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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

12 GBz Data for 59-days of Weather & Air Traffic

Weather Data over Atlanta, GA – Cloud height & Precipitation
Measured every 1/2-hour and predicted every 5 minutes

There are 45× 59 = 2655 half-an-hour blocks of weather data.
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

12 GBz Data for 59-days of Weather & Air Traffic

Weather Tree – Leaves are Time-blocks over 65 days
Neighbor-Joining Tree from Pairwise L1 Distances between Cloud height & Precipitation
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP of an aircraft trajectory and its tree
(every 4-6 sec. position data from radar sweep)
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Three individual trajectories and their sum as Z-MRPs
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

On a Sunny Day over Atlanta, GA
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP On this Sunny Day
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

On a Stormy Day over Altanta, GA
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP On this Stormy Day
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP pattern for Sunny Day − Stormy Day
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Real-world Motivations

Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP Dynamic Trees Can be Created in Real-time
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

Phenomenon: Damped Double Pendulum Trajectories

A: DP Schematic B: Streaming DP data C: Enclosures of two initially close trajectories
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Parametric model
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Parametric model contd...
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ODE Model: Damped Double Pendulum Trajectories
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Finite versus infinite dimensional Models:
I Finite dimensional models can be rigorously exhaused

I double-hooked bobs suspended by springs in each arm
I add permanent magnets into each arm
I attach to flimsier docking station via vice-grips
I to rigorously exhaust parametric models we need

computer-aided proofs in dynamics (work in progress)
I Here, we want to take a nonparametric empirical

process approach (“infinite dimensional models from data
with universal performance guarantees”) to estimate the
density of trajectories from multiple independent
experiments directly
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Trajectory signatures of ConstruMath South 2012 Participants
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Real-world Motivations

A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Estimate of the Angular position of each arm from 3 trajectories
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Non-parametric Density Estimation

Section 2

Non-parametric Density Estimation
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Non-parametric Density Estimation

Massive Metric Data Streams – Introduction

I A massive metric data stream is:

. . . ,X−3,X−2,X−1,X0,X1,X2,X3,Xn,Xn+1, . . . ∼ f , Xi ∈ Rd .

I Large Effective Dimension:
1 ≤ d ≤ 1000 (unstructured f ), 1 ≤ d ≤ 10 (highly structured f )

I Sample size for a single “burst”: 104 ≤ n ≤ 1010

I Most estimators of f grind to a halt on such data streams
I Need a multi-dimensional metric data-structure that is:

1. Computationally Efficient (do before the next radar sweep)
2. Statistically Consistent, i.e.,

∫
abs(fn − f )dλ→ 0 as n→∞

3. Data-adaptive and Non-parametric (learn from data with
minimal assumption)

4. with Universal Performance Guarantees (error bounds for∫
abs(fn − f )dλ as a function of data x1, . . . , xn, with n <∞

— NEED to account for the combinatorial geometric complexity of observable events)
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Non-parametric Density Estimation

Non-parametric Density Estimation – Problem

Take X1,X2, . . . ,Xn IID samples from unknown density f

S & York, An auto-validating trans-dimensional universal rejection sampler for locally Lipschitz arithmetical
expressions, Reliable Computing, 2013
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Non-parametric Density Estimation

Non-parametric Density Estimation – Problem

and give a consistent estimator fn of f , i.e., fn :
(
Rd)n × Rd → R

1. such that fn is imbued with arithmetic and
2. gives universal performance guarantees — f ∈ L1
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Non-parametric Density Estimation

The Smoothing Problem – controlling the data-dependent partitioning scheme

Figure: Two histogram density estimates for the standard bivariate
gaussian density with different choices of partitions. The histogram is
under-smoothed (left) and over-smoothed (right).
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Arithmetic and Algebra of Plane Binary Trees - 2014 Primer

Section 3

Arithmetic and Algebra of Plane Binary
Trees - 2014 Primer
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Section 4

Randomized Priority Queue Markov chain
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Split the root box.
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Two or more boxes with the most number of points?
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Break such ties by randomising the next bisection.
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Bisect until each box has ≤ kn points (let kn = 3 here).
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Randomized Priority Queue Markov chain

A Prioritized Queue based Algorithm (for L1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Final state
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Randomized Priority Queue Markov chain

The SplitMostCounts Algorithm

Input: (i) data: x1, . . . , xn ⊆ Rd ; (ii) root box: xρ;
(iii) SEB max: kn; (iv) maximum partition size: mn.

