Constructive analysis

Philosophy, Proof and Fundamentals

Hajime Ishihara
School of Information Science
Japan Advanced Institute of Science and Technology
(JAIST)
Nomi, Ishikawa 923-1292, Japan

Interval Analysis and Constructive Mathematics, Oaxaca, 13 - 18 November, 2016

Contents

- The BHK interpretation
- Natural deduction
- Omniscience principles
- Number systems
- Real numbers
- Ordering relation
- Apartness and equality
- Arithmetical operations
- Cauchy competeness
- Order completeness
- The intermediate value theorem

A history of constructivism

- History
- Arithmetization of mathematics (Kronecker, 1887)
- Three kinds of intuition (Poincaré, 1905)
- French semi-intuitionism (Borel, 1914)
- Intuitionism (Brouwer, 1914)
- Predicativity (Weyl, 1918)
- Finitism (Skolem, 1923; Hilbert-Bernays, 1934)
- Constructive recursive mathematics (Markov, 1954)
- Constructive mathematics (Bishop, 1967)
- Logic
- Intuitionistic logic (Heyting, 1934; Kolmogorov, 1932)

Mathematical theory

A mathematical theory consists of

- axioms describing mathematical objects in the theory, such as
- natural numbers,
- sets,
- groups, etc.
- logic being used to derive theorems from the axioms

Interval analysis
Constructive analysis
Computable analysis
objects
intervals
arbitrary reals
computable reals
> logic
> classical logic
> intuitionistic logic
> classical logic

Language

We use the standard language of (many-sorted) first-order predicate logic based on

- primitive logical operators $\wedge, \vee, \rightarrow, \perp, \forall, \exists$.

We introduce the abbreviations

- $\neg A \equiv A \rightarrow \perp$;
- $A \leftrightarrow B \equiv(A \rightarrow B) \wedge(B \rightarrow A)$.

The BHK interpretation

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of the logical operators is the following.

- A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.
- A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.
- A proof of $A \rightarrow B$ is a construction which transform any proof of A into a proof of B.
- Absurdity \perp has no proof.
- A proof of $\forall x A(x)$ is a construction which transforms any t into a proof of $A(t)$.
- A proof of $\exists x A(x)$ is given by presenting a t and a proof of $A(t)$.

Natural Deduction System

We shall use \mathcal{D}, possibly with a subscript, for arbitrary deduction.
We write

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& A
\end{aligned}
$$

to indicate that \mathcal{D} is deduction with conclusion A and assumptions Γ.

Deduction (Basis)

For each formula A,

$$
A
$$

is a deduction with conclusion A and assumptions $\{A\}$.

Deduction (Induction step, $\rightarrow \mathrm{I}$)

If

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& B
\end{aligned}
$$

is a deduction, then

$$
\begin{gathered}
\begin{array}{c}
\Gamma \\
\mathcal{D} \\
B
\end{array} \\
\hline A \rightarrow B
\end{gathered} \rightarrow \mathrm{I}
$$

is a deduction with conclusion $A \rightarrow B$ and assumptions $\Gamma \backslash\{A\}$. We write

$$
\begin{gathered}
{[A]} \\
\frac{{ }_{\mathcal{D}}}{B} \\
A \rightarrow B
\end{gathered} \mathrm{I}
$$

Deduction (Induction step, $\rightarrow \mathrm{E}$)

If

$$
\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\mathcal{D}_{1} & \mathcal{D}_{2} \\
A \rightarrow B & A
\end{array}
$$

are deductions, then

$$
\begin{array}{cc}
\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\mathcal{D}_{1} & \mathcal{D}_{2} \\
A \rightarrow B & A
\end{array} \rightarrow \mathrm{E} \\
\hline B &
\end{array}
$$

is a deduction with conclusion B and assumptions $\Gamma_{1} \cup \Gamma_{2}$.

