Logic for exact real arithmetic: Lab, Minlog

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Interval analysis and constructive mathematics CMO-BIRS, Oaxaca, 13. -18. November 2016

Exact real numbers

can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- Infinite sequences ("streams") of signed digits $\{-1,0,1\}$, or
- $\{-1,1, \perp\}$ with at most one \perp ("undefined"): Gray code.

Want formally verified algorithms on reals given as streams.
 - Consider formal proofs M and apply realizability to extract their computational content.
 - Switch between different formats of reals by decoration: $\left.\forall_{x} A \mapsto \quad \forall_{x}^{\mathrm{nc}}\left(x \in{ }^{\mathrm{co}} / \rightarrow A\right)\right) \quad\left(\right.$ abbreviated $\left.\forall_{x \in \mathrm{co}}^{\mathrm{nc}} A\right)$.
 - Computational content of $x \in{ }^{\mathrm{co}}$ is a stream representing x.

Exact real numbers

can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- Infinite sequences ("streams") of signed digits $\{-1,0,1\}$, or
- $\{-1,1, \perp\}$ with at most one \perp ("undefined"): Gray code.

Want formally verified algorithms on reals given as streams.

- Consider formal proofs M and apply realizability to extract their computational content.
- Switch between different formats of reals by decoration: $\left.\forall_{x} A \quad \mapsto \quad \forall_{x}^{\mathrm{nc}}\left(x \in{ }^{\mathrm{co}} \rightarrow A\right)\right)$ (abbreviated $\forall_{x \in{ }^{\mathrm{col}} /}^{\mathrm{nc}} A$).
- Computational content of $x \in{ }^{c /}$ is a stream representing x.

Exact real numbers

can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- Infinite sequences ("streams") of signed digits $\{-1,0,1\}$, or
- $\{-1,1, \perp\}$ with at most one \perp ("undefined"): Gray code.

Want formally verified algorithms on reals given as streams.

- Consider formal proofs M and apply realizability to extract their computational content.
- Switch between different formats of reals by decoration: $\left.\forall_{x} A \quad \mapsto \quad \forall_{x}^{\mathrm{nc}}\left(x \in{ }^{\mathrm{co}} \rightarrow A\right)\right)$ (abbreviated $\forall_{x \in{ }^{\mathrm{coo}} \mid}^{\mathrm{nc}} A$).
- Computational content of $x \in{ }^{\mathrm{co}}$ is a stream representing x.

Exact real numbers

can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- Infinite sequences ("streams") of signed digits $\{-1,0,1\}$, or
- $\{-1,1, \perp\}$ with at most one \perp ("undefined"): Gray code.

Want formally verified algorithms on reals given as streams.

- Consider formal proofs M and apply realizability to extract their computational content.
- Switch between different formats of reals by decoration:
$\left.\forall_{x} A \quad \mapsto \quad \forall_{x}^{\mathrm{nc}}\left(x \in{ }^{\mathrm{co}} \boldsymbol{l} \rightarrow A\right)\right) \quad\left(\right.$ abbreviated $\left.\forall_{x \in{ }^{\mathrm{co}} /}^{\mathrm{nc}} A\right)$.
- Computational content of $x \in$ co/ is a stream representing x

Exact real numbers

can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- Infinite sequences ("streams") of signed digits $\{-1,0,1\}$, or
- $\{-1,1, \perp\}$ with at most one \perp ("undefined"): Gray code.

Want formally verified algorithms on reals given as streams.

- Consider formal proofs M and apply realizability to extract their computational content.
- Switch between different formats of reals by decoration: $\left.\forall_{x} A \quad \mapsto \quad \forall_{x}^{\mathrm{nc}}\left(x \in{ }^{\mathrm{co}} I \rightarrow A\right)\right) \quad\left(\right.$ abbreviated $\left.\forall_{x \in{ }^{\mathrm{co}} /}^{\mathrm{nc}} A\right)$.
- Computational content of $x \in{ }^{\mathrm{co}} /$ is a stream representing x.

Representation of real numbers $x \in[-1,1]$

Dyadic rationals:

$$
\sum_{n<m} \frac{k_{n}}{2^{n+1}} \quad \text { with } k_{n} \in\{-1,1\} .
$$

with $\overline{1}:=-1$. Adjacent dyadics can differ in many digits:

Representation of real numbers $x \in[-1,1]$
Dyadic rationals:

with $\overline{1}:=-1$. Adjacent dyadics can differ in many digits:

Representation of real numbers $x \in[-1,1]$

Dyadic rationals:

with $\overline{1}:=-1$. Adjacent dyadics can differ in many digits:

$$
\frac{7}{16} \sim 1 \overline{1} 11, \quad \frac{9}{16} \sim 11 \overline{1} \overline{1}
$$

Cure: flip after 1. Binary reflected (or Gray-) code.

Cure: flip after 1. Binary reflected (or Gray-) code.

${ }^{-\frac{15}{16}} L$

Cure: flip after 1. Binary reflected (or Gray-) code.

$$
\frac{7}{16} \sim \text { RRRL }, \quad \frac{9}{16} \sim \text { RLRL }
$$

Problem with productivity:

$$
\overline{1} 111+1 \overline{1} \overline{1} \overline{1} \cdots=? \quad \text { (or LRLL } \ldots+\text { RRRL } \cdots=?)
$$

What is the first digit? Cure: delay.

- For binary code: add 0. Signed digit code

Widely used for real number computation. There is a lot of redundancy: $\overline{1} 1$ and $0 \overline{1}$ both denote $-\frac{1}{4}$.

- For Gray-code: add U (undefined), D (delay), Fin $L_{L / R}$ (finally left / right). Pre-Gray code.

Problem with productivity:

$$
\overline{1} 111+1 \overline{1} \overline{1} \overline{1} \cdots=? \quad \text { (or LRLL } \ldots+\operatorname{RRRL} \cdots=?)
$$

What is the first digit? Cure: delay.

- For binary code: add 0 . Signed digit code

$$
\sum_{n<m} \frac{k_{n}}{2^{n+1}} \quad \text { with } k_{n} \in\{-1,0,1\}
$$

Widely used for real number computation. There is a lot of redundancy: $\overline{1} 1$ and $0 \overline{1}$ both denote $-\frac{1}{4}$.

