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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LReaI-worId Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

12 GBz Data for 59-days of Weather & Air Traffic

Weather Data over Atlanta, GA — Cloud height & Precipitation

Measured every 1/2-hour and predicted every 5 minutes

T

~
=

There are 45 x 59 = 2655 half-an-hour blocks of weather data.
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

12 GBz Data for 59-days of Weather & Air Traffic

Weather Tree — Leaves are Time-blocks over 65 days

Neighbor-Joining Tree from Pairwise L1 Distances between Cloud height & Precipitation
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

I—Reaﬂ-world Motivations
LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP of an aircraft trajectory and its tree
(every 4-6 sec. position data from radar sweep)
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44
943s|
£ oul
92|
94
9a15|

1053 1054 1055 1056 1057 1058 1050
Longitude

(¢) Aircraft positions enclosed by boxes. (d) The tree corresponding to (c).
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

I—Real-world Motivations

I—Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Three individual trajectories and their sum as Z-MRPs
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

On a Sunny Day over Atlanta, GA
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Reaﬂ-world Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP On this Sunny Day
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

On a Stormy Day over Altanta, GA
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Reaﬂ-world Motivations

LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP On this Stormy Day
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations
LAir Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP pattern for Sunny Day — Stormy Day
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

I—Real-world Motivations

I—Air Traffic Co-trajectories. Teng, Kuhn & S, J. Aerospace Comput. Inf. & Com., 2012.

Dynamic Z-MRPs for 12GB-z (59-days of Air Traffic)

Z-MRP Dynamic Trees Can be Created in Real-time

Radar Time/CPU Time (s)
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations

I—A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

Phenomenon: Damped Double Pendulum Trajectories

A: DP Schematic B: Streaming DP data C: Enclosures of two initially close trajectories
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Reaﬂ-world Motivations

LA Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Parametric model

Figure 1: Scematic for the DP model parameters
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I—Real-world Motivations

I—A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Parametric model contd...

2 Parametric Model for Passive DP

Let the centre of mass of the inner arm is distance h; away from the main pivot that
is located at the origin (0,0). Let the distance between pivots of the inner arm be [
and the centre of mass of the outer arm be at distance I, from the bottom pivot. We
can measure the angular position 61 and 62 of the inner and outer arms, respectively,
as shown in Figure 1. Thus, (z1,y1) and (22, y2), the centres of mass of the inner and
outer arms, respectively are given by:

2y = hysin(6y), @y =l sin(6y) + hosin(6; + 60,) (1)
y1 = —hicos(01), y2 = —(licos(61)+ hzcos(f1 + 62)) (2)
Let m1 and ms be the masses of the outer and inner arms, respectively and g be the
acceleration due to gravity. Let I; be the moment of inertia of the inner arm about its

pivot at the origin and I be that of the outer arm about its centre of mass at (22, y2).
The kinetic energy Ti of the inner arm and that 75 of the outer arm are

o= %1,9?, (3)

1o 1
T = 5120%5.”2

(4)
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Real-world Motivations

I—A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Parametric model contd...

The potential energies of the inner and outer arms, respectively, are

Uy = migys = —mighycosb (5)
Us = magys = —mag (I3 cos(6y) + ha cos(6y + 62)) . (6)

The Lagrangian L is
L = Ti+T
1. 1. 5 1 . 2 /s L\2 A A

= D6+ 510+ Jma (10 + 13 (e.w;) + 21 haby (B1 + ) cos(62)

+mighy cos(61) + mag (11 cos(61) + ha cos(0y + 62)) . (7)

The dissipation K due to friction in each arm’s bearings as well as others such as air
resistance are modeled using two parameters as

K = kyabs(0,) + kaabs(62) . (8)

We can finally get the equations of motion from

— | — — =0, fori=1,2 .
a\a6,) ~ 8. " 8, ot

We have a total of ten parameters in this model and they are

d (i)L) _OL  OK

I, Io,my,mo, by, by hay g, ks ko o
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LF{eal-world Motivations

LA Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Finite versus infinite dimensional Models:

» Finite dimensional models can be rigorously exhaused
double-hooked bobs suspended by springs in each arm
add permanent magnets into each arm

attach to flimsier docking station via vice-grips

to rigorously exhaust parametric models we need

computer-aided proofs in dynamics (work in progress)

» Here, we want to take a nonparametric empirical
process approach (“infinite dimensional models from data
with universal performance guarantees’) to estimate the
density of trajectories from multiple independent
experiments directly

v

v vy
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Reaﬂ-world Motivations

|—A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Trajectory signatures of ConstruMath South 2012 Participants

Participants of
ConstruMath South 2012:
and Their Double Pendulun

I
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A Hume Phenomenon. An Enquiry Conerning Human Undestanding, 1777.

ODE Model: Damped Double Pendulum Trajectories

Estimate of the Angular position of each arm from 3 trajectories

-2000
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

» Large Effective Dimension:
1 S d S 1000 (unstructured f), 1 S d S 10 (highly structured f)
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

» Large Effective Dimension:
1 S d S 1000 (unstructured f), 1 S d S 10 (highly structured f)
» Sample size for a single “burst”: 10* < n < 100
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

» Large Effective Dimension:
1 < d <1000 @nstructured ), 1 < d < 10 (highly structured f)
» Sample size for a single “burst”: 10* < n < 100
» Most estimators of f grind to a halt on such data streams
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

Large Effective Dimension:

1 < d <1000 @nstructured ), 1 < d < 10 (highly structured f)

Sample size for a single “burst”: 10* < n < 100

Most estimators of f grind to a halt on such data streams
Need a multi-dimensional metric data-structure that is:

v

v

vy
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

Large Effective Dimension:

1 < d <1000 @nstructured ), 1 < d < 10 (highly structured f)

Sample size for a single “burst”: 10* < n < 100

Most estimators of f grind to a halt on such data streams

Need a multi-dimensional metric data-structure that is:
1. Computationally Efficient (do before the next radar sweep)

v

v

vy
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

Large Effective Dimension:

1 < d <1000 @nstructured ), 1 < d < 10 (highly structured f)

Sample size for a single “burst”: 10* < n < 100

Most estimators of f grind to a halt on such data streams
Need a multi-dimensional metric data-structure that is:

1. Computationally Efficient (do before the next radar sweep)
2. Statistically Consistent, i.e., [abs(f, — f)JdA — 0as n— o

v

v

vy
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

Large Effective Dimension:

1 S d S 1000 (unstructured f), 1 S d S 10 (highly structured f)

Sample size for a single “burst”: 10* < n < 100

Most estimators of f grind to a halt on such data streams

Need a multi-dimensional metric data-structure that is:
1. Computationally Efficient (do before the next radar sweep)
2. Statistically Consistent, i.e., [abs(f, — f)JdA — 0as n— o
3. Data-adaptive and Non-parametric (learn from data with

minimal assumption)

v

v

vy
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LNon-parametric Density Estimation

Massive Metric Data Streams — Introduction

» A massive metric data stream is:
oy X3, X2, X1, Xo, X1, X2, X3, Xn, Xpi1, ... ~ f, X; € R%

Large Effective Dimension:
1 S d S 1000 (unstructured f), 1 S d S 10 (highly structured f)
Sample size for a single “burst”: 10* < n < 100
Most estimators of f grind to a halt on such data streams
Need a multi-dimensional metric data-structure that is:
1. Computationally Efficient (do before the next radar sweep)
2. Statistically Consistent, i.e., [abs(f, — f)JdA — 0as n— o
3. Data-adaptive and Non-parametric (learn from data with
minimal assumption)
4. with Universal Performance Guarantees (error bounds for
J abs(f, — f)d as a function of data xi, . .., Xp, with n < oo

— NEED to account for the combinatorial geometric complexity of observable events)

v

v

vy
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Non-parametric Density Estimation — Problem

Take Xj, Xo, ..., X, IID samples from unknown density f

—

10

S & York, An auto-validating trans-dimensional universal rejection sampler for locally Lipschitz arithmetical

expressions, Reliable Computing, 2013
241/110
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I—Non-parametric Density Estimation

