Weak König's Lemma for Convex Trees

Takako Nemoto

JAIST (joint work with Josef Berger, Hajime Ishihara and Takayuki Kihara)

Interval Analysis and Constructive Mathematics Oaxaca

Intermediate Value Theorem (IVT)

Intermediate Value Theorem (IVT) If $f : [0,1] \rightarrow \mathbf{R}$ is a uniformly continuous function with f(0) < 0 < f(1), then there exists $x \in [0,1]$ such that f(x) = 0.

without Countable Choice, without LEM

$$\mathbf{EL} \vdash \mathbf{WKL} \longrightarrow \mathbf{IVT} \longrightarrow \mathbf{LLPO}$$

with Countable Choice, without LEM

 $\mathbf{BISH} \vdash \quad \mathrm{WKL} \quad \longleftrightarrow \quad \mathrm{IVT} \quad \longleftrightarrow \quad \mathrm{LLPO}$

without Countable Choice, with LEM

 $\mathbf{RCA}_0 \vdash \quad \text{IVT, LLPO,} \\ \mathbf{RCA}_0 \nvDash \quad \text{WKL}$

WKL and IVT

- From the last observation RCA₀ ⊢ IVT, LLPO and RCA₀ ⊭ WKL, we do not have IVT → WKL in general.
- WKL states "Any infinite binary tree has a path".
- By restricting infinite binary trees to convex ones, get a principle which is equivalent to IVT over some suitable setting (without CC, without LEM).

Real number and function

• A sequence $x = (p_n)_n$ of rationals are *regular* if

$$\forall mn(|p_m - p_n| < 2^{-m} + 2^{-n})$$

- We say x is a real $(x \in \mathbf{R})$ if x is regular. For $x = (p_n)_n$, x_n denotes p_n .
- ▶ The equivalence relation =_R between reals are defined by

$$(p_n)_n =_{\mathbf{R}} (q_n)_n \stackrel{\text{def}}{\longleftrightarrow} \forall n (|p_n - q_n| \le 2^{-n+2})$$

The following functions are well-defined

$$\begin{aligned} &(x \pm_{\mathbf{R}} y)_n = x_{2n+1} \pm y_{2n+1} & |x|_n = |x_n| \\ &\max\{x, y\}_n = \max\{x_n, y_n\} & \min\{x, y\}_n = \min\{x_n, y_n\} \\ &(x \cdot_{\mathbf{R}} y)_n = x_{2kn+1} \cdot y_{2kn+1}, & \text{where } k = \max\{|x|_0 + 2, |y|_0 + 2\} \end{aligned}$$

Uniformly continuous function on [0,1]

 \blacktriangleright A uniformly continuous function $f:[0,1]\rightarrow {\bf R}$ consists of

$$\varphi: \mathbf{Q} \times \mathbf{N} \to \mathbf{Q}, \qquad \qquad \nu: \mathbf{N} \to \mathbf{N}$$

s.t.

$$(f(p))_n = \varphi(p, n) \in \mathbf{R}$$

$$\forall n \in \mathbf{N} \forall p, q \in \mathbf{Q}(|p-q| < 2^{-\nu(n)} \to |f(p) - f(q)| < 2^{-n}).$$

For each $x \in [0,1]$, $f(x) \in \mathbf{R}$ is given by

 $(f(x))_n = \varphi(\min\{\max\{x_{\mu(n)}, 0\}, 1\}, n+1),$

where $\mu(n) = \nu(n+1) + 1$.

Strict order $<_{\mathbf{R}}$

Let x and y are reals.

 $\mathsf{Order} <_{\mathbf{R}}$

- x is positive if $\exists n(x_n > 2^{-n+2})$.
- x is negative if $\exists n(x_n < -2^{-n+2})$.
- $x <_{\mathbf{R}} y$ if $y -_{\mathbf{R}} x$ is positive.

Some properties of $<_{\mathbf{R}}$

$$\bullet \ x =_{\mathbf{R}} x' \land y =_{\mathbf{R}} y' \land x <_{\mathbf{R}} y \to x' <_{\mathbf{R}} y'$$

- We have $\forall x, y \in \mathbf{R} \forall n (x_n < y_n \lor x_n = y_n \lor y_n < x_n).$
- ▶ We CANNOT prove $\forall x, y \in \mathbf{R}(x <_{\mathbf{R}} y \lor x =_{\mathbf{R}} y \lor y <_{\mathbf{R}} x)$ constructively. (LPO)

$\mathsf{Order} \leq_\mathbf{R}$

Let x and y are reals.

 $\mathsf{Order} \leq_\mathbf{R}$

• $x \leq y$ if $y - \mathbf{R} x$ is not positive.