- For Gray-code: add U (undefined), D (delay), Fin $L_{L / R}$ (finally left / right). Pre-Gray code.

Problem with productivity:

$$
\overline{1} 111+1 \overline{1} \overline{1} \overline{1} \cdots=? \quad \text { (or LRLL } \ldots+\operatorname{RRRL} \cdots=?)
$$

What is the first digit? Cure: delay.

- For binary code: add 0 . Signed digit code

$$
\sum_{n<m} \frac{k_{n}}{2^{n+1}} \quad \text { with } k_{n} \in\{-1,0,1\}
$$

Widely used for real number computation. There is a lot of redundancy: $\overline{1} 1$ and $0 \overline{1}$ both denote $-\frac{1}{4}$.

- For Gray-code: add U (undefined), D (delay), Fin $L_{L / R}$ (finally left / right). Pre-Gray code.

Pre-Gray code

After computation in pre-Gray code, one can remove Fina by

$$
\mathrm{U} \circ \mathrm{Fin}_{a} \mapsto a \circ \mathrm{R}, \quad \mathrm{D} \circ \mathrm{Fin}_{a} \mapsto \operatorname{Fin}_{a} \circ \mathrm{~L}
$$

Pre-Gray code

After computation in pre-Gray code, one can remove Fin ${ }_{a}$ by

$$
\mathrm{U} \circ \mathrm{Fin}_{a} \mapsto a \circ \mathrm{R}, \quad \mathrm{D} \circ \mathrm{Fin}_{a} \mapsto \operatorname{Fin}_{a} \circ \mathrm{~L}
$$

RRRLLL... RLRLLL... RUDDDD... all denote $\frac{1}{2}$. Only keep the latter to denote $\frac{1}{2}$. Then, generally,

- U occurs in a context UDDDD ... only, and
- U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.

RRRLLL... RLRLLL... RUDDDD... all denote $\frac{1}{2}$. Only keep the latter to denote $\frac{1}{2}$. Then, generally,

- U occurs in a context UDDDD... only, and
- U appears iff we have a dyadic rational.

Result: unique representation, called nure Gray code.

RRRLLL... RLRLLL... RUDDDD...

all denote $\frac{1}{2}$. Only keep the latter to denote $\frac{1}{2}$. Then, generally,

- U occurs in a context UDDDD ... only, and
- U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.

RRRLLL... RLRLLL... RUDDDD...

all denote $\frac{1}{2}$. Only keep the latter to denote $\frac{1}{2}$. Then, generally,

- U occurs in a context UDDDD ... only, and
- U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.

RRRLLL... RLRLLL... RUDDDD...
all denote $\frac{1}{2}$. Only keep the latter to denote $\frac{1}{2}$. Then, generally,

- U occurs in a context UDDDD ... only, and
- U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.

Average for signed digit streams

Goal:

$$
\forall_{x, y}^{\mathrm{nc}}(\underbrace{x, y \in{ }^{\mathrm{co}}}_{x, y \in[-1,1]} \rightarrow \underbrace{\frac{x+y}{2} \in^{\mathrm{co}} /}_{\frac{x+y}{2} \in[-1,1]})
$$

- Need to accomodate streams in our logical framework.
- Model streams as "cototal objects" in the (free) algebra I given by the constructor $\mathrm{C}: \mathrm{SD} \rightarrow \mathrm{I} \rightarrow \mathrm{I}$.

Intuitively, $k_{0}, k_{1}, k_{2} \ldots$ represents

Average for signed digit streams

Goal:

$$
\forall_{x, y}^{\mathrm{nc}}(\underbrace{x, y \in{ }^{\mathrm{co}}}_{x, y \in[-1,1]} \rightarrow \underbrace{\frac{x+y}{2} \in{ }^{\mathrm{co}} /}_{\frac{x+y}{2} \in[-1,1]})
$$

- Need to accomodate streams in our logical framework.
- Model streams as "cototal objects" in the (free) algebra I given by the constructor $\mathrm{C}: \mathrm{SD} \rightarrow \mathrm{I} \rightarrow \mathrm{I}$.
Intuitively, $k_{0}, k_{1}, k_{2} \ldots$ represents

Average for signed digit streams

Goal:

$$
\forall_{x, y}^{\mathrm{nc}}(\underbrace{x, y \in{ }^{\mathrm{co}}}_{x, y \in[-1,1]} \rightarrow \underbrace{\frac{x+y}{2} \in{ }^{\mathrm{co}} /}_{\frac{x+y}{2} \in[-1,1]})
$$

- Need to accomodate streams in our logical framework.
- Model streams as "cototal objects" in the (free) algebra I given by the constructor $\mathrm{C}: \mathbf{S D} \rightarrow \mathbf{I} \rightarrow \mathbf{I}$.
Intuitively, $k_{0}, k_{1}, k_{2} \ldots$ represents

Average for signed digit streams

Goal:

$$
\forall_{x, y}^{\mathrm{nc}}(\underbrace{x, y \in{ }^{\mathrm{co}}}_{x, y \in[-1,1]} \rightarrow \underbrace{\frac{x+y}{2} \in{ }^{\mathrm{co}} /}_{\frac{x+y}{2} \in[-1,1]})
$$

- Need to accomodate streams in our logical framework.
- Model streams as "cototal objects" in the (free) algebra I given by the constructor $\mathrm{C}: \mathbf{S D} \rightarrow \mathbf{I} \rightarrow \mathbf{I}$.
Intuitively, $k_{0}, k_{1}, k_{2} \ldots$ represents

$$
\sum_{n=0}^{\infty} \frac{k_{n}}{2^{n+1}} \quad \text { with } k_{n} \in\{-1,0,1\}
$$

$$
\Phi(X):=\left\{x \left\lvert\, \exists_{k \in \mathrm{SD}}^{\mathrm{r}} \exists_{x^{\prime} \in X}^{\mathrm{r}}\left(x=\frac{x^{\prime}+k}{2}\right)\right.\right\} .
$$

