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1. Infinitary objects generated via co-inductive definitions

A central issue in computing is to have programs the correctness of
which has formally been verified. An important idea to achieve this
is by extracting a program from a formal proof of a problem
specification.
We cannot compute with abstract and infinitary objects directly.
But we can compute with their representations, streams or trees.
Obviously, both, streams and trees over a finite alphabet can be
generated co-inductively.
The idea is now, not to deal with the representations directly, but
to have the representations be generated stepwise by the extracted
programme. To this end one tries to find a co-inductive
characterisation for the spaces under investigation and to construct
proofs on the basis of these definitions instead of the classical ones.



The central notion in Berger’s abstract framework is the digit
space.

Definition (U. Berger)

A digit space (X ,D) consists of a bounded and complete
nonempty metric space (X , µ) and a finite set D of contractions on
X , called digits, that cover X , that is,

X =
⋃
{ d [X ] | d ∈ D }.

Thus, every digit space is a compact Hausdorff space.

Aim.

I Develop the theory for compact Hausdorff spaces.

I Allow digit maps to be multi-ary.



2. Digit spaces

Let

I (X , τ) be a topological Hausdorff space and

I C(X ) = { f : Xm → X | f continuous ∧m ≥ 1 }.

For f ∈ C(X ), let ar(f ) denote its arity.

For D ⊆ C(X ), (X ,D) is covering if

X =
⋃
{ d [X ar(d)] | d ∈ D }.

Definition
A digit space (X ,D) consists of a compact Hausdorff space (X , τ)
and a finite subset D ⊆ C(X ) so that (X ,D) is covering.



Define CX co-inductively to be the largest subset of X such that
for all x ∈ X ,

x ∈ CX ⇒ (∃d ∈ D)(∃y1, . . . , yar(d) ∈ CX )x = d(y1, . . . , yar(d)).

Lemma
CX = X .

Proof.
By definition, CX ⊆ X . The converse inclusion follows by
coinduction. Note that by the covering property of X , the defining
implication of CX is true if CX is replaced by X .



Let TD be the set of all finitely branching trees with nodes d ∈ D
such that every node d has exactly ar(d) immediate successor
nodes. Trees of this kind are called digital trees. Obviously, every
path in a digital tree is infinite.

Write T = [d ; T1, . . . ,Tar(d)] to denote that d is the root of T
and T1, . . . ,Tar(d) are the immediate subtrees.

For m ≥ 0 and T ∈ TD , the initial segment T (m) of T of hight m
is recursively defined as follows:

T (0) = ∅

T (m+1) = [d ; T
(m)
1 , . . . ,T

(m)
ar(d)], if T = [d ; T1, . . . ,Tar(d)].



Set

ar(T (0)) = 1, ar(T (m+1)) =

ar(d)∑
i=1

ar(T
(m)
i ).

Then the arity of T (m) is the sum of the arities of the digits at its
leaves.

Each initial subtree T (m) of T defines a continuous map
T (m) : X ar(T (m)) → X by

T (0) = idX

T (m+1) = d ◦ (T
(m)
1 , . . . ,T

(m)
ar(d)).



Co-inductively, define Val to be the largest subset of TD × CX so
that for all (T , x) ∈ TD × CX ,

(T , x) ∈ Val⇒ (∃d ∈ D)(∃(T1, x1), . . . , (Tar(d), xar(d)) ∈ Val)

T = [d ; T1, . . . ,Tar(d)] ∧ x = d(x1, . . . , xar(d)).

Lemma
For all (T , x) ∈ Val and m ≥ 0, x ∈ T (m)[X ar(T (m))].

Hence,
x ∈

⋂
m≥0

T (m)[X ar(T (m))].

Note that
⋂

m≥0 T (m)[X ar(T (m))] 6= ∅, as X is compact.



Definition
(X ,D) is weakly hyperbolic, if for all T ∈ TD ,

‖
⋂
m≥0

T (m)[X ar(T (m))]‖ ≤ 1.

For what follows, let (X ,D) be weakly hyperbolic. Then Val is the
graph of a function [[·]] with

[[[d ; T1, . . . ,Tar(d)]]] = d([[T1]], . . . , [[Tar(d)]]).

Lemma
range([[·]]) ⊆ CX .

By the definition of CX , a digital tree T with [[T ]] = x can
stepwise be constructed starting from the root, for every x ∈ CX .

Proposition

[[·]] : TD → CX is surjective.



Proposition

For all open subsets O of X and all T ∈ TD with [[T ]] ∈ O there is

some n ≥ 0 so that T (n)[X ar(T (n))] ⊆ O.

Note that TD comes equipped with a canonical metric

δ(S ,T ) =

{
0 S = T ,

2−min{ n≥1|S(n) 6=T (n) } otherwise.