Some properties of $\leq_{\mathbf{R}}$

$$\blacktriangleright \ x =_{\mathbf{R}} x' \land y =_{\mathbf{R}} y' \land x \leq_{\mathbf{R}} y \to x' \leq_{\mathbf{R}} y'$$

- ▶ We CANNOT prove $\forall x, y \in \mathbf{R}(x \leq_{\mathbf{R}} y \lor_{\mathbf{R}} y \leq_{\mathbf{R}} x)$ constructively. (LLPO)
- ▶ We CANNOT prove $\forall x, y \in \mathbf{R}(x \leq_{\mathbf{R}} y \lor_{\mathbf{R}} \neg x \leq_{\mathbf{R}} y)$ constructively. (WLPO)
- We CAN prove that $\forall x, y \in \mathbf{R}(\neg x <_{\mathbf{R}} y \to y \leq_{\mathbf{R}} x)$.

In what follows, we omit ${\bf R}$ in =_{{\bf R}^{,}}+_{{\bf R}^{,}}-_{{\bf R}^{,}}<_{{\bf R}^{,}}\leq_{{\bf R}^{,}} etc..

IVT in constructive mathematics

Usual proof of IVT

For a uniformly continuous function $f:[0,1] \to \mathbf{R}$, define l_n and r_n as follows:

$$\begin{split} l_0 &= 0, r_0 = 1; \\ l_{n+1} &= \begin{cases} \frac{l_n + r_n}{2} & \text{if } f(\frac{l_n + r_n}{2}) \leq 0 \\ l_n & \text{otherwise} \end{cases}; \\ r_{n+1} &= l_{n+1} + 2^{-(n+1)}. \end{split}$$

Take $x = \lim_{n \to \infty} l_n$. Then f(x) = 0.

IVT in constructive mathematics

Usual proof of IVT

For a uniformly continuous function $f:[0,1] \to \mathbf{R}$, define l_n and r_n as follows:

$$l_{0} = 0, r_{0} = 1;$$

$$l_{n+1} = \begin{cases} \frac{l_{n}+r_{n}}{2} & \text{if } f(\frac{l_{n}+r_{n}}{2}) \leq 0\\ l_{n} & \text{otherwise} \end{cases}; \quad \leftarrow \text{WLPO}$$

$$r_{n+1} = l_{n+1} + 2^{-(n+1)}.$$

Take $x = \lim_{n \to \infty} l_n$. Then f(x) = 0.

Some notations for binary sequence

- $\{0,1\}^*$: the set of finite sequences of 0 and 1.
- |s|: the length of binary sequence.
- s ≤ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for some k < |t|.</p>

►
$$s * t = \langle s(0), ..., s(|s| - 1), t(0), ...t(|t| - 1) \rangle$$

Some notations for binary sequence

- $\{0,1\}^*$: the set of finite sequences of 0 and 1.
- |s|: the length of binary sequence.
- s ≤ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for some k < |t|.</p>

►
$$s * t = \langle s(0), ..., s(|s| - 1), t(0), ...t(|t| - 1) \rangle$$

Definition

T ⊆ {0,1}* is a binary tree if it is closed under initial segments, i.e., s ≤ t ∧ t ∈ T implies s ∈ T.

Some notations for binary sequence

- $\{0,1\}^*$: the set of finite sequences of 0 and 1.
- |s|: the length of binary sequence.
- s ≤ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for some k < |t|.</p>

►
$$s * t = \langle s(0), ..., s(|s| - 1), t(0), ...t(|t| - 1) \rangle$$

Definition

- T ⊆ {0,1}* is a binary tree if it is closed under initial segments, i.e., s ≤ t ∧ t ∈ T implies s ∈ T.
- For a tree T, $s \in T$ is a *branch* of T.

Some notations for binary sequence

- $\{0,1\}^*$: the set of finite sequences of 0 and 1.
- |s|: the length of binary sequence.
- s ≤ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for some k < |t|.</p>

►
$$s * t = \langle s(0), ..., s(|s| - 1), t(0), ...t(|t| - 1) \rangle$$

Definition

- T ⊆ {0,1}* is a binary tree if it is closed under initial segments, i.e., s ≤ t ∧ t ∈ T implies s ∈ T.
- For a tree T, $s \in T$ is a *branch* of T.
- A tree T is infinite if T is an infinite set.
 Note that an infinite tree contains branches with any length.

Some notations for binary sequence

- $\{0,1\}^*$: the set of finite sequences of 0 and 1.
- |s|: the length of binary sequence.
- s ≤ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for some k < |t|.</p>

►
$$s * t = \langle s(0), ..., s(|s| - 1), t(0), ...t(|t| - 1) \rangle$$

Definition

- T ⊆ {0,1}* is a binary tree if it is closed under initial segments, i.e., s ≤ t ∧ t ∈ T implies s ∈ T.
- For a tree T, $s \in T$ is a *branch* of T.
- ► A tree T is infinite if T is an infinite set. Note that an infinite tree contains branches with any length.
- ▶ A path of T is a function $\alpha : \mathbf{N} \to \{0, 1\}$ s.t. $\overline{\alpha}n \in T$ for any n, where $\overline{\alpha}n = \langle \alpha(0), ..., \alpha(n-1) \rangle$.