Then

$$
\begin{array}{rlrl}
I: & =\mu_{X} \Phi(X) & & \text { least fixed point } \\
& & =\nu_{X} \Phi(X) & \\
\text { greatest fixed point }
\end{array}
$$

satisfy the (strengthened) axioms

$$
\begin{aligned}
& \Phi(/ \cap X) \subseteq X \rightarrow I \subseteq X \text { induction } \\
& X \subseteq \Phi(\mathrm{co} / \cup X) \rightarrow X \subseteq{ }^{\mathrm{co}} / \\
& \text { coinduction }
\end{aligned}
$$

("strengthened" because their hypotheses are weaker than the fixed point property $\Phi(X)=X$).

$$
\Phi(X):=\left\{x \left\lvert\, \exists_{k \in \mathrm{SD}}^{\mathrm{r}} \exists_{x^{\prime} \in X}^{\mathrm{r}}\left(x=\frac{x^{\prime}+k}{2}\right)\right.\right\} .
$$

Then

$$
\begin{aligned}
I & :=\mu_{X} \Phi(X) & & \text { least fixed point } \\
\mathrm{co} I & :=\nu_{X} \Phi(X) & & \text { greatest fixed point }
\end{aligned}
$$

satisfy the (strengthened) axioms

("strengthened" because their hypotheses are weaker than the fixed point property $\Phi(X)=X)$.

$$
\Phi(X):=\left\{x \left\lvert\, \exists_{k \in \mathrm{SD}}^{\mathrm{r}} \exists_{x^{\prime} \in X}^{\mathrm{r}}\left(x=\frac{x^{\prime}+k}{2}\right)\right.\right\} .
$$

Then

$$
\begin{aligned}
I & :=\mu_{X} \Phi(X) & & \text { least fixed point } \\
\text { col } & :=\nu_{X} \Phi(X) & & \text { greatest fixed point }
\end{aligned}
$$

satisfy the (strengthened) axioms

$$
\begin{aligned}
\Phi(I \cap X) \subseteq X & \rightarrow I \subseteq X & & \text { induction } \\
X \subseteq \Phi\left({ }^{\mathrm{Co}} I \cup X\right) & \rightarrow X \subseteq{ }^{\text {co }} \mathrm{I} & & \text { coinduction }
\end{aligned}
$$

("strengthened" because their hypotheses are weaker than the fixed point property $\Phi(X)=X)$.

$$
\Phi(X):=\left\{x \left\lvert\, \exists_{k \in \mathrm{SD}}^{\mathrm{r}} \exists_{x^{\prime} \in X}^{\mathrm{r}}\left(x=\frac{x^{\prime}+k}{2}\right)\right.\right\} .
$$

Then

$$
\begin{aligned}
I & :=\mu_{X} \Phi(X) & & \text { least fixed point } \\
\text { col } & :=\nu_{X} \Phi(X) & & \text { greatest fixed point }
\end{aligned}
$$

satisfy the (strengthened) axioms

$$
\begin{aligned}
\Phi(I \cap X) \subseteq X & \rightarrow I \subseteq X & & \text { induction } \\
X \subseteq \Phi\left({ }^{\mathrm{co}} / \cup X\right) & \rightarrow X \subseteq{ }^{\text {co }} & & \text { coinduction }
\end{aligned}
$$

("strengthened" because their hypotheses are weaker than the fixed point property $\Phi(X)=X)$.

Goal: compute the average of two stream-coded reals. Prove

$$
\forall_{x, y \in{ }^{\mathrm{co}}(}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}}\right) .
$$

Computational content of this proof will be the desired algorithm.
Informal proof (from Ulrich Berger \& Monika Seisenberger 2006). Define sets P, Q of averages, Q with a "carry" $i \in \mathbb{Z}$:

Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }}$. Then by the greatest-fixed-point axiom for ${ }^{\text {col }}$ we have $Q \subseteq{ }^{\text {col }}$. Since also $P \subseteq Q$ we obtain $P \subseteq{ }^{\text {col }}$, which is our claim.

Goal: compute the average of two stream-coded reals. Prove

$$
\forall_{x, y \in{ }^{\mathrm{co}}(}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}}\right) .
$$

Computational content of this proof will be the desired algorithm.
Informal proof (from Ulrich Berger \& Monika Seisenberger 2006). Define sets P, Q of averages, Q with a "carry" $i \in \mathbb{Z}$:
$P:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in{ }^{\mathrm{co}}\right\}, \quad Q:=\left\{\left.\frac{x+y+i}{4} \right\rvert\, x, y \in{ }^{\mathrm{co}}, i \in \mathrm{SD}_{2}\right\}$,
Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }}$. Then by
the greatest-fixed-point axiom for ${ }^{\text {col }}$ we have $Q \subseteq{ }^{\text {col }}$. Since also
$P \subseteq Q$ we obtain $P \subseteq{ }^{\text {co }} /$, which is our claim.

Goal: compute the average of two stream-coded reals. Prove

$$
\forall_{x, y \in{ }^{\mathrm{co}}(}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}}\right) .
$$

Computational content of this proof will be the desired algorithm.
Informal proof (from Ulrich Berger \& Monika Seisenberger 2006). Define sets P, Q of averages, Q with a "carry" $i \in \mathbb{Z}$:
$P:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in{ }^{\mathrm{co}}\right\}, \quad Q:=\left\{\left.\frac{x+y+i}{4} \right\rvert\, x, y \in{ }^{\mathrm{co}} I, i \in \mathrm{SD}_{2}\right\}$,
Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }}$. Then by the greatest-fixed-point axiom for ${ }^{\text {col }}$ we have $Q \subseteq{ }^{\text {col }}$. Since also $P \subseteq Q$ we obtain $P \subseteq{ }^{\text {col }}$, which is our claim.
Q satisfies the ${ }^{\mathrm{co}} /$-clause:

$$
\forall_{i \in \mathrm{SD}_{2}}^{\mathrm{nc}} \forall_{x, y \in \mathrm{co}^{\mathrm{co}}}^{\mathrm{nc}} \exists_{j \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{k \in \mathrm{SD}}^{\mathrm{r}} \exists_{x^{\prime}, y^{\prime} \in \mathrm{col} l}^{\mathrm{r}}\left(\frac{x+y+i}{4}=\frac{\frac{x^{\prime}+y^{\prime}+j}{4}+k}{2}\right) .
$$