Example

Minimal logic

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{l}
{[A]} \\
\mathcal{D} \\
B \rightarrow B
\end{array} \rightarrow \mathrm{I}\right.}
\end{array} \\
& \begin{array}{l}
\mathcal{D}_{1} \quad \mathcal{D}_{2} \\
\frac{A}{A} \quad B \\
\hline A \wedge B
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [A] [B] }
\end{aligned}
$$

Minimal logic

$$
\begin{array}{cc}
\mathcal{D} & \mathcal{D} \\
\frac{A}{\forall y A[x / y]} \forall \mathrm{I} & \frac{\forall x A}{A[x / t]} \forall \mathrm{E} \\
& \\
\begin{array}{c}
\mathcal{D} \\
\frac{A[x / t]}{\exists x A} \\
\end{array} & \begin{array}{c}
\mathcal{D}_{1} \\
\hline
\end{array} \\
\frac{\exists y A[x / y]}{} & \mathcal{D}_{2} \\
C & C
\end{array}
$$

- In $\forall \mathrm{E}$ and $\exists \mathrm{I}, t$ must be free for x in A.
- In $\forall \mathrm{I}, \mathcal{D}$ must not contain assumptions containing x free, and $y \equiv x$ or $y \notin \mathrm{FV}(A)$.
- In $\exists \mathrm{E}, \mathcal{D}_{2}$ must not contain assumptions containing x free except $A, x \notin \mathrm{FV}(C)$, and $y \equiv x$ or $y \notin \mathrm{FV}(A)$.

Example

Example

$$
\begin{aligned}
& \frac{[(A \rightarrow C) \wedge(B \rightarrow C)]}{\frac{A \rightarrow C}{} \wedge \mathrm{E}_{r} \quad[A]} \underset{C}{C} \rightarrow \mathrm{E} \quad \frac{[(A \rightarrow C) \wedge(B \rightarrow C)]}{\frac{B \rightarrow C}{A}} \wedge \mathrm{E}_{/} \quad[B] \\
& \frac{C}{(A \rightarrow C) \wedge(B \rightarrow C) \rightarrow(A \vee B \rightarrow C)} \rightarrow \mathrm{I}
\end{aligned} \mathrm{E}
$$

Example

$$
\begin{gathered}
\frac{[A \rightarrow \forall \times B][A]}{\frac{\forall \times B}{B} \forall \mathrm{E}} \rightarrow \mathrm{E} \\
\frac{{ }^{A \rightarrow B} \rightarrow \mathrm{I}}{\forall \times(A \rightarrow B)} \forall \mathrm{I} \\
(A \rightarrow \forall \times B) \rightarrow \forall \times(A \rightarrow B)
\end{gathered} \mathrm{I} .
$$

where $x \notin \operatorname{FV}(A)$.

Example

$$
\begin{aligned}
& \frac{[A \rightarrow B] \quad[A]}{\frac{B}{\exists}} \rightarrow \mathrm{E} \\
& B)] \quad \exists \times \mathrm{I} \\
& \exists \times B \\
& \exists \mathrm{E}
\end{aligned}
$$

where $x \notin \mathrm{FV}(A)$.

Intuitionistic logic

Intuitionistic logic is obtained from minimal logic by adding the intuitionistic absurdity rule (ex falso quodlibet).

If

$$
\stackrel{\Gamma}{\mathcal{D}}
$$

is a deduction, then

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& \stackrel{\perp}{A} \perp_{i}
\end{aligned}
$$

is a deduction with conclusion A and assumptions Γ.

Example

Example

Classical logic

Classical logic is obtained from intuitionistic logic by strengthening the absurdity rule to the classical absurdity rule (reductio ad absurdum).

If

is a deduction, then

$$
\begin{aligned}
& \stackrel{\Gamma}{\mathcal{D}} \\
& \stackrel{\perp}{A} \perp_{c}
\end{aligned}
$$

is a deduction with conclusion A and assumption $\Gamma \backslash\{\neg A\}$.

