathrm{~g}(\overline{1}(1(\mathrm{p})))) \\
\mathrm{g}(\mathrm{a}(1(1(\mathrm{p})))) & =\mathrm{a}(\mathrm{~g}(1(1(\mathrm{p})))) & \left.\left.\mathrm{h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{U}(\mathrm{q})))\right)\right)=\operatorname{Fin}_{\mathrm{a}}(\mathrm{~g}(\overline{1}(\mathrm{U}(\mathrm{q}))))\right) \\
\mathrm{g}(\mathrm{a}(1(\mathrm{U}(\mathrm{q})))) & =\mathrm{a}(\mathrm{~g}(1(\mathrm{U}(\mathrm{q})))) & \mathrm{h}\left(\operatorname{Fin}_{\mathrm{a}}(1(\mathrm{p}))\right)=\operatorname{Fin}_{\mathrm{a}}(\mathrm{~g}(1(\mathrm{p}))) \\
\mathrm{g}(\mathrm{a}(\mathrm{U}(\mathrm{q}))) & =\mathrm{a}(\mathrm{~g}(\mathrm{U}(\mathrm{q}))) & \mathrm{h}\left(\operatorname{Fin}_{\mathrm{a}}(\mathrm{U}(\mathrm{q}))\right) & =\operatorname{Fin}_{\mathrm{a}}(\mathrm{~g}(\mathrm{U}(\mathrm{q}))) \\
\left.\mathrm{g}\left(\mathrm{U}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right)\right) & =\mathrm{U}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right) & \mathrm{h}\left(\mathrm{D}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right)=\mathrm{D}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\overline{1}(\mathrm{p}))\right)\right) \\
\left.\mathrm{g}\left(\mathrm{U}\left(\operatorname{Fin}_{\mathrm{a}}(1(\mathrm{p}))\right)\right)\right) & =\mathrm{a}(\mathrm{~g}(1(1(\mathrm{p})))) & \mathrm{h}\left(\mathrm{D}\left(\operatorname{Fin}_{\mathrm{a}}(1(\mathrm{p}))\right)\right)=\operatorname{Fin}_{\mathrm{a}}(\mathrm{~g}(\overline{1}(1(\mathrm{p})))) \\
\mathrm{g}\left(\mathrm{U}\left(\operatorname{Fin}_{\mathrm{a}}(\mathrm{U}(\mathrm{q}))\right)\right) & =\mathrm{U}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\mathrm{U}(\mathrm{q}))\right)\right) & \mathrm{h}\left(\mathrm{D}\left(\operatorname{Fin}_{\mathrm{a}}(\mathrm{U}(\mathrm{q}))\right)\right)=\mathrm{D}\left(\mathrm{~h}\left(\operatorname{Fin}_{\mathrm{a}}(\mathrm{U}(\mathrm{q}))\right)\right) \\
\mathrm{g}(\mathrm{U}(\mathrm{D}(\mathrm{q}))) & =\mathrm{U}(\mathrm{~h}(\mathrm{D}(\mathrm{q}))) & \mathrm{h}(\mathrm{D}(\mathrm{D}(\mathrm{q}))) & =\mathrm{D}(\mathrm{~h}(\mathrm{D}(\mathrm{q})))
\end{array}
$$

- When f is a program which input/output Gray-code, $g \circ f$ is a program which outputs pure Gray-code to pure Gray-code.
- Therefore, every program that handles Gray-code can be converted to a program handling pure Gray-code.

Concluding remarks

- What kind of benefits do we have with non-redundant codes? Though it looks difficult to make efficient programs,
- subspace is easier to imagine than quotient,
- a program is directly operating on real number,
- it is a direct working application of domain theory,
- (I hope some practical meaning...)
- We used representation of Gray-code in pre-Gray code, i.e., ordinary sequences and applied the standard theory of coinduction and program extraction. Is there a theory that manipulate Gray-code and $1 \perp$-sequences more directly? Ulrich's talk is in that direction.

References

[1] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Hideki Tsuiki. Logic for Gray-code computation. In D. Probst and P. Schuster (eds), Concepts of Proof in Mathematics, Philosophy, and Computer Science, De Gruyter, 2017.
[2] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press, 2012.
[3] Hideki Tsuiki. Real number computation through Gray code embedding. Theoretical Computer Science, 284:467485, 2002.

Thank you very much.

1. Gray code of real number
2. Algebra/coalgebra of (pre-)Gray code
3. Program extraction based on pre-Gray code
4. Pure Gray code
5. Appendix

Extraction of real number algorithms (Signed Digit case)

- For signed digit rep., we consider the strictly positive operator

$$
\Phi(X):=\left\{x \left\lvert\, \exists_{x^{\prime} \in X^{\prime}} \exists_{d \in\{-1,0,1\}}\left(x=\frac{x^{\prime}+d}{2}\right)\right.\right\} .
$$

- We define ${ }^{\text {col }}:=\nu_{X} \Phi(X)$ as the greatest fixed point of Φ.
- col satisfies the (strengthened) coinduction axiom. That is,

$$
X \subseteq \Phi\left({ }^{\mathrm{co}} / \cup X\right) \rightarrow X \subseteq{ }^{\mathrm{c}}
$$

- Next, we consider an operator on pairs (v, x) where v is a signed digit stream and x is a real number.