Proof. Define $J, K: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\forall_{i}(i=J(i)+4 K(i)) \quad \forall_{i}(|J(i)| \leq 2) \quad \forall_{i}(|i| \leq 6 \rightarrow|K(i)| \leq 1)
$$

Then we can relate $\frac{x+k}{2}$ and $\frac{x+y+i}{4}$ by

Q satisfies the ${ }^{\mathrm{co}} /$-clause:

$$
\forall_{i \in \mathrm{SD}_{2}}^{\mathrm{nc}} \forall_{x, y \in \mathrm{co} l}^{\mathrm{nc}} \exists_{j \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{k \in \mathrm{SD}^{\mathrm{r}}}^{\exists_{x^{\prime}, y^{\prime} \in \mathrm{col}}^{\mathrm{r}}\left(\frac{x+y+i}{4}=\frac{\frac{x^{\prime}+y^{\prime}+j}{4}+k}{2}\right)}
$$

Proof. Define $J, K: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\forall_{i}(i=J(i)+4 K(i)) \quad \forall_{i}(|J(i)| \leq 2) \quad \forall_{i}(|i| \leq 6 \rightarrow|K(i)| \leq 1)
$$

Q satisfies the ${ }^{\mathrm{co}} /$-clause:

$$
\forall_{i \in \mathrm{SD}_{2}}^{\mathrm{nc}} \forall_{x, y \in \mathrm{co} l}^{\mathrm{nc}} \exists_{j \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{k \in \mathrm{SD}^{\mathrm{r}}}^{\exists_{x^{\prime}, y^{\prime} \in \mathrm{col}}^{\mathrm{r}}\left(\frac{x+y+i}{4}=\frac{\frac{x^{\prime}+y^{\prime}+j}{4}+k}{2}\right)}
$$

Proof. Define $J, K: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\forall_{i}(i=J(i)+4 K(i)) \quad \forall_{i}(|J(i)| \leq 2) \quad \forall_{i}(|i| \leq 6 \rightarrow|K(i)| \leq 1)
$$

Then we can relate $\frac{x+k}{2}$ and $\frac{x+y+i}{4}$ by

$$
\frac{\frac{x+k}{2}+\frac{y+1}{2}+i}{4}=\frac{\frac{x+y+J(k+I+2 i)}{4}+K(k+I+2 i)}{2} .
$$

By coinduction we obtain $Q \subseteq{ }^{\text {co }}$:

$$
\forall_{z}^{\mathrm{nc}}\left(\exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x, y \in \mathrm{co} /}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow z \in{ }^{\mathrm{co}}\right) .
$$

This gives our claim

$$
\forall_{x, y \in{ }^{\mathrm{co}}(}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right) .
$$

Implicit algorithm. $P \subseteq Q$ computes the first "carry" $i \in \mathrm{SD}_{2}$ and the tails of the inputs. Then $f: \mathbf{S D}_{2} \times \mathbf{I} \times \mathbf{I} \rightarrow \mathbf{I}$ defined corecursively by

$$
f\left(i, \mathrm{C}_{d}(u), \mathrm{C}_{e}(v)\right)=\mathrm{C}_{K(k+l+2 i)}(f(J(k+I+2 i), u, v))
$$

is called repeatedly and computes the average step by step. (Here $\left.(d, k),(e, l) \in \mathrm{SD}^{r}\right)$.

By coinduction we obtain $Q \subseteq{ }^{\text {co }}$:

$$
\forall_{z}^{\mathrm{nc}}\left(\exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x, y \in \mathrm{co}}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow z \in{ }^{\mathrm{co}} /\right)
$$

This gives our claim

$$
\forall_{x, y \in{ }^{\mathrm{co}}(}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}}\right) .
$$

Implicit algorithm. $P \subseteq Q$ computes the first "carry" $i \in \mathrm{SD}_{2}$ and the tails of the inputs. Then $f: \mathbf{S D}_{2} \times \mathbf{I} \times \mathbf{I} \rightarrow \mathbf{I}$ defined corecursively by

$$
f\left(i, \mathrm{C}_{d}(u), \mathrm{C}_{e}(v)\right)=\mathrm{C}_{K(k+l+2 i)}(f(J(k+I+2 i), u, v))
$$

is called repeatedly and computes the average step by step. (Here $\left.(d, k),(e, l) \in \mathrm{SD}^{r}\right)$.

By coinduction we obtain $Q \subseteq{ }^{\text {co }}$:

$$
\forall_{z}^{\mathrm{nc}}\left(\exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x, y \in \mathrm{co} /}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow z \in{ }^{\mathrm{co}} /\right) .
$$

This gives our claim

$$
\forall_{x, y \in{ }^{\mathrm{co}} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}}\right) .
$$

Implicit algorithm. $P \subseteq Q$ computes the first "carry" $i \in \mathrm{SD}_{2}$ and the tails of the inputs. Then $f: \mathbf{S D}_{2} \times \mathbf{I} \times \mathbf{I} \rightarrow \mathbf{I}$ defined corecursively by

$$
f\left(i, \mathrm{C}_{d}(u), \mathrm{C}_{e}(v)\right)=\mathrm{C}_{K(k+l+2 i)}(f(J(k+I+2 i), u, v))
$$

is called repeatedly and computes the average step by step.
(Here $\left.(d, k),(e, l) \in \mathrm{SD}^{r}\right)$.

Realizability

Define the realizability extension Φ^{r} of Φ by

Let

$$
\begin{aligned}
I^{r} & :=\mu_{Y} \Phi^{r}(Y) & & \text { least fixed point } \\
\left({ }^{\mathrm{c} /} /\right)^{r} & :=\nu_{Y} \Phi^{r}(Y) & & \text { greatest fixed point }
\end{aligned}
$$

satisfying the (strengthened) axioms

$$
\begin{array}{cll}
\Phi^{r}\left(I^{r} \cap Y\right) \subseteq Y \rightarrow I^{r} \subseteq Y & \text { induction } \\
Y \subseteq \Phi^{r}\left(\left({ }^{\mathrm{c}} I\right)^{r} \cup Y\right) \rightarrow Y \subseteq\left({ }^{\mathrm{co}} /\right)^{r} & \text { coinduction. }
\end{array}
$$

From the proof

$$
M: \forall_{x, y \in{ }^{\mathrm{co}} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} I\right)
$$

extract a term et (M). The Soundness theorem gives a proof of

Brouwer-Heyting-Kolmogorov interpretation:

$u r\left(x \in{ }^{\mathrm{co}} /\right) \rightarrow \operatorname{vr}\left(y \in{ }^{\mathrm{co}} /\right) \rightarrow \operatorname{et}(M)(u, v) \operatorname{r}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right)$
This is a formal verification that et (M) computes the average w.r.t. signed digit streams.