Example (classical logic)

The double negation elimination (DNE):

$$
\begin{gathered}
\frac{[\neg \neg A] \quad[\neg A]}{\frac{\perp}{A} \perp_{c}} \\
\neg \neg A \rightarrow A
\end{gathered} \rightarrow \mathrm{E}
$$

Example (classical logic)

The principle of excluded middle (PEM):

$$
\begin{gathered}
\frac{[\neg(A \vee \neg A)] \quad \frac{[A]}{A \vee \neg A}}{\frac{\perp}{\neg A} \rightarrow \mathrm{I}} \rightarrow \mathrm{I} \\
\frac{[\neg(A \vee \neg A)]}{\frac{\perp}{A \vee \neg A}} \vee \mathrm{I}_{l} \\
A \vee \neg A \\
L_{c}
\end{gathered} \mathrm{E}
$$

Example (classical logic)

De Morgan's law (DML):

RAA vs $\rightarrow \mathrm{I}$

\perp_{c} : deriving A by deducing absurdity (\perp) from $\neg A$.

$$
\begin{aligned}
& {[\neg A]} \\
& \mathcal{D} \\
& \stackrel{\perp}{A} \perp_{c}
\end{aligned}
$$

\rightarrow I: deriving $\neg A$ by deducing absurdity (\perp) from A.

$$
\begin{aligned}
& {[A]} \\
& \stackrel{\mathcal{D}}{\perp} \\
& \frac{\perp}{\neg A} \rightarrow I
\end{aligned}
$$

Notations

- $m, n, i, j, k, \ldots \in \mathbf{N}$
- $\alpha, \beta, \gamma, \delta, \ldots \in \mathbf{N}^{\mathbf{N}}$
- $\mathbf{0}=\lambda n .0$
- $\alpha \# \beta \Leftrightarrow \exists n(\alpha(n) \neq \beta(n))$

Omniscience principles

- The limited principle of omniscience (LPO, Σ_{1}^{0}-PEM):

$$
\forall \alpha[\alpha \# \mathbf{0} \vee \neg \alpha \# \mathbf{0}]
$$

- The weak limited principle of omniscience (WLPO, $\Pi_{1}^{0}-\mathrm{PEM}$):

$$
\forall \alpha[\neg \neg \alpha \# \mathbf{0} \vee \neg \alpha \# \mathbf{0}]
$$

- The lesser limited principle of omniscience (LLPO, Σ_{1}^{0}-DML):

$$
\forall \alpha \beta[\neg(\alpha \# \mathbf{0} \wedge \beta \# \mathbf{0}) \rightarrow \neg \alpha \# \mathbf{0} \vee \neg \beta \# \mathbf{0}]
$$

Markov's principle

- Markov's principle (MP, Σ_{1}^{0}-DNE):

$$
\forall \alpha[\neg \neg \alpha \# \mathbf{0} \rightarrow \alpha \# \mathbf{0}]
$$

- Markov's principle for disjunction ($\mathrm{MP}^{\vee}, \Pi_{1}^{0}-\mathrm{DML}$):

$$
\forall \alpha \beta[\neg(\neg \alpha \# \mathbf{0} \wedge \neg \beta \# \mathbf{0}) \rightarrow \neg \neg \alpha \# \mathbf{0} \vee \neg \neg \beta \# \mathbf{0}]
$$

- Weak Markov's principle (WMP):

$$
\forall \alpha[\forall \beta(\neg \neg \beta \# \mathbf{0} \vee \neg \neg \beta \# \alpha) \rightarrow \alpha \# \mathbf{0}]
$$

Remark

We may assume without loss of generality that α (and β) are ranging over

- binary sequences,
- nondecreasing sequences,
- sequences with at most one nonzero term, or
- sequences with $\alpha(0)=0$.

Relationship among principles

- $\mathrm{LPO} \Leftrightarrow \mathrm{WLPO}+\mathrm{MP}$
- $\mathrm{MP} \Leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee}$

Remark

- MP (and hencce WMP and MP ${ }^{\vee}$) holds in constructive recuresive mathematics.
- WMP holds in intuitionism.

