Weak König's Lemma for Convex Trees

Takako Nemoto

JAIST
(joint work with Josef Berger, Hajime Ishihara and Takayuki Kihara)
Interval Analysis and Constructive Mathematics Оахаса

Intermediate Value Theorem (IVT)

Intermediate Value Theorem (IVT)
If $f:[0,1] \rightarrow \mathbf{R}$ is a uniformly continuous function with
$f(0)<0<f(1)$, then there exists $x \in[0,1]$ such that $f(x)=0$.
without Countable Choice, without LEM

$$
\text { EL } \vdash \quad \text { WKL } \quad \longrightarrow \text { IVT } \quad \longrightarrow \text { LLPO }
$$

with Countable Choice, without LEM

$$
\text { BISH } \vdash \text { WKL } \longleftrightarrow \text { IVT } \longleftrightarrow \text { LLPO }
$$

without Countable Choice, with LEM
$\mathbf{R C A}_{0} \vdash$ IVT, LLPO, $\mathbf{R C A}_{0} \nvdash \mathrm{WKL}$

WKL and IVT

- From the last observation $\mathbf{R C A}_{0} \vdash$ IVT, LLPO and $\mathbf{R C A}_{0} \nvdash \mathrm{WKL}$, we do not have IVT \rightarrow WKL in general.
- WKL states "Any infinite binary tree has a path".
- By restricting infinite binary trees to convex ones, get a principle which is equivalent to IVT over some suitable setting (without CC, without LEM).

Real number and function

- A sequence $x=\left(p_{n}\right)_{n}$ of rationals are regular if

$$
\forall m n\left(\left|p_{m}-p_{n}\right|<2^{-m}+2^{-n}\right)
$$

- We say x is a real $(x \in \mathbf{R})$ if x is regular.

For $x=\left(p_{n}\right)_{n}, x_{n}$ denotes p_{n}.

- The equivalence relation $=_{\mathbf{R}}$ between reals are defined by

$$
\left(p_{n}\right)_{n}=\mathbf{R}\left(q_{n}\right)_{n} \stackrel{\text { def }}{\Longleftrightarrow} \forall n\left(\left|p_{n}-q_{n}\right| \leq 2^{-n+2}\right)
$$

The following functions are well-defined

$$
\begin{array}{ll}
\left(x \pm_{\mathbf{R}} y\right)_{n}=x_{2 n+1} \pm y_{2 n+1} & |x|_{n}=\left|x_{n}\right| \\
\max \{x, y\}_{n}=\max \left\{x_{n}, y_{n}\right\} & \min \{x, y\}_{n}=\min \left\{x_{n}, y_{n}\right\} \\
(x \cdot \mathbf{R} y)_{n}=x_{2 k n+1} \cdot y_{2 k n+1}, & \text { where } k=\max \left\{|x|_{0}+2,|y|_{0}+2\right\}
\end{array}
$$

Uniformly continuous function on $[0,1]$

- A uniformly continuous function $f:[0,1] \rightarrow \mathbf{R}$ consists of

$$
\varphi: \mathbf{Q} \times \mathbf{N} \rightarrow \mathbf{Q}, \quad \quad \nu: \mathbf{N} \rightarrow \mathbf{N}
$$

s.t.

$$
\begin{aligned}
& (f(p))_{n}=\varphi(p, n) \in \mathbf{R} \\
& \forall n \in \mathbf{N} \forall p, q \in \mathbf{Q}\left(|p-q|<2^{-\nu(n)} \rightarrow|f(p)-f(q)|<2^{-n}\right)
\end{aligned}
$$

For each $x \in[0,1], f(x) \in \mathbf{R}$ is given by

$$
(f(x))_{n}=\varphi\left(\min \left\{\max \left\{x_{\mu(n)}, 0\right\}, 1\right\}, n+1\right)
$$

where $\mu(n)=\nu(n+1)+1$.

Strict order $<_{\mathbf{R}}$

Let x and y are reals.
Order $<_{\mathbf{R}}$

- x is positive if $\exists n\left(x_{n}>2^{-n+2}\right)$.
- x is negative if $\exists n\left(x_{n}<-2^{-n+2}\right)$.
- $x<_{\mathbf{R}} y$ if $y-_{\mathbf{R}} x$ is positive.