From the proof

$$
M: \forall_{x, y \in \mathrm{co} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} I\right)
$$

extract a term et (M). The Soundness theorem gives a proof of

$$
\operatorname{et}(M) \mathbf{r} \forall_{x, y \in \mathrm{co} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right)
$$

Brouwer-Heyting-Kolmogorov interpretation:

This is a formal verification that et (M) computes the average w.r.t. signed digit streams.

From the proof

$$
M: \forall_{x, y \in \mathrm{co} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} I\right)
$$

extract a term et (M). The Soundness theorem gives a proof of

$$
\operatorname{et}(M) \mathbf{r} \forall_{x, y \in \operatorname{co}}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right)
$$

Brouwer-Heyting-Kolmogorov interpretation:

$$
u \mathbf{r}\left(x \in{ }^{\mathrm{co}}\right) \rightarrow v \mathbf{r}\left(y \in{ }^{\mathrm{co}} I\right) \rightarrow \operatorname{et}(M)(u, v) \mathbf{r}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right)
$$

This is a formal verification that et (M) computes the average w.r.t. signed digit streams.

From the proof

$$
M: \forall_{x, y \in \mathrm{co} /}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} I\right)
$$

extract a term et (M). The Soundness theorem gives a proof of

$$
\operatorname{et}(M) \mathbf{r} \forall_{x, y \in \operatorname{co}}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} /\right)
$$

Brouwer-Heyting-Kolmogorov interpretation:

$$
u \mathbf{r}\left(x \in{ }^{\mathrm{co}}\right) \rightarrow v \mathbf{r}\left(y \in{ }^{\mathrm{co}} I\right) \rightarrow \operatorname{et}(M)(u, v) \mathbf{r}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} I\right)
$$

This is a formal verification that et (M) computes the average w.r.t. signed digit streams.

Average for pre-Gray code

Method essentially the same as for signed digit streams.

- Only need to insert a different computational content to the predicates expressing how a real x is given.
- Instead of col for signed digit streams we now need two such predicates ${ }^{\text {co }} \mathrm{G}$ and ${ }^{\mathrm{CO}} \mathrm{H}$, corresponding to the two "modes" in pre-Gray code.

Average for pre-Gray code

Method essentially the same as for signed digit streams.

- Only need to insert a different computational content to the predicates expressing how a real x is given.
- Instead of co/ for signed digit streams we now need two such predicates ${ }^{\text {co }} \mathrm{G}$ and ${ }^{\mathrm{Co}} \mathrm{H}$, corresponding to the two "modes" in pre-Gray code.

Average for pre-Gray code

Method essentially the same as for signed digit streams.

- Only need to insert a different computational content to the predicates expressing how a real x is given.
- Instead of ${ }^{\text {col }}$ for signed digit streams we now need two such predicates ${ }^{\text {co }} \mathrm{G}$ and ${ }^{\text {co }} \mathrm{H}$, corresponding to the two "modes" in pre-Gray code.

Algebras \mathbf{G} and \mathbf{H}

We model pre-Gray codes as "cototal objects" in the (simultaneously defined free) algebras \mathbf{G} and \mathbf{H} given by the constructors

$$
\begin{aligned}
& \mathrm{LR}_{a}: \mathbf{G} \rightarrow \mathbf{G} \\
& \mathrm{U}: \mathbf{H} \rightarrow \mathbf{G} \\
& \mathrm{Fin}_{\mathrm{a}}: \mathbf{G} \rightarrow \mathbf{H} \\
& \mathrm{D}: \mathbf{H} \rightarrow \mathbf{H}
\end{aligned}
$$

with $a \in\{-1,1\}$.

Predicates ${ }^{\mathrm{Co}} \mathrm{G}$ and ${ }^{\text {co }} \mathrm{H}$

Let

$$
\begin{aligned}
\Gamma(X, Y) & :=\left\{x \left\lvert\, \exists_{x^{\prime} \in X}^{\mathrm{r}} \exists_{a \in \operatorname{PSD}}^{\mathrm{r}}\left(x=-a \frac{x^{\prime}-1}{2}\right) \vee \exists_{x^{\prime} \in Y}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right.\right\} \\
\Delta(X, Y) & :=\left\{x \left\lvert\, \exists_{x^{\prime} \in X}^{\mathrm{r}} \exists_{a \in \operatorname{PSD}}^{\mathrm{r}}\left(x=a \frac{x^{\prime}+1}{2}\right) \vee \exists_{x^{\prime} \in Y}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right.\right\}
\end{aligned}
$$

and define

$$
\left({ }^{\mathrm{co}} G,{ }^{\mathrm{co}} H\right):=\nu_{(X, Y)}(\Gamma(X, Y), \Delta(X, Y)) \quad \text { (greatest fixed point) }
$$

Consequences:

Predicates ${ }^{\mathrm{co}} \mathrm{G}$ and ${ }^{\text {co }} \mathrm{H}$

Let

$$
\begin{aligned}
\Gamma(X, Y) & :=\left\{x \left\lvert\, \exists_{x^{\prime} \in X}^{\mathrm{r}} \exists_{\mathrm{a} \in \mathrm{PSD}}^{\mathrm{r}}\left(x=-a \frac{x^{\prime}-1}{2}\right) \vee \exists_{x^{\prime} \in Y}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right.\right\} \\
\Delta(X, Y) & :=\left\{x \left\lvert\, \exists_{x^{\prime} \in X}^{\mathrm{r}} \exists_{a \in \operatorname{PSD}}^{\mathrm{r}}\left(x=a \frac{x^{\prime}+1}{2}\right) \vee \exists_{x^{\prime} \in Y}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right.\right\}
\end{aligned}
$$

and define

$$
\left({ }^{\mathrm{Co}} G,{ }^{\mathrm{co}} H\right):=\nu_{(X, Y)}(\Gamma(X, Y), \Delta(X, Y)) \quad \text { (greatest fixed point) }
$$