Output: histogram estimate fn,s

initialize i ← 1; s ← xρ;
repeat until

#xρv ≤ kn for each xρv ∈ `(s) and i ≤ mn // `(s) = {leaf boxes}

xρv ← Uniform(ˆ̀(s)) // randomized PQ on leaf boxes

s ← bisect(s,xρv ) // bisect leaf box xρv of s

recursively update counts in s;
i ← i + 1;

return fn,s
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Randomized Priority Queue Markov chain

Transition Diagram of Randomized PQ Markov chain

Let Si be the set of all RPs of xρ made of i splits and for i , j ∈ N
with i ≤ j , let Si:j be the set of RPs with k splits, i ≤ k ≤ j .

s0

s

s s

s s
s

s s

11

221 122

3321 2331
2222

1332 1233

All possible RP partitions in S0:4.
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Randomized Priority Queue Markov chain

L1-Consistency of SplitMostCounts Markov chain

Theorem (S & Teng, 2012)
Let X1,X2, . . . be independent and identical random vectors in
Rd whose common distribution µ has a non-atomic density f ,
i.e., f � λd . Let {Sn(i)}Ji=0 on S0:∞ be the Markov chain formed
using SplitMostCounts with terminal state ṡ and histogram
estimate fn,ṡ over the collection of partitions Ln.

Then, as n→∞, if kn →∞, kn/n→ 0, mn ≥ n/kn, and
mn/n→ 0 then the density estimate fn,ṡ is strongly consistent in
L1, i.e. ∫

|f (x)− fn,ṡ(x)|dx → 0 with probability 1.
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Randomized Priority Queue Markov chain

Proof Sketch

We will assume that kn →∞, n−1kn → 0, mn ≥ n/kn, and
mn/n→ 0, as n→∞, and show that the three conditions:

(a) n−1m(Ln)→ 0,
(b) n−1 log ∆∗n(Ln)→ 0, and
(c) µ(x : diam(x(x)) > γ)→ 0 with probability 1 for every γ > 0,

are satisfied. Then by Theorem 1 of Lugosi & Nobel (Ann.
Stats., 1996) our fn,ṡ is strongly consistent in L1.

These conditions mean:
(a) sub-linear growth of the number of leaf boxes
(b) sub-exponential growth of a combinatorial complexity

measure of the growth of the partition
(c) shrinking leaf boxes in the partition
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are satisfied. Then by Theorem 1 of Lugosi & Nobel (Ann.
Stats., 1996) our fn,ṡ is strongly consistent in L1.
These conditions mean:
(a) sub-linear growth of the number of leaf boxes
(b) sub-exponential growth of a combinatorial complexity

measure of the growth of the partition
(c) shrinking leaf boxes in the partition
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(a) Sub-linear Growth of the Number of Leaf Boxes

Let {Sn(i)}Ji=0 on S0:∞ be the Markov chain formed using
SplitMostCounts. The Markov chain terminates at some
state ṡ with partition `(ṡ).

Associated with the Markov Chain is
a fixed, non-random collection of partitions

Ln := {`(ṡ) : ṡ ∈ S0:∞,P(S(J) = ṡ) > 0} ⊆ S0:mn−1 .

The size of the largest partition `(ṡ) in Ln is given by

m(Ln) := sup
`(ṡ)∈Ln

|`(ṡ)| ≤ mn .

Thus, (a) is satisfied by assumption that mn/n→ 0.
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(b) Sub-exponential Growth of the Partition

The complexity of Ln will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971).