CZF and choice axioms

The materials in the lectures could be formalized in
the constructive Zermelo-Fraenkel set theory (CZF)
without the powerset axiom and the full separation axiom, together with the following choice axioms.

- The axiom of countable choice $\left(\mathrm{AC}_{0}\right)$:

$$
\forall n \exists y \in Y A(n, y) \rightarrow \exists f \in Y^{\mathbf{N}} \forall n A(n, f(n))
$$

- The axiom of dependent choice (DC):

$$
\begin{aligned}
& \forall x \in X \exists y \in X A(x, y) \rightarrow \\
& \quad \forall x \in X \exists f \in X^{\mathrm{N}}[f(0)=x \wedge \forall n A(f(n), f(n+1))]
\end{aligned}
$$

Number systems

- The set \mathbf{Z} of integers is the set $\mathbf{N} \times \mathbf{N}$ with the equality

$$
(n, m)=\mathbf{z}\left(n^{\prime}, m^{\prime}\right) \Leftrightarrow n+m^{\prime}=n^{\prime}+m .
$$

The arithmetical relations and operations are defined on \mathbf{Z} in a straightforwad way; natural numbers are embedded into \mathbf{Z} by the mapping $n \mapsto(n, 0)$.

- The set \mathbf{Q} of rationals is the set $\mathbf{Z} \times \mathbf{N}$ with the equality

$$
(a, m)={ }_{\mathbf{Q}}(b, n) \Leftrightarrow a \cdot(n+1)==_{\mathbf{z}} b \cdot(m+1) .
$$

The arithmetical relations and operations are defined on \mathbf{Q} in a straightforwad way; integers are embedded into \mathbf{Q} by the mapping $a \mapsto(a, 0)$.

Real numbers

Definition

A real number is a sequence $\left(p_{n}\right)_{n}$ of rationals such that

$$
\forall m n\left(\left|p_{m}-p_{n}\right|<2^{-m}+2^{-n}\right) .
$$

We shall write \mathbf{R} for the set of real numbers as usual.
Remark
Rationals are embedded into \mathbf{R} by the mapping $p \mapsto p^{*}=\lambda n . p$.

Ordering relation

Definition

Let $<$ be the ordering relation between real numbers $x=\left(p_{n}\right)_{n}$ and $y=\left(q_{n}\right)_{n}$ defined by

$$
x<y \Leftrightarrow \exists n\left(2^{-n+2}<q_{n}-p_{n}\right) .
$$

Proposition

Let $x, y, z \in \mathbf{R}$. Then

- $\neg(x<y \wedge y<x)$,
- $x<y \rightarrow x<z \vee z<y$.

Ordering relation

Proof.

Let $x=\left(p_{n}\right)_{n}, y=\left(q_{n}\right)_{n}$ and $z=\left(r_{n}\right)_{n}$, and suppose that $x<y$. Then there exists n such that $2^{-n+2}<q_{n}-p_{n}$. Setting $N=n+3$, either $\left(p_{n}+q_{n}\right) / 2<r_{N}$ or $r_{N} \leq\left(p_{n}+q_{n}\right) / 2$. In the former case, we have

$$
\begin{aligned}
2^{-N+2} & <2^{-n+1}-\left(2^{-(n+3)}+2^{-n}\right)<\frac{q_{n}-p_{n}}{2}-\left(p_{N}-p_{n}\right) \\
& =\frac{p_{n}+q_{n}}{2}-p_{N}<r_{N}-p_{N}
\end{aligned}
$$

and hence $x<z$. In the latter case, we have

$$
\begin{aligned}
2^{-N+2} & <-\left(2^{-(n+3)}+2^{-n}\right)+2^{-n+1}<\left(q_{N}-q_{n}\right)+\frac{q_{n}-p_{n}}{2} \\
& =q_{N}-\frac{p_{n}+q_{n}}{2} \leq q_{N}-r_{N}
\end{aligned}
$$

and hence $z<y$.