Consequences:

$$
\begin{aligned}
& \forall_{x \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(\exists_{x^{\prime} \in{ }^{\mathrm{co}} G}^{\mathrm{r}} \exists_{a \in \mathrm{PSD}}^{\mathrm{r}}\left(x=-a \frac{x^{\prime}-1}{2}\right) \vee \exists_{x^{\prime} \in{ }^{\mathrm{co}} H}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right) \\
& \forall_{x \in{ }^{\mathrm{co}} H}^{\mathrm{nc}}\left(\exists_{x^{\prime} \in \operatorname{co}_{G}}^{\mathrm{r}} \exists_{a \in \operatorname{PSD}}^{\mathrm{r}}\left(x=a \frac{x^{\prime}+1}{2}\right) \vee \exists_{x^{\prime} \in \mathrm{co} H}^{\mathrm{r}}\left(x=\frac{x^{\prime}}{2}\right)\right)
\end{aligned}
$$

Lemma (CoGMinus)

$$
\begin{aligned}
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G(-x) \rightarrow{ }^{\mathrm{co}} G x\right), \\
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} H(-x) \rightarrow{ }^{\mathrm{co}} H x\right) .
\end{aligned}
$$

Implicit algorithm. $f: \mathbf{G} \rightarrow \mathbf{G}$ and $f^{\prime}: \mathbf{H} \rightarrow \mathbf{H}$ defined by

$$
\begin{aligned}
f\left(\operatorname{LR}_{a}(u)\right) & =\operatorname{LR}_{-a}(u), & f^{\prime}\left(\operatorname{Fin}_{a}(u)\right) & =\operatorname{Fin}_{-a}(u), \\
f(U(v)) & =U\left(f^{\prime}(v)\right), & f^{\prime}(D(v)) & =D\left(f^{\prime}(v)\right),
\end{aligned}
$$

Lemma (CoGMinus)

$$
\begin{aligned}
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G(-x) \rightarrow{ }^{\mathrm{co}} G x\right) \\
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} H(-x) \rightarrow{ }^{\mathrm{co}} H x\right)
\end{aligned}
$$

Implicit algorithm. $f: \mathbf{G} \rightarrow \mathbf{G}$ and $f^{\prime}: \mathbf{H} \rightarrow \mathbf{H}$ defined by

$$
\begin{aligned}
f\left(\mathrm{LR}_{a}(u)\right) & =\mathrm{LR}_{-a}(u), & f^{\prime}\left(\operatorname{Fin}_{a}(u)\right) & =\operatorname{Fin}_{-a}(u), \\
f(\mathrm{U}(v)) & =\mathrm{U}\left(f^{\prime}(v)\right), & f^{\prime}(\mathrm{D}(v)) & =\mathrm{D}\left(f^{\prime}(v)\right) .
\end{aligned}
$$

Using CoGMinus we prove that ${ }^{\mathrm{co}} \mathrm{G}$ and ${ }^{\mathrm{co}} \mathrm{H}$ are equivalent. Lemma (CoHToCoG)

$$
\begin{aligned}
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} H x \rightarrow{ }^{\mathrm{co}} G x\right) \\
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G x \rightarrow{ }^{\mathrm{co}} H x\right)
\end{aligned}
$$

Implicit algorithm. $g: \mathbf{H} \rightarrow \mathbf{G}$ and $h: \mathbf{G} \rightarrow \mathbf{H}$:

$$
\begin{aligned}
g\left(\operatorname{Fin}_{a}(u)\right) & =\operatorname{LR}_{a}\left(f^{-}(u)\right), & h\left(\operatorname{LR}_{a}(u)\right) & =\operatorname{Fin}_{a}(\\
g(D(v)) & =U(v), & h(U(v)) & =D(v)
\end{aligned}
$$

where $f^{-}:=c$ CoGMinus (cL denotes the function extracted from the proof of a lemma L). No corecursive call is involved.

Using CoGMinus we prove that ${ }^{\mathrm{co}} \mathrm{G}$ and ${ }^{\mathrm{co}} \mathrm{H}$ are equivalent. Lemma (CoHToCoG)

$$
\begin{aligned}
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{Co}} H x{ }^{\mathrm{Co}} G x\right), \\
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G x \rightarrow{ }^{\mathrm{co}} H x\right) .
\end{aligned}
$$

Implicit algorithm. $g: \mathbf{H} \rightarrow \mathbf{G}$ and $h: \mathbf{G} \rightarrow \mathbf{H}$:

$$
\begin{aligned}
g\left(\operatorname{Fin}_{a}(u)\right) & =\operatorname{LR}_{a}\left(f^{-}(u)\right), & h\left(\operatorname{LR}_{a}(u)\right) & =\operatorname{Fin}_{a}(\\
g(D(v)) & =U(v), & h(U(v)) & =D(v)
\end{aligned}
$$

where $f^{-}:=c$ CoGMinus (cL denotes the function extracted from the proof of a lemma L). No corecursive call is involved.

Using CoGMinus we prove that ${ }^{\mathrm{co}} \mathrm{G}$ and ${ }^{\mathrm{co}} \mathrm{H}$ are equivalent.
Lemma (CoHToCoG)

$$
\begin{aligned}
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} H x \rightarrow{ }^{\mathrm{co}} G x\right) \\
& \forall_{x}^{\mathrm{nc}}\left({ }^{\mathrm{co}} G x \rightarrow{ }^{\mathrm{co}} H x\right)
\end{aligned}
$$

Implicit algorithm. $g: \mathbf{H} \rightarrow \mathbf{G}$ and $h: \mathbf{G} \rightarrow \mathbf{H}$:

$$
\begin{aligned}
g\left(\operatorname{Fin}_{a}(u)\right) & =\mathrm{LR}_{a}\left(f^{-}(u)\right), & h\left(\operatorname{LR}_{a}(u)\right) & =\operatorname{Fin}_{a}\left(f^{-}(u)\right), \\
g(\mathrm{D}(v)) & =\mathrm{U}(v), & h(\mathrm{U}(v)) & =\mathrm{D}(v)
\end{aligned}
$$

where $f^{-}:=\mathrm{cCoGMinus}$ (cL denotes the function extracted from the proof of a lemma L). No corecursive call is involved.