Fix n points
x1, . . . , xn ∈ Rd and let B = {x1, . . . , xn} ∈

(
Rd)n. Let ∆(Ln,B)

be the number of distinct partitions of the finite set B that are
induced by partitions `(ṡ) ∈ Ln:

∆(Ln,B) :=| { {xv ∩ B : xv ∈ `(ṡ)} : `(ṡ) ∈ Ln} | .

Define the growth function of Ln as

∆∗(Ln,B) := max
B∈(Rd )

n
∆(Ln,B) ≤ |Ln| ≤

mn∑
k=0

Ck u
4mn+1

3mn
√

(πmn)

where u is a known partial Catalan sum result (Mattarei, 2010).
This ensures condition (b) is satisfied, i.e. n−1 log ∆∗n(Ln)→ 0.
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Define the growth function of Ln as

∆∗(Ln,B) := max
B∈(Rd )

n
∆(Ln,B) ≤ |Ln| ≤

mn∑
k=0

Ck u
4mn+1

3mn
√

(πmn)

where u is a known partial Catalan sum result (Mattarei, 2010).

This ensures condition (b) is satisfied, i.e. n−1 log ∆∗n(Ln)→ 0.

58 / 110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

Randomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of Ln will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
x1, . . . , xn ∈ Rd and let B = {x1, . . . , xn} ∈

(
Rd)n. Let ∆(Ln,B)

be the number of distinct partitions of the finite set B that are
induced by partitions `(ṡ) ∈ Ln:
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Shrinking Cells

diam(x) =
√∑d

i=1(x i − x i)
2, x = [x1, x1]× . . .× [xd , xd ]

Basically find large enough box [−M,+M]d with almost all µ
measure and diadically chop it to upper bound number of boxes
with diameter > γ and using VC 6= to boxes in Rd to show:

(c) µ(x : diam(x(x)) > γ)→ 0 with probability 1 for every γ > 0.

Q.E.D.
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Complementary PQ to “carve out” Support – A Trick

SplitMostCounts uses priority = µn(xρv ).
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Complementary PQ to “carve out” Support – A Trick

SupportCarver uses priority = (1− µn(xρv ))vol (xρv )).

Necessary to use SupportCarver for high-dimensional structured
densities before using SplitMostCounts 62 / 110
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Ugly Revisited: f ∼ 6D Gaussian – Initialize MCMC by RPQ

Log-posterior traces of SEB RPQ Vs. MCMC started from root node

(data drawn from 6D Gaussian Density) – Initialize from highest
log-posterior states visited by RPQ
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Randomized Priority Queue Markov chain

Ugly Revisited: f ∼ 6D Gaussian – Initialize MCMC by RPQ

Multiple MCMC chains started from high log-posterior region

(data drawn from mixture of two 3D Gaussian Densities)
64 / 110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

Randomized Priority Queue Markov chain

Some More Examples

Figure: Histogram density estimates their corresponding pavings for
the bivariate Gaussian, Levy and Rosenbrock densities.
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Simulations for MCMC and SplitMostCounts PQ
MIAE (std. err.) for n samples from approximated 1D-, 2D- and 10D-Gaussian densities, and 2D- and 10D-
Rosenbrock densities (L1-minimal Simple function approximation in SΛ).

Standard Gaussian densities Rosenbrock densities
Λ n 1D 2D 10D 2D 10D

102 102 0.2665 (0.0415) 0.4856 (0.0491) 0.1192 (0.0662) 0.5089 (0.0924) 0.0323 (0.0511)
103 0.1390 (0.0192) 0.2558 (0.0127) 0.0543 (0.0172) 0.1712 (0.0224) 0.0095 (0.0191)
104 0.0620 (0.0047) 0.0992 (0.0067) 0.0382 (0.0036) 0.0498 (0.0081) 0.0025 (0.0050)
105 0.0262 (0.0016) 0.0279 (0.0019) 0.0259 (0.0017) 0.0143 (0.0025) 0.0009 (0.0015)
106 0.0099 (0.0008) 0.0086 (0.0006) 0.0073 (0.0009) 0.0045 (0.0005) 0.0004 (0.0005)
107 0.0026 (0.0002) 0.0027 (0.0003) 0.0025 (0.0004) 0.0017 (0.0010) 0.0001 (0.0003)