Some properties of $<_{\boldsymbol{R}}$

- $x=_{\mathbf{R}} x^{\prime} \wedge y==_{\mathbf{R}} y^{\prime} \wedge x<_{\mathbf{R}} y \rightarrow x^{\prime}<_{\mathbf{R}} y^{\prime}$
- We have $\forall x, y \in \mathbf{R} \forall n\left(x_{n}<y_{n} \vee x_{n}=y_{n} \vee y_{n}<x_{n}\right)$.
- We CANNOT prove $\forall x, y \in \mathbf{R}\left(x<_{\mathbf{R}} y \vee x=_{\mathbf{R}} y \vee y<_{\mathbf{R}} x\right)$ constructively. (LPO)

Order $\leq_{\mathbf{R}}$

Let x and y are reals.
Order $\leq_{\mathbf{R}}$

- $x \leq y$ if $y-\mathbf{R} x$ is not positive.

Some properties of \leq_{R}
$-x==_{\mathbf{R}} x^{\prime} \wedge y==_{\mathbf{R}} y^{\prime} \wedge x \leq_{\mathbf{R}} y \rightarrow x^{\prime} \leq_{\mathbf{R}} y^{\prime}$

- We CANNOT prove $\forall x, y \in \mathbf{R}\left(x \leq_{\mathbf{R}} y \vee_{\mathbf{R}} y \leq_{\mathbf{R}} x\right)$ constructively. (LLPO)
- We CANNOT prove $\forall x, y \in \mathbf{R}\left(x \leq_{\mathbf{R}} y \vee_{\mathbf{R}} \neg x \leq_{\mathbf{R}} y\right)$ constructively. (WLPO)
- We CAN prove that $\forall x, y \in \mathbf{R}\left(\neg x<_{\mathbf{R}} y \rightarrow y \leq_{\mathbf{R}} x\right)$.

In what follows, we omit \mathbf{R} in $=_{\mathbf{R}},+_{\mathbf{R}},-_{\mathbf{R}},<_{\mathbf{R}}, \leq_{\mathbf{R}}$, etc..

IVT in constructive mathematics

Usual proof of IVT
For a uniformly continuous function $f:[0,1] \rightarrow \mathbf{R}$, define l_{n} and r_{n} as follows:

$$
\begin{aligned}
& l_{0}=0, r_{0}=1 \\
& l_{n+1}= \begin{cases}\frac{l_{n}+r_{n}}{2} & \text { if } f\left(\frac{l_{n}+r_{n}}{2}\right) \leq 0 \\
l_{n} & \text { otherwise }\end{cases} \\
& r_{n+1}=l_{n+1}+2^{-(n+1)} .
\end{aligned}
$$

Take $x=\lim _{n \rightarrow \infty} l_{n}$. Then $f(x)=0$.

IVT in constructive mathematics

Usual proof of IVT
For a uniformly continuous function $f:[0,1] \rightarrow \mathbf{R}$, define l_{n} and r_{n} as follows:

$$
\begin{aligned}
& l_{0}=0, r_{0}=1 \\
& l_{n+1}= \begin{cases}\frac{l_{n}+r_{n}}{2} & \text { if } f\left(\frac{l_{n}+r_{n}}{2}\right) \leq 0 \\
l_{n} & \text { otherwise }\end{cases} \\
& r_{n+1}=l_{n+1}+2^{-(n+1)}
\end{aligned}
$$

Take $x=\lim _{n \rightarrow \infty} l_{n}$. Then $f(x)=0$.

Binary sequence and binary tree

Some notations for binary sequence

- $\{0,1\}^{*}$: the set of finite sequences of 0 and 1 .
- $|s|$: the length of binary sequence.
- $s \preceq t: s$ is an initial segment of t, i.e., $s=\langle t(0), \ldots, t(k)\rangle$ for some $k<|t|$.
- $s * t=\langle s(0), \ldots, s(|s|-1), t(0), \ldots t(|t|-1)\rangle$

Binary sequence and binary tree

Some notations for binary sequence

- $\{0,1\}^{*}$: the set of finite sequences of 0 and 1 .
- $|s|$: the length of binary sequence.
- $s \preceq t: s$ is an initial segment of t, i.e., $s=\langle t(0), \ldots, t(k)\rangle$ for some $k<|t|$.
- $s * t=\langle s(0), \ldots, s(|s|-1), t(0), \ldots t(|t|-1)\rangle$

Definition

- $T \subseteq\{0,1\}^{*}$ is a binary tree if it is closed under initial segments, i.e., $s \preceq t \wedge t \in T$ implies $s \in T$.