Lemma
(TD , δ) is bounded and complete, hence compact.

Corollary

[[·]] is continuous.



Theorem
Let (X , τ) be a compact Hausdorff space. Then there is exactly
one separating uniformity U on X with the following properties:

1. U is compatible with topology τ .

2. U consists of all neighbourhoods of the diagonal ∆ in X × X
furnished with the product topology.

3. (X ,U) is a complete uniform space.

4. For a finite open covering C = {C1, . . . ,Cn} let

UC =
⋃n

i=1
Ci × Ci .

Then the collection of all such neighbourhoods UC is a
fundamental system of U.



Theorem

1. [[·]] : (TD , δ)→ (X ,U) is uniformly continuous.

2. The finite open covering uniformity U on X is the quotient
uniformity relative to [[·]].

3. The collection of relations

Um =
⋃
{T (m)[X ar(T (m))]× T (m)[X ar(T (m))] | T ∈ TD }

with m ≥ 0 is a fundamental system for the finite open
covering uniformity on X .



As is well known, every countably based uniformity can be
generated by a pseudometric.

Let q = 2max{ ar(d)|d∈D } and for x , y ∈ X define

ρ(x , y) = inf{
∑m−1

j=0
q−ij | m, i0, . . . im−1 ≥ 0 and there exists

a path z0, . . . , zm from x to y such that

for 1 ≤ j < m, (zj , zj+1) ∈ Uij }.

Theorem

1. ρ is a metric on X .

2. Each d ∈ D is contracting with contracting factor ar(d)/q.
Here, each power of X is furnished with the maximum metric.

3. (X , ρ) is bounded.



3. Continuous functions

Goal: Co-inductive characterization of the uniformly continuous
maps.

I For f : X n → X , m ≥ 1, and 1 ≤ i ≤ m, define
fi ,m : X n+m → Xm by

fi ,m(y1, . . . , yn, x1, . . . , xm) := (x1, . . . , xi−1, f (y1, . . . , yn), xi+1, . . . , xm).

Let

I pr
(m)
i : Xm → X projection on i-th component.

I (X ,D) and (Y ,E ) digit spaces.

Set
F(X ,Y ) := { f : Xm → Y | m ≥ 0 }.



Define

Φ: P(F(X ,Y ))→ (P(F(X ,Y ))→ P(F(X ,Y )))

by

Φ(F )(G ) :=

{ e ◦ (f1, . . . , far(e)) | e ∈ E ∧ f1, . . . , far(e) ∈ F }∪
{ h ∈ F(X ,Y ) | (∃1 ≤ i ≤ ar(h))(∀d ∈ D)h ◦ di ,ar(h) ∈ G }.

I Φ(F )(G ) is monotone in G , for all F ⊂ F(X ,Y ). Thus, the
minimal fixed point J (F ) = µΦ(F ) of λG . Φ(F )(G ) exists.

I J is monotone. Hence the greatest fixed point νJ of
λF . J (F ) exists.



Note J (F ) is the smallest subset of F(X ,Y ) such that

W If e ∈ E and f1, . . . , far(e) ∈ F then e ◦ (f1, . . . , far(e)) ∈ J (F ).

R If h ∈ F(X ,Y ) and 1 ≤ i ≤ ar(h) with h ◦ di ,ar(h) ∈ J (F ), for
all d ∈ D, then h ∈ J (F ).

Theorem
Let (X ,D) and (Y ,E ) be invertible and well-covering digit spaces.
Then

νJ = { f ∈ F(X ,Y ) | f uniformly continuous }.



Definition
A digit space (X ,D) is

1. invertible if each d ∈ D has a continuous right inverse
d ′ : range(d)→ X ar(d), i.e., d ◦ d ′ = idrange(d).

2. well-covering if X =
⋃
{ int(d [X ar(d)]) | d ∈ D }.



4. Separability

Let Q be a dense subset of X . In most applications dense elements
are finite objects (rationals e.g. in the case of the reals).

Density means that in every neighbourhood of x there is some
u ∈ Q. We want to prove that

x ∈ CX ⇐⇒ (∀n ∈ N)(∃u ∈ Q)µ(x , u) < 2−n.

From a proof of this result we can extract programs converting
between realizers of

“x ∈ CX” and “(∀n ∈ N)(∃u ∈ Q)µ(x , u) < 2−n ”

What are these realizers?

Lemma

I T is an realizer of x ∈ CX iff T ∈ TD and [[T ]] = x.

I f realizes (∀n ∈ N)(∃u ∈ Q)µ(x , u) < 2−n iff f : N→ Q such
that (∀n ∈ N)µ(x , f (n)) < 2−n.



Lemma
Let (X ,D) be well-covering. Then there exists ε ∈ Q+ such that
for every x ∈ X there exists d ∈ D with Bµ(x , ε) ⊆ d [X ar(d)].