103 102 0.2946 (0.0678) 0.6046 (0.1299) 0.1702 (0.0907) 1.0027 (0.0437) 0.0323 (0.0511)
103 0.1418 (0.0226) 0.2973 (0.0174) 0.0739 (0.0183) 0.4747 (0.0191) 0.0039 (0.0075)
104 0.0648 (0.0052) 0.1586 (0.0067) 0.0555 (0.0045) 0.2139 (0.0054) 0.0013 (0.0028)
105 0.0292 (0.0014) 0.0768 (0.0016) 0.0295 (0.0020) 0.0789 (0.0023) 0.0004 (0.0006)
106 0.0136 (0.0006) 0.0297 (0.0006) 0.0108 (0.0005) 0.0267 (0.0058) 0.0001 (0.0002)
107 0.0061 (0.0002) 0.0091 (0.0003) 0.0045 (0.0003) 0.0082 (0.0011) 0.0001 (0.0002)

104 102 0.2864 (0.0487) 0.5508 (0.0590) 0.5210 (0.0799) 1.1391 (0.0545) 0.1941 (0.0820)
103 0.1380 (0.0152) 0.3301 (0.0120) 0.2719 (0.0251) 0.6018 (0.0139) 0.0791 (0.0223)
104 0.0664 (0.0062) 0.1736 (0.0038) 0.1157 (0.0047) 0.3163 (0.0047) 0.0391 (0.0041)
105 0.0293 (0.0017) 0.0957 (0.0014) 0.0870 (0.0014) 0.1691 (0.0053) 0.0209 (0.0021)
106 0.0138 (0.0005) 0.0495 (0.0005) 0.0788 (0.0009) 0.0882 (0.0048) 0.0123 (0.0012)
107 0.0063 (0.0001) 0.0244 (0.0008) 0.0563 (0.0018) 0.0479 (0.0057) 0.0096 (0.0017)
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Section 5

Minimum Distance Estimation
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Minimum Distance Estimation (MDE)

I Let θ be the current number of splits in
SplitMostCounts.

I Let fn,θ be the histogram estimate with corresponding SRP
s ∈ Sθ,

∫
fn,θ = 1.

I Denote Θ as the set of the number of splits such that
Θ := {0, . . . ,mn − 1} where mn − 1 is the maximum
number of splits allowed.

The goal is to select the optimal estimate amongst the |Θ|
candidates, fn,θ, θ ∈ Θ by using a hold-out method proposed by
Devroye and Lugosi, 2004 for minimum distance estimation
(MDE).
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Minimum Distance Estimation (MDE)

Let 0 < ϕ < 1/2. Given n points, use n − ϕn points as the
training set and the remaining ϕn points as the validation set.

Scheffé set
For a pair (θ, θ′), θ, θ′ ∈ Θ, θ 6= θ′, the Scheffé set is

Aθ,θ′ := A
(
fn−ϕn,θ, fn−ϕn,θ′

)
=
{

x : fn−ϕn,θ(x) > fn−ϕn,θ′(x)
}
.

Yatracos class
The class of all sets of the form Aθ,θ′ :

AΘ :=
{{

x : fn−ϕn,θ(x) > fn−ϕn,θ′(x)
}

: θ, θ′ ∈ Θ, θ 6= θ′
}
.
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Minimum Distance Estimation (MDE)

Minimum distance estimate
The minimum distance estimate fn−ϕn,θ∗ is the density estimate
fn−ϕn,θ of smallest index θ∗ that minimizes

∆θ = sup
A∈AΘ

∣∣∣∣∫
A

fn−ϕn,θ(A)− µϕn(A)

∣∣∣∣
where µϕn is the empirical measure of the validation set
Xn−ϕn+1, . . . ,Xn.
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Minimum Distance Estimation (MDE)