Binary sequence and binary tree

Some notations for binary sequence

- $\{0,1\}^{*}$: the set of finite sequences of 0 and 1 .
- $|s|$: the length of binary sequence.
- $s \preceq t: s$ is an initial segment of t, i.e., $s=\langle t(0), \ldots, t(k)\rangle$ for some $k<|t|$.
- $s * t=\langle s(0), \ldots, s(|s|-1), t(0), \ldots t(|t|-1)\rangle$

Definition

- $T \subseteq\{0,1\}^{*}$ is a binary tree if it is closed under initial segments, i.e., $s \preceq t \wedge t \in T$ implies $s \in T$.
- For a tree $T, s \in T$ is a branch of T.

Binary sequence and binary tree

Some notations for binary sequence

- $\{0,1\}^{*}$: the set of finite sequences of 0 and 1 .
- $|s|$: the length of binary sequence.
- $s \preceq t: s$ is an initial segment of t, i.e., $s=\langle t(0), \ldots, t(k)\rangle$ for some $k<|t|$.
$-s * t=\langle s(0), \ldots, s(|s|-1), t(0), \ldots t(|t|-1)\rangle$

Definition

- $T \subseteq\{0,1\}^{*}$ is a binary tree if it is closed under initial segments, i.e., $s \preceq t \wedge t \in T$ implies $s \in T$.
- For a tree $T, s \in T$ is a branch of T.
- A tree T is infinite if T is an infinite set. Note that an infinite tree contains branches with any length.

Binary sequence and binary tree

Some notations for binary sequence

- $\{0,1\}^{*}$: the set of finite sequences of 0 and 1 .
- $|s|$: the length of binary sequence.
- $s \preceq t: s$ is an initial segment of t, i.e., $s=\langle t(0), \ldots, t(k)\rangle$ for some $k<|t|$.
- $s * t=\langle s(0), \ldots, s(|s|-1), t(0), \ldots t(|t|-1)\rangle$

Definition

- $T \subseteq\{0,1\}^{*}$ is a binary tree if it is closed under initial segments, i.e., $s \preceq t \wedge t \in T$ implies $s \in T$.
- For a tree $T, s \in T$ is a branch of T.
- A tree T is infinite if T is an infinite set. Note that an infinite tree contains branches with any length.
- A path of T is a function $\alpha: \mathbf{N} \rightarrow\{0,1\}$ s.t. $\bar{\alpha} n \in T$ for any n, where $\bar{\alpha} n=\langle\alpha(0), \ldots, \alpha(n-1)\rangle$.

WKL

Weak König's Lemma (WKL)
Any infinite binary tree $T \subseteq\{0,1\}^{*}$ has a path.

Fact

- WKL is usually proved as follows: For an infinite tree T, define α by

$$
\alpha(n)=\left\{\begin{array}{ll}
0 & \text { if }\{t \in T: \bar{\alpha} n \preceq t\} \text { is infinite; } \\
1 & \text { otherwise }
\end{array} \quad \leftarrow \mathrm{WLPO}\right.
$$

- Constructively, the above construction of α is not allowed.
- Some infinite recursive trees have no recursive path.

WKL for convex trees

Definition

- $s \sqsubset t$ iff $\exists u \preceq s(u *\langle 0\rangle \preceq s \wedge u *\langle 1\rangle \preceq t)$.
- For a tree T, let $T_{n}=\{s \in T:|s|=n\}$.
- A tree T is convex if $|u|=n, s \sqsubseteq u \sqsubseteq t, s \in T_{n}$ and $t \in T_{n}$ imply $u \in T$ for each n.
WKL_{c}
Any infinite binary convex tree has a path.
Fact
Trivially WKL implies WKL_{c}.

