
Implementing Computable Analysis

Jens Blanck

November 2016

Analysis

Mathematical
Analysis

Interval
Analysis

Constructive
Analysis

Computable
Analysis

Interval Analysis

In its modern form began in the sixties (Moore).

Desire to control the error caused by rounding in floating point
arithmetic.

Guarantees that the real answer is in the computed interval.

Note that computations can handle non-exact input data.

Interval Analysis (Dependency problem)

If f : Rn → R is a function from a real vector to a real number,
then f̄ : [R]n → [R] is called an interval extension of f if

f̄ (~x) ⊇ {f (x) : x ∈ ~x}.

[1,2]
[1,2]+1 = [1

3 , 1]

x
x+1

1 2 3

1
3

1
2

2
3

Constructive Analysis

The logical foundations of mathematics were challenged at the
start of the 20th century (Brouwer).

In particular, existential proofs were put in the spotlight. What
does it mean to say that an element with some properties exists,
if we can’t produce such an element?

Constructive mathematics require a method of finding a
witness to accept an existential proof.

Constructive Analysis tries to recreate analysis using
constructive mathematics.

Constructive Analysis (Intermediate Value Theorem)

IVT: f (1) > 0 > f (0) =⇒ ∃x(f (x) = 0)

f

10

Constructively, the implication does not hold, but by either
suitably strengthening the premise or weakening the
conclusion it does hold.

Computability

What can be computed?

Started with Turing’s 1936 paper “On computable numbers”.

It is interesting to note that Turing thought about computations
over real numbers. In a sense he was directly aiming for
Computable Analysis.

Computability and Constructive Mathematics

Computability and constructivism are often very similar.

Having a method to produce a witness is more or less the same
as saying that the witness can be computed.

E.g, we can’t computably find a witness to IVT.

Realizability

One strong link between Computable Analysis and
Constructive Analysis is Realizability.

With a PCA we can extend the notion of realizers
(representations) of data to logical formulas.

The Soundness Theorem says that all constructively valid
formulas have a realizer.

Program Extraction

The realizers obtained by the soundness theorem can be used
to extract programs that computes the result.

A constructive proof of

∀x ∈ N ∃y ∈ N (x < y ∧ Prime(y))

can be used to extract a proof for finding a prime larger than
the input integer.

Computable Analysis and Interval Analysis

We will see that Computable Analysis and Interval Analysis
use the same objects to compute on.

However, the aim is somewhat different. This can perhaps be
distinguished by saying that Computable Analysis assumes
that input data can be approximated to arbitrary precision.

Approximations

Many of the structures considered in analysis are uncountable.

There are only countably many finite names/representations.

So most (almost all) objects cannot be computed with directly.

Approximations

One approach is to consider some countable substructure.

For example, for R
Floating point
p-adic numbers
Rational numbers
Field extensions of rational numbers
Real closure of the rational numbers
...

All of these can be used for computations and have valid use
cases.

Approximations

But we desire properties of the original notions.

field axioms
trancendental functions
Cauchy completeness
geometry
...

Approximations

It is customary to call elements of the countable substructure
approximations of the idealised elements.

But, are they really?

Is 3 an approximation of π? Is 1? Is −100?

The problem is that a single approximation does not convey
any information about the ideal element.

We will adjust the notion of approximation.

Approximations (definition)

Definition
An approximation a of an element x ∈ X is a finite piece of
information about x.

Remark
Usually, a /∈ X.
We will use only this notion, not the one on the previous slide.

Approximations (definition)

Definition
An approximation a of an element x ∈ X is a finite piece of
information about x.

Remark
Usually, a /∈ X.
We will use only this notion, not the one on the previous slide.

Approximations (ordering)

We introduce a partial ordering on approximations by

a v b [b is ‘better’ than a]

if
∀x(b approximates x =⇒ a approximates x) .

Approximations (supremum)

Approximations a and b are consistent if there is some element
x approximated by both approximations.

If a and b are consistent then we would expect to be able to
combine the joint information into one new approximation.

The supremum a t b contains exactly the joint information.

Assumption
Finite suprema of consistent approximations exist.