Apartness and equality

Definition

We define the apartness \#, the equality $=$, and the ordering relation \leq between real numbers x and y by

- $x \# y \Leftrightarrow(x<y \vee y<x)$,
- $x=y \Leftrightarrow \neg(x \# y)$,
- $x \leq y \Leftrightarrow \neg(y<x)$.

Lemma
Let $x, y, z \in \mathbf{R}$. Then

- $x \# y \leftrightarrow y \# x$,
- $x \# y \rightarrow x \# z \vee z \# y$.

Apartness and equality

Proposition
Let $x, y, z \in \mathbf{R}$. Then

- $x=x$,
- $x=y \rightarrow y=x$,
- $x=y \wedge y=z \rightarrow x=z$.

Proposition

Let $x, x^{\prime}, y, y^{\prime} \in \mathbf{R}$. Then

- $x=x^{\prime} \wedge y=y^{\prime} \wedge x<y \rightarrow x^{\prime}<y^{\prime}$,
- $\neg \neg(x<y \vee x=y \vee y<x)$,
- $x<y \wedge y<z \rightarrow x<z$.

Apartness and equality

Corollary
Let $x, x^{\prime}, y, y^{\prime}, z \in \mathbf{R}$. Then

- $x=x^{\prime} \wedge y=y^{\prime} \wedge x \# y \rightarrow x^{\prime} \# y^{\prime}$,
- $x=x^{\prime} \wedge y=y^{\prime} \wedge x \leq y \rightarrow x^{\prime} \leq y^{\prime}$,
- $x \leq y \leftrightarrow \neg \neg(x<y \vee x=y)$,
- $\neg \neg(x \leq y \vee y \leq x)$,
- $x \leq y \wedge y \leq x \rightarrow x=y$,
- $x<y \wedge y \leq z \rightarrow x<z$,
- $x \leq y \wedge y<z \rightarrow x<z$,
- $x \leq y \wedge y \leq z \rightarrow x \leq z$.

Apartness and equality

Proposition

$\forall x y \in \mathbf{R}(x \# y \vee x=y) \Leftrightarrow \mathrm{LPO}$,
Proof.
(\Leftarrow) : Let $x=\left(p_{n}\right)_{n}$ and $y=\left(q_{n}\right)_{n}$, and define a binary sequence α by

$$
\alpha(n)=1 \Leftrightarrow 2^{-n+2}<\left|q_{n}-p_{n}\right| .
$$

Then $\alpha \# \mathbf{0} \leftrightarrow x \# y$, and hence $x \# y \vee x=y$, by LPO. (\Rightarrow) : Let α be a binary sequence α with at most one nonzero term, and define a sequence $\left(p_{n}\right)_{n}$ of rationals by

$$
p_{n}=\sum_{k=0}^{n} \alpha(k) \cdot 2^{-k}
$$

Then $x=\left(p_{n}\right)_{n} \in \mathbf{R}$, and $x \# 0 \leftrightarrow \alpha \# \mathbf{0}$. Therefore $\alpha \# \mathbf{0} \vee \neg \alpha \# \mathbf{0}$, by $x \# 0 \vee x=0$.

Apartness and equality

Proposition

- $\forall x y \in \mathbf{R}(\neg x=y \vee x=y) \Leftrightarrow$ WLPO,
- $\forall x y \in \mathbf{R}(x \leq y \vee y \leq x) \Leftrightarrow$ LLPO,
- $\forall x y \in \mathbf{R}(\neg x=y \rightarrow x \# y) \Leftrightarrow \mathrm{MP}$,
- $\forall x y z \in \mathbf{R}(\neg x=y \rightarrow \neg x=z \vee \neg z=y) \Leftrightarrow \mathrm{MP}^{\vee}$,
- $\forall x y \in \mathbf{R}(\forall z \in \mathbf{R}(\neg x=z \vee \neg z=y) \rightarrow x \# y) \Leftrightarrow$ WMP.