Let Θ be the set of the number of splits such that
Θ := {0, . . . ,mn − 1} where mn − 1 is the maximum number of
splits allowed.
Every time a split happens during SplitMostCounts,

I Obtain the Yatracos class for the current split θ;

I Compute ∆θ = sup
A∈AΘ

∣∣∣∣∫
A

fn−ϕn,θ(A)− µϕn(A)

∣∣∣∣ for each

θ ∈ Θ.
The candidate estimate that minimizes ∆θ is the minimum
distance estimate.
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Minimum Distance Estimation (MDE)

Let Θ be the set of the number of splits such that
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∣∣∣∣∫
A
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∣∣∣∣ for each

θ ∈ Θ.

The candidate estimate that minimizes ∆θ is the minimum
distance estimate.
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Setting up MDE

Setting up MDE

I Need to track statistics for both the training and validation
data - recursively computable statistics for validation data;

I Get the Yatracos class for the current Θ - use the RP as a
collator (via non-minimal union) to track and compare the
histogram estimate at each leaf box of each candidate.
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Setting up MDE

Recursively Computable Statistics for Validation Data

I The training data T := {x1, . . . , xn−ϕn} drive the
randomized priority queue RPQ to form an SRP s.

I The validation data V := {xn−ϕn+1, . . . , xn} trickle through s
and stay in the boxes of s that contain the data.
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Figure: An SRP s with training (•) and validation data (�) and their
respective sample counts (#xρv , #̌xρv ) that are updated recursively
as data fall through the nodes of s.
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Setting up MDE

Recursively Computable Statistics for Validation Data

MDE requires the histogram estimate from the training data and
the empirical mass of the validation data:

Histogram estimate obtained from the set of training data

fn−ϕn(ρv) =
#xρv

n · vol (xρv )
.

The empirical measure of the validation data

µϕn(xρv ) =
#̌xρv

ϕn
.
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Recursively Computable Statistics for Validation Data

The training data and the empirical mass of the validation data
can be tracked as (fn−ϕn,θ(ρv), µϕn(xρv )) at each leaf node.

zρ (1, 1)
�
�
�

@
@
@z z
ρR

(0.8,0.4)
�
�
�

@
@
@z

ρLL
z
ρLR

(0.8,0.2) (1.6,0.4)

r
rr r♦♦

r r
♦

r

r
rr
♦

♦
xρLR

xρLL

xρR

Figure: Tracking the histogram estimate and empirical mass at each
node of an SRP s built from a unit square.
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RP as a Collator

I Need to compare the estimates between each SRP
s(i),1 < i <∞.

I An efficient way to approach this is to collate these
histograms onto an collator regular paving or CRP where
the space of CRP is also S0:∞.

I Consider two SRPs s(θ) and s(θ′) that have the same
mother box and for which the corresponding histogram
estimates fn,s(θ) and fn,s(θ′) are computed.

I By collating the two SRPs we get a CRP c that stores fn,s(θ)

and fn,s(θ′) for each node ρv of c, such that each node ρv
has a vector f n,c(ρv) := (fn,s(θ)(ρv), fn,s(θ′)(ρv)).
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RP as a Collator

Collating two SRPs s(θ) and s(θ′) with the same root box xρ:

Figure: Make the SRP s(θ) into a CRP c.

fn,s(θ)(ρLR)

fn,s(θ)(ρLL)

fn,s(θ)(ρR)

s(θ) with box xρ

(
fn,s(θ)(ρLR)

)

(
fn,s(θ)(ρLL)

)
(
fn,s(θ)(ρR)

)

c with box xρ
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RP as a Collator

Collating two SRPs s(θ) and s(θ′) with the same root box xρ:

Figure: Collate the SRP s(θ′) onto c.

fn,s(θ′)(ρRR)

fn,s(θ′)(ρRL)

fn,s(θ′)(ρL)

s(θ′) with box xρ

t

(
fn,s(θ)(ρLR)

)

(
fn,s(θ)(ρLL)

)
(
fn,s(θ)(ρR)

)

c with box xρ

=
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RP as a Collator

Collating two SRPs s(θ) and s(θ′) with the same root box xρ:

Figure: Collate the SRP s(θ′) onto c.