Remark
Actually, we sometimes work with a weaker assumption limiting the
number of possible minimal upper bounds.

Approximations (cusl)

Approximations with the above ordering and under the above
assumption satisfy the conditions of a cusl (conditional upper
semi-lattice).

Approximations (domain)

The ideal completion of a cusl is a
(Scott) domain.

Remark
In our setting, we only need to consider chains
(monotone sequences) rather than all ideals. no

info.

much
info.

The category of domains

The category of domains is very well behaved.
Cartesian closed category
Natural computability theory

Remark
With the weaker condition on upper bounds, we get the category of
bifinite domains which, in addition, is also closed under Plotkin’s
powerdomain construction.

The limit elements in domains

Among the added ideal elements in the domain construction,
there are elements that uniquely determines some element in
the space.

Clearly, we would like to claim that computing such a chain is
the same thing as computing one of the original elements.

However, in order to get good control of the topology of the
space and to be able to lift functions, we need to be a bit more
precise.

Domain Representations

Definition
A representation of a
topological space X is a tuple
(D,DR, s, r), where D is a
domain, DR ⊆ D, and where
(s, r) is a section-retraction pair
between X and DR.

Remark
r ◦ s = id, s ◦ r v id

D
DR

X

r
s

Lifting functions

Theorem
Let D and E be domain representations of X and Y as above. Then
any continuous function f : X→ Y can be lifted to a continuous
domain function f̄ : D→ E tracking f .

Approximations (computability)

By considering computations over sequences of
approximations we get a computability over the original space.

This works for most spaces in mathematical analysis (including
all separable metric spaces).

Without separability, things are more difficult (e.g. distribution
theory).

Domains and computability

The domain notion is not essential to the above development.
However, it appears automatically and is well-studied.

The domains emphasise the relationship between the finite
approximations and the ideal elements of the original space.

Interval Analysis are named after their approximations, but
keep approximations and ideal elements apart.

Other approaches to Computable Analysis sometimes focus on
the computable elements only, and try to hide away the
approximations.

Choosing Approximations

What approximations should be chosen?

Does it matter?

Approximations of Reals

For the reals it seems obvious: rational intervals.

Although, there are other possibilities, e.g, initial segments of
Cauchy sequences, or finite decimal expansions.

But decimal expansion makes it impossible to compute
addition and multiplication.

So yes, choice of approximations matters.

In general, the approximations need to allow us to compute the
desired operations.

Approximations of Reals

For the reals it seems obvious: rational intervals.

Although, there are other possibilities, e.g, initial segments of
Cauchy sequences, or finite decimal expansions.

But decimal expansion makes it impossible to compute
addition and multiplication.

So yes, choice of approximations matters.

In general, the approximations need to allow us to compute the
desired operations.

Approximations of Reals

For the reals it seems obvious: rational intervals.

Although, there are other possibilities, e.g, initial segments of
Cauchy sequences, or finite decimal expansions.

But decimal expansion makes it impossible to compute
addition and multiplication.

So yes, choice of approximations matters.

In general, the approximations need to allow us to compute the
desired operations.

Nested intervals or Cauchy sequences

Computable sequence of nested intervals
Computable Cauchy sequences with computable modulus

We can computably move from one representation to the other.
Hence, they are computably equivalent.

Nested intervals require recomputing until desired accuracy is
achieved.

Most functional programmers instinctively prefers Cauchy
sequences as it allows to use the modulus functions to compute
the required input precision.

Doing this often requires some approximation of the
intermediate values. Which may cause repeated cycles of
recalculation. In addition, the computed input precision may
be pessimistic.

Nested intervals or Cauchy sequences

All current implementations striving for efficiency use nested
intervals.

Intervals to approximate Reals

So, rational intervals it is then?

Well no, rational numbers are very poor computationally. They
tend to grow exponentially in size with the number of
operations performed on them.

While rational numbers can be rounded to smaller
representations it is not easy to find a good general strategy.

Dyadic intervals

The dyadic numbers are also dense among the reals.

Dyadic numbers are of the form m/2k, where m, k ∈ Z.