Arithmetical operations

The arithmetical operations are defined on \mathbf{R} in a straightforwad way.

For $x=\left(p_{n}\right), y=\left(q_{n}\right) \in \mathbf{R}$, define

- $x+y=\left(p_{n+1}+q_{n+1}\right)$;
- $-x=\left(-p_{n}\right)$;
- $|x|=\left(\left|p_{n}\right|\right)$;
- $\max \{x, y\}=\left(\max \left\{p_{n}, q_{n}\right\}\right)$;

Cauchy completeness

Definition

A sequence $\left(x_{n}\right)$ of real numbers converges to $x \in \mathbf{R}$ if

$$
\forall k \exists N_{k} \forall n \geq N_{k}\left[\left|x_{n}-x\right|<2^{-k}\right] .
$$

Definition

A sequence $\left(x_{n}\right)$ of real numbers is a Cauchy sequence if

$$
\forall k \exists N_{k} \forall m n \geq N_{k}\left[\left|x_{m}-x_{n}\right|<2^{-k}\right] .
$$

Theorem
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Classical order completeness

Theorem

If S is an inhabited subset of \mathbf{R} with an upper bound, then $\sup S$ exists.

Proposition

If every inhabited subset S of \mathbf{R} with an upper bound has a supremum, then WLPO holds.

Proof.

Let α be a binary sequence. Then $S=\{\alpha(n) \mid n \in \mathbf{N}\}$ is an inhabited subset of \mathbf{R} with an upper bound 2 . If $\sup S$ exists, then either $0<\sup S$ or $\sup S<1$; in the former case, we have $\neg \neg \alpha \# \mathbf{0}$; in the latter case, we have $\neg \alpha \# \mathbf{0}$.

Constructive order completeness

Theorem

Let S be an inhabited subset of \mathbf{R} with an upper bound. If either $\exists s \in S(a<s)$ or $\forall s \in S(s<b)$ for each $a, b \in \mathbf{R}$ with $a<b$, then sup S exists.

Proof.
Let $s_{0} \in S$ and u_{0} be an upper bound of S with $s_{0}<u_{0}$. Define sequences $\left(s_{n}\right)$ and (u_{n}) of real numbers by

$$
\begin{array}{ll}
s_{n+1}=\left(2 s_{n}+u_{n}\right) / 3, u_{n+1}=u_{n} & \text { if } \exists s \in S\left[\left(2 s_{n}+u_{n}\right) / 3<s\right] ; \\
s_{n+1}=s_{n}, u_{n+1}=\left(s_{n}+2 u_{n}\right) / 3 & \text { if } \forall s \in S\left[s<\left(s_{n}+2 u_{n}\right) / 3\right] .
\end{array}
$$

Note that $s_{n}<u_{n}, \exists s \in S\left(s_{n} \leq s\right)$ and $\forall s \in S\left(s \leq u_{n}\right)$ for each n. Then $\left(s_{n}\right)$ and $\left(u_{n}\right)$ converge to the same limit which is a supremum of S.

Constructive order completeness

Definition

A set S of real numbers is totally bounded if for each k there exist $s_{0}, \ldots, s_{n-1} \in S$ such that

$$
\forall y \in S \exists m<n\left[\left|s_{m}-y\right|<2^{-k}\right] .
$$

Constructive order completeness

Proposition

An inhabited totally bounded set S of real numbers has a supremum.