(
fn,s(θ)(ρLR)

fn,s(θ′)(ρL)

)

(
fn,s(θ)(ρLL)

fn,s(θ′)(ρL)

) (
fn,s(θ)(ρR)

fn,s(θ′)(ρRL)

)

(
fn,s(θ)(ρR)

fn,s(θ′)(ρRR)

)
c with box xρ
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Minimum Distance Estimation (MDE): An Example

First candidate: s0, θ = 0.
Second candidate: s1,1, θ = 1.
So Θ = Θ1 = {0,1}.
Collate the two candidates:

zρ
(1, 1)

s0

t
zρ

�
�
�

@
@
@z

(1.2, 0.6)
ρL z

(0.8, 0.4)
ρR

s1,1

=

zρ
�
�
�

@
@
@z(

1, 0.6
1.2, 0.6

)ρL zρR(
1, 0.4

0.8, 0.4

)

c

Figure: Collating s0 and s1,1.
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Minimum Distance Estimation (MDE): An Example

Compare fn−ϕn,θ, θ ∈ Θ for each leaf box xρv ∈ `(c).

zρ
�

�
�

@
@
@z(

1, 0.6
1.2, 0.6

)ρL zρR(
1, 0.4

0.8, 0.4

)

c

At xρL,

fn−ϕn,θ=0(xρL) = 1 < fn−ϕn,θ=1(xρL) = 1.2 .

But,
fn−ϕn,θ=1(xρL) > fn−ϕn,θ=0(xρL) .

Thus Aθ=1,θ′=0 = {xρL} and is in the Yatracos class AΘ1 .
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Minimum Distance Estimation (MDE): An Example

Compare fn−ϕn,θ, θ ∈ Θ for each leaf box xρv ∈ `(c).

zρ
�

�
�

@
@
@z(

1, 0.6
1.2, 0.6

)ρL zρR(
1, 0.4

0.8, 0.4

)

c

At xρR,

fn−ϕn,θ=0(xρR) = 1 > fn−ϕn,θ=1(xρR) = 0.8 .

Thus Aθ=0,θ′=1 = {xρR} and is in the Yatracos class AΘ1 .
Finally, we have AΘ1 = {xρL,xρR}.
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Minimum Distance Estimation (MDE): An Example

Compare fn−ϕn,θ, θ ∈ Θ for each leaf box xρv ∈ `(c).

zρ
�

�
�

@
@
@z(

1, 0.6
1.2, 0.6

)ρL zρR(
1, 0.4

0.8, 0.4

)

c

Can also express AΘ1 in a matrix as follows:

AΘ1 =

(
A0,0 A0,1
A1,0 A1,1

)
=

(
∅ xρR

xρL ∅

)
. (1)

Note that the diagonal elements are all empty sets because
there are no comparisons for the set {θ, θ′} where θ = θ′.
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Minimum Distance Estimation (MDE): An Example

Make another split at node ρL to produce the nodes ρLL and
ρLR and get the SRP s221. Perform collation to get the following
collator c:

}ρ
�

�
��

@
@
@@}

�
�
��

@
@
@@} 1 0.2

1.2 0.2
0.8 0.2


ρLL } 1 0.4

1.2 0.4
1.6 0.4


ρLR

}ρR 1 0.4
0.8 0.4
0.8 0.4



c
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Minimum Distance Estimation (MDE): An Example

Current Θ is now Θ = {0,1,2}. To update the Yatracos class:
I Denote x∗ρv as the leaf box that is being split currently.
I Since only one leaf box is split every time, instead of

comparing the estimates fn−ϕn,θ(xρv ) at each leaf box, we
need only compare the estimates of its sub-boxes
{x∗ρL,x

∗
ρR} to update the Yatracos class.