WKL

Weak König's Lemma (WKL)

Any infinite binary tree $T \subseteq \{0,1\}^*$ has a path.

Fact

WKL is usually proved as follows:
 For an infinite tree T, define α by

$$\alpha(n) = \begin{cases} 0 & \text{if } \{t \in T : \overline{\alpha}n \preceq t\} \text{ is infinite;} \\ 1 & \text{otherwise.} \end{cases} \leftarrow \text{WLPO}$$

- Constructively, the above construction of α is not allowed.
- Some infinite recursive trees have no recursive path.

WKL for convex trees

Definition

- $s \sqsubset t$ iff $\exists u \preceq s(u * \langle 0 \rangle \preceq s \land u * \langle 1 \rangle \preceq t)$.
- For a tree T, let $T_n = \{s \in T : |s| = n\}.$
- ▶ A tree T is convex if |u| = n, $s \sqsubseteq u \sqsubseteq t$, $s \in T_n$ and $t \in T_n$ imply $u \in T$ for each n.

WKL_c

Any infinite binary convex tree has a path.

Fact Trivially WKL implies WKL_c.

Assignment of intervals to binary sequences

For each $s \in \{0,1\}^*$, let $I_s = [l_s, r_s]$ be as follows:

Assignment of intervals to binary sequences

For each $s \in \{0,1\}^*$, let $I_s = [l_s, r_s]$ be as follows:

Assignment of intervals to binary sequences

For each $s \in \{0,1\}^*$, let $I_s = [l_s, r_s]$ be as follows:

▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that

$$\begin{split} &1. \ |a_n| = |b_n| = n \text{ and } a_n \sqsubseteq b_n, \\ &2. \ f(l_{a_n}) < 0 < f(r_{b_n}), \\ &3. \ \forall c \in \{0,1\}^n (a_n \sqsubset c \sqsubseteq b_n \to |f(l_c)| < 2^{-n}). \end{split}$$

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that

1.
$$|a_n| = |b_n| = n$$
 and $a_n \sqsubseteq b_n$,
2. $f(l_{a_n}) < 0 < f(r_{b_n})$,
3. $\forall c \in \{0,1\}^n (a_n \sqsubset c \sqsubseteq b_n \rightarrow |f(l_c)| < 2^{-n})$.

▶ Let $T_n = \{u \in \{0,1\}^n \mid a_n \sqsubseteq u \sqsubseteq b_n\}$ for each n, and let $T = \bigcup_{n=0}^{\infty} T_n$.

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that

1.
$$|a_n| = |b_n| = n$$
 and $a_n \sqsubseteq b_n$,
2. $f(l_{a_n}) < 0 < f(r_{b_n})$,
3. $\forall c \in \{0, 1\}^n (a_n \sqsubset c \sqsubseteq b_n \to |f(l_c)| < 2^{-n})$.

- ▶ Let $T_n = \{u \in \{0,1\}^n \mid a_n \sqsubseteq u \sqsubseteq b_n\}$ for each n, and let $T = \bigcup_{n=0}^{\infty} T_n$.
- Then T is an infinite convex tree, and hence there exists a path α in T.

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that

1.
$$|a_n| = |b_n| = n$$
 and $a_n \sqsubseteq b_n$,
2. $f(l_{a_n}) < 0 < f(r_{b_n})$,
3. $\forall c \in \{0, 1\}^n (a_n \sqsubset c \sqsubseteq b_n \to |f(l_c)| < 2^{-n})$.

- ▶ Let $T_n = \{u \in \{0,1\}^n \mid a_n \sqsubseteq u \sqsubseteq b_n\}$ for each n, and let $T = \bigcup_{n=0}^{\infty} T_n$.
- Then T is an infinite convex tree, and hence there exists a path α in T.

• Let
$$x = \sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$$
.

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that
 - 1. $|a_n| = |b_n| = n$ and $a_n \sqsubseteq b_n$, 2. $f(l_{a_n}) < 0 < f(r_{b_n})$, 3. $\forall c \in \{0, 1\}^n (a_n \sqsubset c \sqsubseteq b_n \to |f(l_c)| < 2^{-n})$.
- ▶ Let $T_n = \{u \in \{0,1\}^n \mid a_n \sqsubseteq u \sqsubseteq b_n\}$ for each n, and let $T = \bigcup_{n=0}^{\infty} T_n$.
- Then T is an infinite convex tree, and hence there exists a path α in T.
- Let $x = \sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$.
- If |f(x)| > 0, then we have a contradiction.

