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Motivation 1: Formal Verification of Math Libraries

Cody & Waite’s algorithm (1980)

double cw_exp(double x)
{

// exception handling and constants
...
// argument reduction
double k = nearbyint(x * InvLog2);
double t = x - k * Log2h - k * Log2l;
// polynomial approximation
double t2 = t * t;
double p = 0.25 + t2 * (p1 + t2 * p2);
double q = 0.5 + t2 * (q1 + t2 * q2);
double f = t * (p / (q - t * p)) + 0.5;
// result reconstruction
return ldexp(f, (int)k + 1);

}

This floating-point function accurately approximates exp.
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Motivation 2: Numerical Integrals in Modern Math Proofs

Double bubbles minimize (2000)

The proof parameterizes the space of possible solutions by a
two-dimensional rectangle [...]. This rectangle is subdivided into
15,016 smaller rectangles which are investigated by calculations
involving a total of 51,256 numerical integrals.

Major arcs for Goldbach’s problem (2013)∫ ∞
−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2
dτ

We compute the last integral numerically (from -100,000 to 100,000).
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Introduction

Objective

Formally verify inequalities on real-valued expressions.

Methodology

define reliable yet efficient algorithms,

formally prove that they are correct,

execute them inside the Coq formal system.
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Outline

1 Introduction

2 Formalizing the arithmetic

3 Fighting the dependency effect

4 Numerical integration

5 Conclusion
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Coq: a Proof Assistant

Coq in a nutshell

typed lambda-calculus with inductive types,

proof verification using a “small” kernel,

proof assistance using tactic-based backward reasoning.

Stating and proving ab
ac

= b
c

Lemma Rdiv_compat_r : (* stating the theorem *)
forall a b c : R,
a <> 0 -> c <> 0 -> (a*b) / (a*c) = b/c.

Proof. (* building the proof using tactics *)
intros.
field.
easy.

Qed. (* verifying the resulting proof *)
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Automating Proofs using CoqInterval

CoqInterval in a nutshell

Formally-verified enclosures of real-valued expressions using

basic arithmetic operators: +, −, ×, ÷,
√
·,

elementary functions: cos, sin, tan, arctan, exp, log,

univariate integrals.

Stating and proving
√

exp x ≤ π ·
∫ 4

1
log t dt when x ≤ 3

Lemma whatever :
forall x : R, x <= 3 ->
sqrt (exp x) <= PI * (RInt ln 1 4).

Proof.
intros.
interval.

Qed.
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Formalization Scope

Components needed to get the interval tactic

integer and real arithmetic Stdlib

floating-point arithmetic Flocq, CoqInterval

real analysis Stdlib, Coquelicot

floating-point elementary functions CoqInterval

interval arithmetic CoqInterval

automatic differentiation and Taylor models CoqInterval

fast integer arithmetic Stdlib

Everything is formalized in Coq logic.

Real arithmetic and analysis are not constructive
but we don’t want to extract anything from the proofs anyway.
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Arithmetic Datatypes

Positive integer

list of ones (unary representation),

list of bits (binary representation),

balanced binary tree of fixed-size integers.

Floating-point number: F = Z2 ∪ {⊥F}
no overflow nor underflow, arbitrary precision;
(m, e) is interpreted as the real number m · βe .

Interval: I = F2 ∪ {⊥I}
inf-sup representation; a bound ⊥F is interpreted as infinite.

Real number

R is an abstract type.
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Operations and Specifications

Floating-point arithmetic operations

Fsqrt : mode, prec ,F→ F.

∀x ∈ F, FtoR(Fsqrt(m, p, x)) = round(m, p,
√
FtoR(x)).

Floating-point elementary functions

Flog : prec ,F→ I.

∀x ∈ F, log(FtoR(x)) ∈ Flog(p, x).

Interval operations

Isin : prec , I→ I.

∀x ∈ I, ∀x ∈ R, x ∈ x⇒ sin(x) ∈ Isin(p, x).
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Implementation of an Elementary Function

Implementation of Flog
If x < 1, use log x = − log(x−1).

While x > 1 + 2−8, use log x = 2 log
√
x .

Evaluate the alternated series with interval operations

log(1 + t) = t − t2/2 + t3/3− . . .

until the remainder satisfies the target accuracy.