I Thus we need not check the estimates at all the leaf boxes.
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Minimum Distance Estimation (MDE): An Example

Here x∗ρv = xρL. Only need to compare the estimates for each θ
at the leaf boxes xρLL and xρLR.

}ρ
�
�

��

@
@
@@}

�
�
��

@
@
@@} 1 0.2

1.2 0.2
0.8 0.2


ρLL } 1 0.4

1.2 0.4
1.6 0.4


ρLR

}ρR 1 0.4
0.8 0.4
0.8 0.4



c

Compare the estimates of the pair (0,2) at xρLL:

fn−ϕn,θ=0(xρLL) = 1 > fn−ϕn,θ′=2(xρLL) = 0.8 .

Thus xρLL will be taken into the set A0,2.
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Minimum Distance Estimation (MDE): An Example

Here x∗ρv = xρL. Only need to compare the estimates for each θ
at the leaf boxes xρLL and xρLR.

}ρ
�
�

��

@
@
@@}

�
�
��

@
@
@@} 1 0.2

1.2 0.2
0.8 0.2


ρLL } 1 0.4

1.2 0.4
1.6 0.4


ρLR

}ρR 1 0.4
0.8 0.4
0.8 0.4



c

From A0,1 of Equation 1, we also know that fn−ϕn,θ=0(xρR) is
larger than fn−ϕn,θ=2(xρR). This will also be true for the pair
(0,2). Thus the set A0,2 is xρR ∪ xρLL.
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Minimum Distance Estimation (MDE): An Example

I If A0,1 was a box that was split, no unions will be taken with
this box since it is no longer a leaf box.

I In general, at some leaf box xρv for which its estimates are
being compared, for any pair (θ, θ′), θ 6= θ′, if
Aθ,θ′ 6= {xρv∗}, where xρv∗ was the box being split, we will
take the union of xρv with the elements of the set Aθ−1,θ′ .

I Besides, since the sub-boxes will have the same estimate
as its parent box, it will be redundant to make comparisons
for the pair {0,1} .

I Therefore instead of doing
(3

2

)
comparisons, we now only

need
(2

1

)
comparisons, i.e. comparing the estimates at the

pairs {0,2} and {1,2}.

94 / 110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

Minimum Distance Estimation

An Example

Minimum Distance Estimation (MDE): An Example

Continue the comparisons for the other sub-box xρLR and for all
remaining comparison pairs.
The final Yatracos class AΘ2 is:

AΘ2 =

A0,0 A0,1 A0,2
A1,0 A1,1 A1,2
A2,0 A2,1 A2,2

 =

 ∅ xρR xρR ∪ xρLL
xρL ∅ xρLL
xρLR xρLR ∅

 .
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Minimum Distance Estimation (MDE): An Example

The corresponding ∆θ values for AΘ1 and AΘ2 :

∆θ =
∣∣∣∫xρv

fn−ϕn − µϕn(xρv )
∣∣∣

θ Θ1 = {0, 1} Θ2 = {0, 1, 2}
θ = 0 0.1 0.15
θ = 1 0 0.1
θ = 2 - 0

Table: Table of ∆θ values.

I Take AΘ2 to be the final Yatracos class;
I Observe the column associated with Θ2;
I The minimum distance estimate fn−ϕn,θ∗ is the estimate at θ = 2 since ∆θ=2 is

the minimum over all θ ∈ Θ2.
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Section 6

Conclusions and References
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Conclusions

I Statistical Regular Paving (SRP) is a stat. sufficient
data-adaptive structure for density estimation

I Arithmetic is efficiently extended through R-MRPs
I Combining PQ-based (L1-consistent) initialization +

Bayesian MCMC is powerful
I Further decisions can be made with appropriate R-MRP

arithmetic (regression, anomaly detection, etc.)
I MDE over Yatracoss Classes of SRP histograms (L1 School’s

Universal Performance Guarantees)

I Future 1: Arithmetic over hyper-plane binary split trees (to

account for linear transformation invariance)
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