One easy strategy to bound the size of representations is to
bound the denominators of dyadic numbers.

Centred or end-point intervals

Exact real arithmetic is required to handle arbitrary precision.
Therefore, representations may grow quite big.

Using a centred interval means that only one large numerator
of a dyadic number need to be stored. (The width can be kept
in a much smaller number. Recall that we assume that input is
exact.)

Having independent end-points have other advantages.

Lean domains

Restricting to centred dyadic intervals make the domain
“leaner”.

This makes sense computationally. The representations of the
finite elements can be smaller, thus improving the memory
usage.

Can we get even “leaner”?

Signed digit representations
Continuous fractions
Linear fractional transformations

Signed digit representations

Consider a binary system, but with 3 digits: -1, 0, 1.

The domain becomes a tree, but some nodes encode the same
interval, e.g, 0.11̄ and 0.01 both encode the interval [0, 1

2].

However, so far no-one has shown how to avoid exponential
growth in the representation of the intermediate state that
needs to be stored and computed upon.

Computing over other spaces (C[a, b])

We can use the function space construction on domains.

This gives finite approximations of the form of boxes.

f

10

Computing over other spaces (C[a, b])

But we can also choose some dense set such as the rational
polynomials.

This gives finite approximations of the following form.

pf

10

In Interval Analysis these are known as Taylor models.

Computing over other spaces (C1[a, b])

Since integration is a computable operation, we may represent
elements in C1[a, b] by representing the derivative in either of
the two schemes for C[a, b].

Computing over other spaces (H(X))

H(X) is the space of all compact sets over a space X.

Plotkin power domain.

X

Implementation in Haskell

I have a partial implementation in Haskell.

It shares much of its ideas with iRRAM (implemented in C++)
but as the implementation languages differ in philosophy there
are also many differences.

Actual approximations

In my (partial) Haskell implementation I have:

data Approx = Approx Integer Integer Int
| Bottom

A value Approx m e s is to be interpreted as the interval

(m± e)2s .

Bounding the size of the error term

m

e

j bits k bits

What is a good bound on j?

Needs more research, but 10-20 seems optimal in my
experience.

Bounding the size of the error term

boundErrorTerm : : Approx −> Approx
boundErrorTerm Bottom = Bottom
boundErrorTerm a@(Approx m e s)

| e < errorBound = a
| otherwise =

l e t k = integerLog2 e + 1 − e r r o r B i t s
t = t e s t B i t m (k−1)
m’ = unsafeShi f tR m k
−− may o v e r f l o w and use e r r o r B i t s +1
e ’ = unsafeShi f tR (e + b i t (k−1)) k + 1

in i f t
then Approx (m’ + 1) e ’ (s+k)
e lse Approx m’ e ’ (s+k)

Limiting the precision

(m± e)2s

l i m i t S i z e : : P r e c i s i o n −> Approx −> Approx
l i m i t S i z e Bottom = Bottom
l i m i t S i z e l a@(Approx m e s)

| k > 0 = Approx
((i f t e s t B i t m (k−1) then (+1)

e lse id)
(unsafeShi f tR m k))

(1 + (unsafeShi f tR (e + b i t (k−1)) k))
(− l)

| otherwise = a
where k = (−s)− l

Reimplementing Interval Arithmetic

Interval Arithmetic over my Approx datatype must now be
implemented.

With the exception that a limit on precision is passed in to limit
how much effort is put into calculations of sharp interval
enclosures.

Example: Computing the product

(Approx m e s) ∗ (Approx n f t)
| am >= e && an >= f && a > 0 = Approx (a+d) (ab+ac) u
| am >= e && an >= f && a < 0 = Approx (a−d) (ab+ac) u
| am < e && n >= f = Approx (a+b) (ac+d) u
| am < e &&−n >= f = Approx (a−b) (ac+d) u
| m >= e && an < f = Approx (a+c) (ab+d) u
| −m >= e && an < f = Approx (a−c) (ab+d) u
| a == 0 = Approx (0) (ab+ac+d) u
| am < e && an < f && a > 0 && ab > ac = Approx (a+ac) (ab+d) u
| am < e && an < f && a > 0 && ab <= ac = Approx (a+ab) (ac+d) u
| am < e && an < f && a < 0 && ab > ac = Approx (a−ac) (ab+d) u
| am < e && an < f && a < 0 && ab <= ac = Approx (a−ab) (ac+d) u

where am = (abs m)
an = (abs n)
a = m∗n
b = m∗ f
c = n∗e
d = e∗ f
ab = (abs b)
ac = (abs c)
u = s+ t