The proof of the existence of the average w.r.t. Gray-coded reals is similar to the proof for signed digit stream coded reals. To prove

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} G\right)
$$

consider again two sets of averages, the second one with a "carry": $P:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in{ }^{\mathrm{co}} G\right\}, \quad Q:=\left\{\left.\frac{x+y+i}{4} \right\rvert\, x, y \in{ }^{\mathrm{co}} G, i \in \mathrm{SD}_{2}\right\}$.

Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }} G$. Then by the greatest-fixed-point axiom for ${ }^{c o} G$ we have $Q \subseteq{ }^{\text {co }} G$. Since also $P \subseteq Q$ we obtain $P \subseteq{ }^{\text {co }} G$, which is our claim.

The proof of the existence of the average w.r.t. Gray-coded reals is similar to the proof for signed digit stream coded reals. To prove

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} G\right)
$$

consider again two sets of averages, the second one with a "carry":
$P:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in{ }^{\mathrm{co}} G\right\}, \quad Q:=\left\{\left.\frac{x+y+i}{4} \right\rvert\, x, y \in{ }^{\mathrm{co}} G, i \in \mathrm{SD}_{2}\right\}$.
Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }} G$. Then by
the greatest-fixed-point axiom for ${ }^{\text {co }} G$ we have $Q \subseteq{ }^{\text {co }} G$. Since also
$P \subseteq Q$ we obtain $P \subseteq{ }^{\mathrm{co}} G$, which is our claim.

The proof of the existence of the average w.r.t. Gray-coded reals is similar to the proof for signed digit stream coded reals. To prove

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} G\right)
$$

consider again two sets of averages, the second one with a "carry":
$P:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in{ }^{\mathrm{co}} G\right\}, \quad Q:=\left\{\left.\frac{x+y+i}{4} \right\rvert\, x, y \in{ }^{\mathrm{co}} G, i \in \mathrm{SD}_{2}\right\}$.
Suffices: Q satisfies the clause coinductively defining ${ }^{\text {co }} G$. Then by the greatest-fixed-point axiom for ${ }^{c o} G$ we have $Q \subseteq{ }^{\text {co }} G$. Since also $P \subseteq Q$ we obtain $P \subseteq{ }^{\text {co }} G$, which is our claim.

Lemma (CoGAvToAvc)

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x^{\prime}, y^{\prime} \in \in^{\mathrm{co}} G}^{\mathrm{r}}\left(\frac{x+y}{2}=\frac{x^{\prime}+y^{\prime}+i}{4}\right) .
$$

 using CoGClause.

Implicit algorithm.
Write f^{*} for cCoGPsd Times and s for cCoHToCoG .

$$
\begin{aligned}
f\left(\mathrm{LR}_{a}(u), \mathrm{LR}_{a^{\prime}}\left(u^{\prime}\right)\right) & =\left(a+a^{\prime}, f^{*}(-a, u), f^{*}\left(-a^{\prime}, u^{\prime}\right)\right) \\
f\left(\mathrm{LR}_{a}(u), \mathrm{U}(v)\right) & =\left(a, f^{*}(-a, u), s(v)\right) \\
f\left(\mathrm{U}(v), \mathrm{LR}_{a}(u)\right) & =\left(a, s(v), f^{*}(-a, u)\right) \\
f\left(\mathrm{U}(v), \mathrm{U}\left(v^{\prime}\right)\right) & =\left(0, s(v), s\left(v^{\prime}\right)\right)
\end{aligned}
$$

Lemma (CoGAvToAvc)

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x^{\prime}, y^{\prime} \in \in^{\mathrm{co}} G}^{\mathrm{r}}\left(\frac{x+y}{2}=\frac{x^{\prime}+y^{\prime}+i}{4}\right)
$$

Proof needs CoGPsdTimes: $\forall_{a \in \operatorname{PSD}}^{\mathrm{nc}} \forall_{x \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(a x \in{ }^{\mathrm{co}} G\right)$. Rest easy, using CoGClause.

Implicit algorithm.
Write f^{*} for cCoGPsd Times and s for cCoHToCoG .

$$
\begin{aligned}
f\left(\operatorname{LR}_{a}(u), \operatorname{LR}_{a^{\prime}}\left(u^{\prime}\right)\right) & =\left(a+a^{\prime}, f^{*}(-a, u), f^{*}\left(-a^{\prime}, u^{\prime}\right)\right), \\
f\left(\operatorname{LR}_{a}(u), U(v)\right) & =\left(a, f^{*}(-a, u), s(v)\right), \\
f\left(U(v), \operatorname{LR}_{a}(u)\right) & =\left(a, s(v), f^{*}(-a, u)\right), \\
f\left(U(v), U\left(v^{\prime}\right)\right) & =\left(0, s(v), s\left(v^{\prime}\right)\right)
\end{aligned}
$$

Lemma (CoGAvToAvc)

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}} \exists_{x^{\prime}, y^{\prime} \in \in^{\mathrm{co}} G}^{\mathrm{r}}\left(\frac{x+y}{2}=\frac{x^{\prime}+y^{\prime}+i}{4}\right) .
$$

Proof needs CoGPsdTimes: $\forall_{a \in \operatorname{PSD}}^{\mathrm{nc}} \forall_{x \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(a x \in{ }^{\mathrm{co}} G\right)$. Rest easy, using CoGClause.