- ▶ Let $f : [0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that f(0) < 0 and 0 < f(1).
- Define a_n and b_n so that

1.
$$|a_n| = |b_n| = n$$
 and $a_n \sqsubseteq b_n$,
2. $f(l_{a_n}) < 0 < f(r_{b_n})$,
3. $\forall c \in \{0, 1\}^n (a_n \sqsubset c \sqsubseteq b_n \to |f(l_c)| < 2^{-n})$.

- ▶ Let $T_n = \{u \in \{0,1\}^n \mid a_n \sqsubseteq u \sqsubseteq b_n\}$ for each n, and let $T = \bigcup_{n=0}^{\infty} T_n$.
- Then T is an infinite convex tree, and hence there exists a path α in T.
- Let $x = \sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$.
- If |f(x)| > 0, then we have a contradiction.
- Thus f(x) = 0.

Construction of a_n and b_n

- ► Let $S = \{u \in \{0, 1\}^{n+1} \mid \exists v \in \{0, 1\}^n (a_n \sqsubseteq v \sqsubseteq b_n \land v \preceq u)\}$
- Divide S into S_- , S_0 and S_+ s.t.

$$c \in S_{-} \to (f(l_{c}))_{n+2} < -2^{-(n+2)},$$

$$c \in S_{0} \to |(f(l_{c}))_{n+2}| \le 2^{-(n+2)},$$

$$c \in S_{+} \to 2^{-(n+2)} < (f(l_{c}))_{n+2}.$$

- If S_− is inhabited, then choose the right-most such c ∈ S as a_{n+1}. Otherwise set a_{n+1} = a_n * ⟨0⟩.
- If {u ∈ S₊ | a_{n+1} ⊏ u} is inhabited, then choose the left-most such c ∈ S₊ and choose the right-most d s.t. a_{n+1} ⊑ d ⊏ c as b_{n+1}. Otherwise set b_{n+1} = b_n * ⟨1⟩.

Some lemmata for $IVT \rightarrow WKL_c$

Lemma

Let T be a tree, and let x be a real number such that

$$\forall n \exists a \in T_n(|x - l_a| < 2^{-n}).$$

Then there exists an infinite convex subtree T' of T having at most two nodes at each level, i.e., $\forall n(|T_n| \leq 2)$ and

$$\forall n \forall a' \in T'_n(|x - l_{a'}| < 2^{-n+1}).$$

Lemma

IVT implies that every infinite convex tree T s.t. $\forall n(|T_n| \leq 2)$ for each n has a path.

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0, 1\}^*$ such that $T_n = \{c \in \{0, 1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

• Let
$$f(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} f_n(x)$$
.

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

▶ Let
$$f(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} f_n(x)$$
.
▶ Then there exists $x \in [0, 1]$ such that $f(x) = 0$.

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

• Let
$$f(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} f_n(x)$$
.

- Then there exists $x \in [0,1]$ such that f(x) = 0.
- ▶ For each n, $\exists a \in T_n(|(3x-1) l_a| < 2^{-n}).$

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

• Let
$$f(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} f_n(x)$$
.

- Then there exists $x \in [0,1]$ such that f(x) = 0.
- For each n, $\exists a \in T_n(|(3x-1) l_a| < 2^{-n}).$
- There is an infinite convex subtree T' of T s.t. $\forall n(|T_n| \leq 2)$.

- ▶ Let $(a_n)_n$ and $(b_n)_n$ be sequences of $\{0,1\}^*$ such that $T_n = \{c \in \{0,1\}^n \mid a_n \sqsubseteq c \sqsubseteq b_n\}$ for each n.
- \blacktriangleright For each n, define a uniformly continuous function $f_n:[0,1]\to {\bf R}$ by

$$f_n(x) = \min\{(l_{a_n} + 1)^{-1}(3x - l_{a_n} - 1), 0\} + \max\{(2 - r_{b_n})^{-1}(3x - r_{b_n} - 1), 0\}.$$

• Let
$$f(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} f_n(x)$$
.

- Then there exists $x \in [0,1]$ such that f(x) = 0.
- ► For each n, $\exists a \in T_n(|(3x-1) l_a| < 2^{-n}).$
- There is an infinite convex subtree T' of T s.t. $\forall n(|T_n| \leq 2)$.
- By the previous lemma, there is a path in T', and hence in T.

Concluding remarks

- ► These proofs can be formalized over EL₀, which has only Σ⁰₁ induction.
- In particular, these proofs do not require countable choice.
- ▶ WKL_c can be characterized as a combination of LLPO and a fragment of countable choice.

References

Josef Berger, Hajime Ishihara, Takayuki Kihara and Takako Nemoto, The binary expansion and the intermediate value theorem in constructive reverse mathematics, submitted.

Acknowledgment

The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.