$$
\left.\Phi^{r}(Y):=\left\{(v, x) \left\lvert\, \exists_{\left(v^{\prime}, x^{\prime}\right) \in Y}^{\mathrm{nc}} \exists_{d}\left(x=\frac{x^{\prime}+d}{2} \wedge v=\mathrm{C}_{d}\left(v^{\prime}\right)\right)\right.\right)\right\} .
$$

- As its greatest fixed point, we have a relation $\left({ }^{\mathrm{co}}\right)^{r}$ called the realizability extension of ${ }^{\mathrm{co} /}$ between signed digit streams $v=\left[a_{1} a_{2} \ldots\right]$ and real numbers x.

$$
\left({ }^{\mathrm{co}} /\right)^{r}:=\nu_{Y} \Phi^{r}(Y)
$$

- Proposition: $\left({ }^{\text {col }}\right)^{r}(v, x) \leftrightarrow x=\llbracket v \rrbracket_{\text {SD }}$.
- In order to extract a program that computes a function, for example the average function, we prove

$$
\forall_{x, x^{\prime}}^{\mathrm{nc}}\left({ }^{\mathrm{co}} /(x) \rightarrow{ }^{\mathrm{co}} /\left(x^{\prime}\right) \rightarrow{ }^{\mathrm{co}}\left(\frac{x+x^{\prime}}{2}\right)\right)
$$

- Then, Minlog system will (by the Soundness theorem) extract from the proof a function term f which satisfies

$$
\left({ }^{\mathrm{co}} /\right)^{\mathrm{r}}(v, x) \rightarrow\left({ }^{\mathrm{Co}} /\right)^{\mathrm{r}}\left(v^{\prime}, x^{\prime}\right) \rightarrow\left({ }^{\mathrm{Co}} /\right)^{\mathrm{r}}\left(f\left(v, v^{\prime}\right), \frac{x+x^{\prime}}{2}\right)
$$

From the above proposition, this term is a program for the average function,

Extraction of real number algorithms (pre-Gray code case)

- For the case of pre-Gray code, \mathbf{G} and \mathbf{H} are mutually recursively defined cototal ideals. Therefore, we consider the binary strictly positive operator

$$
\begin{aligned}
& \Gamma(X, Y):=\left\{y \left\lvert\, \exists_{x \in X}^{\mathrm{r}} \exists_{a}\left(y=-a \frac{x-1}{2}\right) \vee \exists_{x \in Y}^{\mathrm{r}}\left(y=\frac{x}{2}\right)\right.\right\}, \\
& \Delta(X, Y):=\left\{y \left\lvert\, \exists_{x \in X}^{\mathrm{r}} \exists_{a}\left(y=a \frac{x+1}{2}\right) \vee \exists_{x \in Y}^{\mathrm{r}}\left(y=\frac{x}{2}\right)\right.\right\}
\end{aligned}
$$

- Define $\left({ }^{\mathrm{co}} G,{ }^{\mathrm{co}} H\right):=\nu_{(X, Y)}(\Gamma(X, Y), \Delta(X, Y))$ as the greatest fixed point of (Γ, Δ).
- We have the (strengthened) simultaneous coinduction axiom.

$$
\begin{aligned}
(X, Y) \subseteq\left(\Gamma\left({ }^{\mathrm{C}} G \cup X,{ }^{\mathrm{CO}} H \cup Y\right), \Delta\right. & \left.\left({ }^{\mathrm{C}} G \cup X,{ }^{\mathrm{Co}} \mathrm{H} \cup Y\right)\right) \\
& \rightarrow(X, Y) \subseteq\left({ }^{\mathrm{C}} G,{ }^{\mathrm{co}} H\right) .
\end{aligned}
$$

- The realizability extension $\left.\left(\left({ }^{\mathrm{Co}} G\right)^{r},\left({ }^{(\mathrm{Co}} \mathrm{H}\right)\right)^{r}\right)$ is a pair of binary predicates on cototal ideals p in \mathbf{G} or q in \mathbf{H} (respectively) and real numbers x.
- For $x \in \mathbb{I}$ and cototal ideals p in \mathbf{G} and q in \mathbf{H}

$$
\begin{aligned}
& \left({ }^{\mathrm{Co}} G\right)^{\mathrm{r}}(p, x) \leftrightarrow x=\llbracket p \rrbracket_{\mathbf{G}}, \\
& \left({ }^{\mathrm{C}} H\right)^{\mathrm{r}}(q, x) \leftrightarrow x=\llbracket p \rrbracket_{\mathbf{H}}
\end{aligned}
$$

- From a proof of

$$
\forall_{x, y}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G(x) \rightarrow{ }^{\mathrm{co}} G(y) \rightarrow{ }^{\mathrm{co}} G\left(\frac{x+y}{2}\right)\right)
$$

for exmaple, we obtain a program for the average, which transforms pre-Gray codes of the arguments to a pre-Gray code of the result.

- Coalgebras appearing in the program

$$
\begin{aligned}
\mathbf{I} & =\mathrm{C}\{\overline{1}, 0,1\} \times \mathbf{I} \\
\mathbf{G} & =\operatorname{LR}\{\overline{1}, 1\} \times \mathbf{G}+\mathrm{U} \mathbf{H}, \\
\mathbf{H} & =\operatorname{Fin}\{\overline{1}, 1\} \times \mathbf{G}+\mathrm{D} \mathbf{H} .
\end{aligned}
$$