Implicit algorithm.
Write f^{*} for cCoGPsdTimes and s for cCoHToCoG.

$$
\begin{aligned}
f\left(\operatorname{LR}_{a}(u), \operatorname{LR}_{a^{\prime}}\left(u^{\prime}\right)\right) & =\left(a+a^{\prime}, f^{*}(-a, u), f^{*}\left(-a^{\prime}, u^{\prime}\right)\right), \\
f\left(\operatorname{LR}_{a}(u), \mathrm{U}(v)\right) & =\left(a, f^{*}(-a, u), s(v)\right), \\
f\left(\mathrm{U}(v), \operatorname{LR}_{a}(u)\right) & =\left(a, s(v), f^{*}(-a, u)\right), \\
f\left(\mathrm{U}(v), \mathrm{U}\left(v^{\prime}\right)\right) & =\left(0, s(v), s\left(v^{\prime}\right)\right)
\end{aligned}
$$

Lemma (CoGAvcSatCoICI)
(As in ColAvcSatColCl we need functions J, K with

$$
\frac{\frac{x+k}{2}+\frac{y+I}{2}+i}{4}=\frac{\frac{x+y+J(k+I+2 i)}{4}+K(k+I+2 i)}{2}
$$

Then CoGClause gives the claim.)

Lemma (CoGAvcSatCoICI)

(As in ColAvcSatColCl we need functions J, K with

$$
\frac{\frac{x+k}{2}+\frac{y+1}{2}+i}{4}=\frac{\frac{x+y+J(k+I+2 i)}{4}+K(k+I+2 i)}{2} .
$$

Then CoGClause gives the claim.)
Implicit algorithm.
$f\left(i, \operatorname{LR}_{a}(u), \operatorname{LR}_{a^{\prime}}\left(u^{\prime}\right)\right)=\left(J\left(a+a^{\prime}+2 i\right), K\left(a+a^{\prime}+2 i\right), f^{*}(-a, u), f^{*}\left(-a^{\prime}, u^{\prime}\right)\right)$ $f\left(i, \mathrm{LR}_{a}(u), \mathrm{U}(v)\right)=\left(J(a+2 i), K(a+2 i), f^{*}(-a, u), s(v)\right)$, $f\left(i, \mathrm{U}(v), \mathrm{LR}_{a}(u)\right)=\left(J(a+2 i), K(a+2 i), s(v), f^{*}(-a, u)\right)$, $f\left(i, \mathrm{U}(v), \mathrm{U}\left(v^{\prime}\right)\right)=\left(J(2 i), K(2 i), s(v), s\left(v^{\prime}\right)\right)$.

Lemma (CoGAvcToCoG)

$$
\begin{aligned}
& \forall_{z}^{\mathrm{nc}}\left(\exists_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{r}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow{ }^{\mathrm{co}} G(z)\right), \\
& \forall_{z}^{\mathrm{nc}}\left(\exists_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{r}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow{ }^{\mathrm{co}} H(z)\right) .
\end{aligned}
$$

In the proof we need a lemma:

$$
\text { SdDisj: } \forall_{k \in \operatorname{SD}}^{\operatorname{TC}}\left(k=0 V^{r} \exists_{a \in \operatorname{PSD}}^{r}(k=a)\right) .
$$

Here \vee^{r} is an (inductively defined) variant of \vee where only the content of the right hand side is kept.

Lemma (CoGAvcToCoG)

$$
\begin{aligned}
& \forall_{z}^{\mathrm{nc}}\left(\exists_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{r}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow{ }^{\mathrm{co}} G(z)\right) \\
& \forall_{z}^{\mathrm{nc}}\left(\exists_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{r}} \exists_{i \in \mathrm{SD}_{2}}^{\mathrm{r}}\left(z=\frac{x+y+i}{4}\right) \rightarrow{ }^{\mathrm{co}} H(z)\right) .
\end{aligned}
$$

In the proof we need a lemma:

$$
\operatorname{SdDisj}: \forall_{k \in \operatorname{SD}}^{\mathrm{nc}}\left(k=0 \vee^{\mathrm{r}} \exists_{a \in \mathrm{PSD}}^{\mathrm{r}}(k=a)\right)
$$

Here \vee^{r} is an (inductively defined) variant of \vee where only the content of the right hand side is kept.

Implicit algorithm.

$$
g\left(i, u, u^{\prime}\right)=\operatorname{let}\left(i_{1}, k, u_{1}, u_{1}^{\prime}\right)=\mathrm{cCoGAvcSatCoICl}\left(i, u, u^{\prime}\right) \text { in }
$$ case $\operatorname{cSdDisj}(k)$ of

$$
\begin{aligned}
& 0 \rightarrow \mathrm{U}\left(h\left(i_{1}, u_{1}, u_{1}^{\prime}\right)\right) \\
& a \rightarrow \mathrm{LR}_{a}\left(g\left(-a i_{1}, f^{*}\left(-a, u_{1}\right), f^{*}\left(-a, u_{1}^{\prime}\right)\right)\right)
\end{aligned}
$$

$h\left(i, u, u^{\prime}\right)=\operatorname{let}\left(i_{1}, k, u_{1}, u_{1}^{\prime}\right)=\operatorname{cCoGAvcSatCoICl}\left(i, u, u^{\prime}\right)$ in case $\operatorname{cSdDisj}(k)$ of

$$
\begin{aligned}
& 0 \rightarrow \mathrm{D}\left(h\left(i_{1}, u_{1}, u_{1}^{\prime}\right)\right) \\
& a \rightarrow \operatorname{Fin}_{a}\left(g\left(-a i_{1}, f^{*}\left(-a, u_{1}\right), f^{*}\left(-a, u_{1}^{\prime}\right)\right)\right) .
\end{aligned}
$$

Theorem (CoGAverage)

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} G\right)
$$

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.

Theorem (CoGAverage)

$$
\forall_{x, y \in{ }^{\mathrm{co}} G}^{\mathrm{nc}}\left(\frac{x+y}{2} \in{ }^{\mathrm{co}} G\right)
$$

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.

Conclusion

- Want formally verified algorithms on real numbers given as streams (signed digits or pre-Gray code).
- Consider formal proofs M and apply realizability to extract their computational content.
- Switch between different representations of reals by
- labelling \forall_{x} as $\forall_{x}^{\mathrm{nc}}$ and
- relativise x to a coinductive predicate whose computational content is a stream representing x.
- The desired algorithm is obtained as the extracted term et(M) of the proof M.
- Verification by (automatically generated) formal soundness proof of the realizability interpretation.