∗ = Bottom

Example: Logarithm

logTaylorA : : P r e c i s i o n −> Approx −> Approx
logTaylorA Bottom = Bottom
logTaylorA r es (Approx m e s) =

i f m <= e then Bottom −− on ly d e f i n e d f o r s t r i c t l y p o s i t i v e arguments
e lse

l e t res ’ = r es + e r r o r B i t s
r = s + integerLog2 (3∗m) − 1
a ’ = Approx m e (s−r) −− a ’ i s a s c a l e d by a power o f 2 so t h a t 2 / 3 <= a ’ <= 4 / 3
u = a ’ − 1
v = a ’ + 1
x = u ∗ recipA (res ’) v −− so |u / v | <= 1 / 5
x2 = boundErrorTerm $ sqrA x
t = t a y l o r

res ’
(i t e r a t e (x2∗) x)
[1 , 3 . .]

in boundErrorTerm $ 2 ∗ t + fromIntegral r ∗ log2A (−res ’)

How to organise computation

Computable reals are sequences of better and better
approximations.

These sequences are realised as infinite lists.

Each intermediate value in the computation is represented by
an infinite list.

The datatype of reals

newtype BR a = BR {getBR : : [a]}

instance Functor BR where
fmap f = BR . map f . getBR

instance Appl ica t ive BR where
pure = BR . repeat
(BR f) <∗> (BR x) = BR $ zipWith ($) f x

The datatype of reals (resource bounds)

type Resources = Int

s t a r t L i m i t : : Int
s t a r t L i m i t = 80

bumpLimit : : Int −> Int
bumpLimit n = n ∗ 3 ‘ div ‘ 2

resources : : BR Resources
resources = BR $ i t e r a t e bumpLimit s t a r t L i m i t

The datatype of reals

instance Num (BR Approx) where
x + y = (\a b l −> ok 10 $ limitAndBound l (a + b)) <$> x <∗> y <∗> resources
x ∗ y = (\a b l −> ok 10 $ limitAndBound l (a ∗ b)) <$> x <∗> y <∗> resources
negate x = negate <$> x
abs x = abs <$> x
signum x = signum <$> x
fromInteger n = pure (Approx n 0 0)

instance F r a c t i o n a l (BR Approx) where
rec ip x = recipA <$> resources <∗> x
fromRational x = toApprox <$> resources <∗> pure x

Many infinite lists, expensive?

Lists in Haskell are lazy.

If references to lists are not kept, the initial segments may be
garbage collected during the computation.

In fact, the memory overhead is constant.

(Of course, the approximations grow in size)

Example

*Data.CDAR> 1/7
0.14285714285714285

*Data.CDAR> 1/7 :: BR Approx
Approx 172703688516375596386597 1 (-80)

*Data.CDAR> showA . require 40 $ 1/7
"0.14285714285714285714285˜"

*Data.CDAR> showA . require 200 $ sin 1
"0.841470984807896506652502321630298999622
5630607983710656727517099919104043912396˜"

Logistic map

*Data.CDAR> let f x = 4*x*(1-x)

*Data.CDAR> (!! 40) $ iterate f (1/8)
0.9472380339188935

*Data.CDAR> let useReals = showA . limitSize 40 . require 40

*Data.CDAR> useReals . (!! 40) $ iterate f (1/8)
"0.94723756671˜"

*Data.CDAR> :set +s

*Data.CDAR> (!! 10000) $ iterate f (1/8)
0.28348768666887586
(0.00 secs, 8,463,136 bytes)

*Data.CDAR> useReals . (!! 10000) $ iterate f (1/8)
"0.97947707874˜"
(4.29 secs, 1,342,366,248 bytes)