Here
Bµ(x , ε) := { y ∈ X | µ(x , y) < ε }.

Definition
(X ,D,Q) is decidable if for every u ∈ Q, ε ∈ Q+, and d ∈ D it
can be decided whether Bµ(u, ε) ⊆ d [X ar(d)].



Definition
(X ,D,Q) has approximable choice if for every d ∈ D there is an
effective procedure λ(θ, u).~vθu : Q× d [X ar(d)] ∩ Q → Qar(d) such
that for all θ ∈ Q:

1. For all u ∈ d [X ar(d)] ∩ Q and all θ̂ ∈ Q,

µm(~vθu , ~v
θ̂
u ) < max{θ, θ̂}.

2. One can compute θ′ ∈ Q such that for all
u, u′ ∈ d [X ar(d)] ∩ Q, if µ(u, u′) < θ′ then µm(~vθu , ~v

θ
u′) < θ.

3. For all u ∈ d [X ar(d)] ∩ Q there is some ~z ∈ d−1[u] with
µm(~z , ~vθu ) < θ.



Theorem
Let (X ,D,Q) be a well-covering and decidable digit space with
approximable choice. Then

x ∈ CX ⇐⇒ (∀n ∈ N)(∃u ∈ Q)µ(x , u) < 2−n.

“⇒” follows by induction on n and “⇐” by coinduction.



Special cases:

I Compact separable Hausdorff space X .

I The space (K(X ), µH) of all non-empty compact subspaces of
X endowed with the Hausdorff metric µH.

Note

I (K(X ), µH) is a bounded complete metric space, just as X is.

I The nonempty finite sets of dense points in X form a dense
subset Q.

Set

DK(X ) := { [d1, . . . , dn] | d1, . . . , dn ∈ D pairwise distinct }

where [d1, . . . , dn](~A1, . . . , ~An) =
⋃n

i=1 d [~Ai ].

In this case

A ∈ CK(X ) ⇒ (∃d1, . . . , dn ∈ D pairwise distinct)

(∃~A1 ∈ Car(d1)
K(X ) , . . . ,

~An ∈ Car(dn)
K(X ) )A = [d1, . . . , dn](~A1, . . . , ~An).



Theorem
Let (K(X ),DK(X ),Q) be well-covering and decidable with
approximable choice. Then

A ∈ CK(X ) ⇐⇒ (∀n ∈ N)(∃U ∈ Q)µH(A,U) < 2−n.

The assumptions in this theorem are not of the kind we are
interested in: we want assumptions on space (X ,D,Q), but not on
(K(X ),DK(X ),Q).

Lemma
Let (X ,D,Q) be well-covering, then also (K(X ),DK(X ),Q) is
well-covering. If, in addition, (X ,D,Q) is decidable, the same
holds for (K(X ),DK(X ),Q).

Lemma
Let (X ,D,Q) have approximable choice, then also
(K(X ),DK(X ),Q) has approximable choice.



5. Applications:

I Signed-digit representation

I X = I = [−1, 1]
I DSD = { da | a ∈ {−1, 0,+1} } with

da(x) =
x + a

2
.

I (X ,D) is well-covering.



I Pre-Gray code

X = I
DpG = {LRa | a ∈ {−1,+1} } ∪ {D,U} ∪ {Fina | a ∈ {−1,+1} }

with

LRa(x) = −a
x − 1

2
, Fina(x) = a

x + 1

2
, D(x) = U(x) =

x

2
.

(X ,DpG) is well-covering.



The admissible streams over DpG are determined by the following
typing:

LRa : G→ G, U : H→ G

Fina : G→ H, D : H→ H.

This leads to the following set of admissible streams:

GH =[{LR1̄,LR1}∗UD∗{Fin1̄,Fin1}]∗{LR1̄,LR1}ω

∪ [{LR1̄,LR1}∗UD∗{Fin1̄,Fin1}]∗{LR1̄,LR1}∗UDω

∪ [{LR1̄,LR1}∗UD∗{Fin1̄,Fin1}]ω,

where 1̄ = −1.



Lemma
GH is closed in the metric topology on Dω

pG.

Proposition

1. GH is a compact Hausdorff space with respect to the
restriction of the canonical metric on DpG.

2. (I, {LR1̄,LR1,U}) is well-covering.

3. The restriction of [[·]] to GH is surjective.



I Gray code

I X = I
I DG = {LR1̄,LR1, d0}
I The set of admissible streams T is not closed in the metric

topology on {LR1̄,LR1, d0}ω

where

T =[{LR1̄,LR1}ω ∪ {LR1̄,LR1}∗d0LR
ω
1̄ ]

\ {LR1̄,LR1}∗{LR1̄,LR1}LR1LR
ω
1̄ .