Assignment of intervals to binary sequences

For each $s \in\{0,1\}^{*}$, let $I_{s}=\left[l_{s}, r_{s}\right]$ be as follows:

$$
l_{\langle \rangle}=0 ; \quad l_{s *\langle 0\rangle}=l_{a} ; \quad l_{s *\langle 1\rangle}=l_{s}+2^{-(|s|+1)} ; \quad r_{s}=l_{s}+2^{-|s|}
$$

Assignment of intervals to binary sequences

For each $s \in\{0,1\}^{*}$, let $I_{s}=\left[l_{s}, r_{s}\right]$ be as follows:

$$
l_{\langle \rangle}=0 ; \quad l_{s *\langle 0\rangle}=l_{a} ; \quad l_{s *\langle 1\rangle}=l_{s}+2^{-(|s|+1)} ; \quad r_{s}=l_{s}+2^{-|s|}
$$

Assignment of intervals to binary sequences

For each $s \in\{0,1\}^{*}$, let $I_{s}=\left[l_{s}, r_{s}\right]$ be as follows:

$$
\begin{array}{rll}
l_{\langle \rangle}=0 ; & l_{s *\langle 0\rangle}=l_{a} ; & l_{s *\langle 1\rangle}=l_{s}+2^{-(|s|+1)} ; \\
\\
I_{\langle 00\rangle} & I_{s 01\rangle}=l_{s}+2^{-|s|} \\
I_{\langle 10\rangle} & I_{\langle 11\rangle} \\
0 & &
\end{array}
$$

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

- Let $T_{n}=\left\{u \in\{0,1\}^{n} \mid a_{n} \sqsubseteq u \sqsubseteq b_{n}\right\}$ for each n, and let $T=\bigcup_{n=0}^{\infty} T_{n}$.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

- Let $T_{n}=\left\{u \in\{0,1\}^{n} \mid a_{n} \sqsubseteq u \sqsubseteq b_{n}\right\}$ for each n, and let $T=\bigcup_{n=0}^{\infty} T_{n}$.
- Then T is an infinite convex tree, and hence there exists a path α in T.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

- Let $T_{n}=\left\{u \in\{0,1\}^{n} \mid a_{n} \sqsubseteq u \sqsubseteq b_{n}\right\}$ for each n, and let $T=\bigcup_{n=0}^{\infty} T_{n}$.
- Then T is an infinite convex tree, and hence there exists a path α in T.
- Let $x=\sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

- Let $T_{n}=\left\{u \in\{0,1\}^{n} \mid a_{n} \sqsubseteq u \sqsubseteq b_{n}\right\}$ for each n, and let $T=\bigcup_{n=0}^{\infty} T_{n}$.
- Then T is an infinite convex tree, and hence there exists a path α in T.
- Let $x=\sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$.
- If $|f(x)|>0$, then we have a contradiction.

$\mathrm{WKL}_{c} \rightarrow$ IVT

- Let $f:[0,1] \rightarrow \mathbf{R}$ be a uniformly continuous function such that $f(0)<0$ and $0<f(1)$.
- Define a_{n} and b_{n} so that

1. $\left|a_{n}\right|=\left|b_{n}\right|=n$ and $a_{n} \sqsubseteq b_{n}$,
2. $f\left(l_{a_{n}}\right)<0<f\left(r_{b_{n}}\right)$,
3. $\forall c \in\{0,1\}^{n}\left(a_{n} \sqsubset c \sqsubseteq b_{n} \rightarrow\left|f\left(l_{c}\right)\right|<2^{-n}\right)$.

- Let $T_{n}=\left\{u \in\{0,1\}^{n} \mid a_{n} \sqsubseteq u \sqsubseteq b_{n}\right\}$ for each n, and let $T=\bigcup_{n=0}^{\infty} T_{n}$.
- Then T is an infinite convex tree, and hence there exists a path α in T.
- Let $x=\sum_{i=0}^{\infty} \alpha(i) \cdot 2^{-(i+1)}$.
- If $|f(x)|>0$, then we have a contradiction.
- Thus $f(x)=0$.

Construction of a_{n} and b_{n}

- Let $S=\left\{u \in\{0,1\}^{n+1} \mid \exists v \in\{0,1\}^{n}\left(a_{n} \sqsubseteq v \sqsubseteq b_{n} \wedge v \preceq u\right)\right\}$
- Divide S into S_{-}, S_{0} and S_{+}s.t.

$$
\begin{aligned}
c \in S_{-} & \rightarrow\left(f\left(l_{c}\right)\right)_{n+2}<-2^{-(n+2)}, \\
c \in S_{0} & \rightarrow\left|\left(f\left(l_{c}\right)\right)_{n+2}\right| \leq 2^{-(n+2)}, \\
c \in S_{+} & \rightarrow 2^{-(n+2)}<\left(f\left(l_{c}\right)\right)_{n+2}
\end{aligned}
$$

- If S_{-}is inhabited, then choose the right-most such $c \in S$ as a_{n+1}. Otherwise set $a_{n+1}=a_{n} *\langle 0\rangle$.
- If $\left\{u \in S_{+} \mid a_{n+1} \sqsubset u\right\}$ is inhabited, then choose the left-most such $c \in S_{+}$and choose the right-most d s.t. $a_{n+1} \sqsubseteq d \sqsubset c$ as b_{n+1}. Otherwise set $b_{n+1}=b_{n} *\langle 1\rangle$.