This is a poor way of approximating log,
but at least log x ∈ Flog(p, x) is formally proved.
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Fighting the Dependency Effect

Dependency effect

Interval arithmetic might compute overestimated enclosures
if there are multiple occurrences of variables:

∀x ∈ x = [−1; 1], sin x − x ∈ [−0.2; 0.2],
yet sin x− x ⊆ [−1.9; 1.9].

Definition (Polynomial enclosure)

(P,∆) ∈ R[X ]× I encloses f on x 3 x0 if

∀x ∈ x, f (x)− P(x − x0) ∈ ∆.

(X 3/6, [−0.01; 0.01]) encloses sin x − x on [−1; 1] 3 0,
so sin x − x ∈ (x− 0)3/6 + [−0.01; 0.01] ⊆ [−0.2; 0.2].
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Fighting the Dependency Effect

Definition (Polynomial enclosure)

(P,∆) ∈ R[X ]× I encloses f on x 3 x0 if

∀x ∈ x, f (x)− P(x − x0) ∈ ∆.

Enclosure of arithmetic operations

If f ∈ (Pf ,∆f ) and g ∈ (Pg ,∆g ) on x 3 x0,
then f + g ∈ (Pf + Pg ,∆f + ∆g ).

Enclosure of elementary functions

f (x)−
n∑

k=0

f (k)(x0)

k!
(x − x0)k ∈ f (n+1)(x)

(n + 1)!
(x− x0)n+1.

Derivatives are obtained using the linear differential equation of f .
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Bounding Approximation Errors

Example (Method error for Cody & Waite’s algorithm)

Lemma method_error : forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).
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Lemma method_error : forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).

Proof.
intros t t2 p q f Ht.
unfold f, q, p, t2, p0, p1, p2, q0, q1, q2 ; simpl ;
interval with (i_bisect_taylor t 9, i_prec 70).

Qed.

Proof completes in about 5 seconds
using degree-9 polynomials and 70-bit FP arithmetic.
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Polynomial Integral Enclosure

Lemma (Polynomial integral enclosure)

Suppose f is approximated on [u, v ] by p ∈ R[X ] and ∆ ∈ I
in the sense that ∀x ∈ [u, v ], f (x)− p(x) ∈ ∆.
Then for any primitive P of p∫ v

u
f (t) dt ∈ P(v)− P(u) + (v − u) ·∆.

Adaptive splitting

Integration domain is recursively split into two sub-domains
until the target accuracy is reached.
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Integrating a Non-Smooth Integrand

Example (Helfgott’s integral on MathOverflow)∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

exp x
∣∣ dx

Results when asked for 15 correct digits

Matlab quadv, quadcc, quadl: correct answer. 3

Matlab quad, quadgk: only 10 correct digits, no warning. 7

Intlab verifyquad: absolute values not supported. G

VNODE-LP: absolute value not supported. G
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Integrating a Non-Smooth Integrand

Example (Helfgott’s integral on MathOverflow)∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

exp x
∣∣ dx

Results using CoqInterval

Target Time Degree Depth Prec

10−3 0.7 5 8 30
10−6 0.9 6 13 40
10−9 1.3 8 18 50
10−12 1.9 10 22 60
10−15 2.7 12 28 70
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Improper Integrals of the First Kind

Example (Major arcs for Goldbach’s problem)

The paper states that∫ ∞
−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2
dτ ≤ 226.844.

CoqInterval proves . . . ∈ [226.849; 226.850].

Proof completes in about 30 seconds
using degree-10 polynomials and 40-bit FP arithmetic.

Note: Infinite endpoints are handled by manually factoring
the integrand into Bertrand’s form.
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Conclusion

Contributions and limitations

formally guaranteed bounds on real-valued expressions,

support for (improper) integrals,

simple algorithms yet efficient enough in practice,

poor support for multivariate expressions.

http://coq-interval.gforge.inria.fr/

Need more?

Can’t stand Coq? Extract and compile as an external tool.

Need more speed? Realize integer operations with GMP.
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What about Exact Reals in Coq?

N. Julien (2008). Certified exact real arithmetic using
coinduction in arbitrary integer base.

I. Paşca (2008). A formal verification for Kantorovitch’s
theorem.

R. O’Connor (2008). Certified exact transcendental real
number computation in Coq.

R. Krebbers, B. Spitters (2011). Computer certified
efficient exact reals in Coq.
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