Proof.
Let $a, b \in \mathbf{R}$ with $a<b$, and let k be such that $2^{-k}<(b-a) / 2$. Then there exists $s_{0}, \ldots, s_{n-1} \in S$ such that

$$
\forall y \in S \exists m<n\left[\left|s_{m}-y\right|<2^{-k}\right] .
$$

Either $a<\max \left\{s_{m} \mid m<n\right\}$ or $\max \left\{s_{m} \mid m<n\right\}<(a+b) / 2$. In the former case, there exists $s \in S$ such that $a<s$. In the latter case, for each $s \in S$ there exists m such that $\left|s-s_{m}\right|<2^{-k}$, and hence

$$
s<s_{m}+\left|s-s_{m}\right|<(a+b) / 2+(b-a) / 2=b
$$

Classical intermediate value theorem

Definition

A function f from $[0,1]$ into \mathbf{R} is uniformly continuous if

$$
\forall k \exists M_{k} \forall x y \in[0,1]\left[|x-y|<2^{-M_{k}} \rightarrow|f(x)-f(y)|<2^{-k}\right] .
$$

Theorem
If f is a uniformly continuous function from $[0,1]$ into \mathbf{R} with $f(0) \leq 0 \leq f(1)$, then there exists $x \in[0,1]$ such that $f(x)=0$.

Classical intermediate value theorem

Proposition

The classical intermediate value theorem implies LLPO.
Proof.
Let $a \in \mathbf{R}$, and define a function f from $[0,1]$ into \mathbf{R} by

$$
f(x)=\min \{3(1+a) x-1,0\}+\max \{0,3(1-a) x+(3 a-2)\} .
$$

Then f is uniformly continuous, and $f(0)=-1$ and $f(1)=1$. If there exists $x \in[0,1]$ such that $f(x)=0$, then either $1 / 3<x$ or $x<2 / 3$; in the former case, we have $a \leq 0$; in the latter case, we have $0 \leq a$.

Constructive intermediate value theorem

Theorem
If f is a uniformly continuous function from $[0,1]$ into \mathbf{R} with $f(0) \leq 0 \leq f(1)$, then for each k there exists $x \in[0,1]$ such that $|f(x)|<2^{-k}$.

Constructive intermediate value theorem

Proof.

For given a k, let $I_{0}=0$ and $r_{0}=1$, and define sequences (I_{n}) and $\left(r_{n}\right)$ by

$$
\begin{array}{ll}
I_{n+1}=\left(I_{n}+r_{n}\right) / 2, r_{n+1}=r_{n} & \text { if } f\left(\left(I_{n}+r_{n}\right) / 2\right)<0, \\
I_{n+1}=I_{n}, r_{n+1}=\left(I_{n}+r_{n}\right) / 2 & \text { if } 0<f\left(\left(I_{n}+r_{n}\right) / 2\right), \\
I_{n+1}=\left(I_{n}+r_{n}\right) / 2, r_{n+1}=\left(I_{n}+r_{n}\right) / 2 & \text { if }\left|f\left(\left(I_{n}+r_{n}\right) / 2\right)\right|<2^{-(k+1)} .
\end{array}
$$

Note that $f\left(I_{n}\right)<2^{-(k+1)}$ and $-2^{-(k+1)}<f\left(r_{n}\right)$ for each n. Then $\left(I_{n}\right)$ and $\left(r_{n}\right)$ converge to the same limit $x \in[0,1]$. Either $2^{-(k+1)}<|f(x)|$ or $|f(x)|<2^{-k}$. In the former case, if $2^{-(k+1)}<f(x)$, then $2^{-(k+1)}<f\left(I_{n}\right)<2^{-(k+1)}$ for some n, a contradiction; if $f(x)<-2^{-(k+1)}$, then
$-2^{-(k+1)}<f\left(r_{n}\right)<-2^{-(k+1)}$ for some n, a contradiction.
Therefore the latter must be the case.

References

- Peter Aczel and Michael Rathjen, CST Book draft, 2010, http://www1.maths.leeds.ac.uk/~rathjen/book.pdf.
- Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- Errett Bishop and Douglas Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.
- Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, Cambridge Univ. Press, London, 1987.
- Douglas Bridges and Luminița Vîță, Techniques of Constructive Analysis, Springer, New York, 2006.
- D. van Dalen, Logic and Structure, 5th ed., Springer, London, 2013.
- A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, An Introduction, Vol. I, North-Holland, Amsterdam, 1988.