Some lemmata for IVT $\rightarrow \mathrm{WKL}_{c}$

Lemma

Let T be a tree, and let x be a real number such that

$$
\forall n \exists a \in T_{n}\left(\left|x-l_{a}\right|<2^{-n}\right)
$$

Then there exists an infinite convex subtree T^{\prime} of T having at most two nodes at each level, i.e., $\forall n\left(\left|T_{n}\right| \leq 2\right)$ and

$$
\forall n \forall a^{\prime} \in T_{n}^{\prime}\left(\left|x-l_{a^{\prime}}\right|<2^{-n+1}\right)
$$

Lemma

IVT implies that every infinite convex tree T s.t. $\forall n\left(\left|T_{n}\right| \leq 2\right)$ for each n has a path.

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\}
\end{aligned}
$$

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
& f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}\left(3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\}
\end{aligned}
$$

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
& f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}\left(3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\} .
\end{aligned}
$$

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\}
\end{aligned}
$$

- Let $f(x)=\sum_{n=0}^{\infty} 2^{-(n+1)} f_{n}(x)$.

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\}
\end{aligned}
$$

- Let $f(x)=\sum_{n=0}^{\infty} 2^{-(n+1)} f_{n}(x)$.
- Then there exists $x \in[0,1]$ such that $f(x)=0$.

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\}
\end{aligned}
$$

- Let $f(x)=\sum_{n=0}^{\infty} 2^{-(n+1)} f_{n}(x)$.
- Then there exists $x \in[0,1]$ such that $f(x)=0$.
- For each $n, \exists a \in T_{n}\left(\left|(3 x-1)-l_{a}\right|<2^{-n}\right)$.

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\} .
\end{aligned}
$$

- Let $f(x)=\sum_{n=0}^{\infty} 2^{-(n+1)} f_{n}(x)$.
- Then there exists $x \in[0,1]$ such that $f(x)=0$.
- For each $n, \exists a \in T_{n}\left(\left|(3 x-1)-l_{a}\right|<2^{-n}\right)$.
- There is an infinite convex subtree T^{\prime} of T s.t. $\forall n\left(\left|T_{n}\right| \leq 2\right)$.

$\mathrm{IVT} \rightarrow \mathrm{WKL}_{c}$

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be sequences of $\{0,1\}^{*}$ such that $T_{n}=\left\{c \in\{0,1\}^{n} \mid a_{n} \sqsubseteq c \sqsubseteq b_{n}\right\}$ for each n.
- For each n, define a uniformly continuous function $f_{n}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f_{n}(x)=\min \left\{\left(l_{a_{n}}+1\right)^{-1}(\right. & \left.\left.3 x-l_{a_{n}}-1\right), 0\right\}+ \\
& \max \left\{\left(2-r_{b_{n}}\right)^{-1}\left(3 x-r_{b_{n}}-1\right), 0\right\} .
\end{aligned}
$$

- Let $f(x)=\sum_{n=0}^{\infty} 2^{-(n+1)} f_{n}(x)$.
- Then there exists $x \in[0,1]$ such that $f(x)=0$.
- For each $n, \exists a \in T_{n}\left(\left|(3 x-1)-l_{a}\right|<2^{-n}\right)$.
- There is an infinite convex subtree T^{\prime} of T s.t. $\forall n\left(\left|T_{n}\right| \leq 2\right)$.
- By the previous lemma, there is a path in T^{\prime}, and hence in T.

Concluding remarks

- These proofs can be formalized over $\mathbf{E L}_{0}$, which has only Σ_{1}^{0} induction.
- In particular, these proofs do not require countable choice.
- WKL_{c} can be characterized as a combination of LLPO and a fragment of countable choice.

References

- Josef Berger, Hajime Ishihara, Takayuki Kihara and Takako Nemoto, The binary expansion and the intermediate value theorem in constructive reverse mathematics, submitted.

Acknowledgment

The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.