Non-parametric Density Estimation — Problem

and give a consistent estimator f, of f, i.e., f, : (RY)” x RY — R

1. such that f, is imbued with arithmetic and
2. gives universal performance guarantees — f ¢ L,

a5 /110
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I—Non-parametric Density Estimation

T h e S m O Ot h | n g P rO bl e m — controlling the data-dependent partitioning scheme
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Figure: Two histogram density estimates for the standard bivariate
gaussian density with different choices of partitions. The histogram is
under-smoothed (left) and over-smoothed (right).
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LAri'fhmeti(: and Algebra of Plane Binary Trees - 2014 Primer

Section 3

Arithmetic and Algebra of Plane Binary
Trees - 2014 Primer
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Randomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

P
@10
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LFiandomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Split the root box.

p

10
5 5

pL pR

Xp

27/110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LFiandomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Two or more boxes with the most number of points?

p

10
5 5

pL pR

Xp
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LFiandomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Break such ties by randomising the next bisection.

p
10

5 5
pL pR
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LFiandomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Bisect until each box has < k, points (let k, = 3 here).

3 2 o« XpLR  [o X4R
.

.
XoLL o

Xp
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
LFiandomized Priority Queue Markov chain

A Prlorltlzed Queue based A|gOf|thm (for Ly Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf
box with the most number of points will be chosen for the
next bisection.

Final state
P
10
5 5
oL p
3 2 3 2 o XoLR « XpRR
pLL pLRpRL pRR °

.
XolL o X,RL
o

Xp
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Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

LFiandomized Priority Queue Markov chain

The SplitMostCounts Algorithm

Input: (i) data: x,...,x, € R (ii) root box: X,;
(iii) SEB max: kp; (iv) maximum partition size: mp.
Output: histogram estimate fj s

initialize / < 1; s < X,;
repeat until
#X,, < kp for each x,, € ¢(s) and i < My // «s) = (1ea boxes)

va <— UnlfOfm(E(S)) // randomized PQ on leaf boxes
S — biS@Ct(S,va) // bisect leaf box Xpy of §
recursively update counts in s;
< i+1;

return fp s

a42/110
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LRandomized Priority Queue Markov chain

Transition Diagram of Randomized PQ Markov chain

Let S; be the set of all RPs of x, made of / splits and for /,j € N
with i < J, let S;; be the set of RPs with k splits, i < k <.

-

All possible RP partitions in Sg.4.

a/110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic
I—Randomized Priority Queue Markov chain

L{-Consistency of SplitMostCounts Markov chain

Theorem (S & Teng, 2012)

Let X1, Xo, . .. be independent and identical random vectors in
RY whose common distribution 1. has a non-atomic density f,
ie., f< X Let {Sy(i)}], 0n So.cc be the Markov chain formed
using SplitMostCounts with terminal state s and histogram
estimate f, ; over the collection of partitions Lp.

a4/110
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LFiandomized Priority Queue Markov chain

L{-Consistency of SplitMostCounts Markov chain

Theorem (S & Teng, 2012)

Let X1, Xo, . .. be independent and identical random vectors in
RY whose common distribution 1. has a non-atomic density f,
ie., f< X Let {Sy(i)}], 0n So.cc be the Markov chain formed
using SplitMostCounts with terminal state s and histogram
estimate f, ; over the collection of partitions Lp.

Then, as n — oo, if kn — oo, kn/n — 0, My, > n/k,, and

mp/n — 0 then the density estimate f, ; is strongly consistent in
L4, ie.

/ [f(x x)|dx — 0 with probability 1.

457110
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LF{andomized Priority Queue Markov chain

Proof Sketch

We will assume that k, — oo, "'k, — 0, M, > n/kp, and
mp/n— 0, as n — oo, and show that the three conditions:

(@ n'm(Lp) =0,
(b) n~'log A%(Lp) — 0, and
()  p(x :diam(x(x)) > v) — 0 with probability 1 for every v > 0,

are satisfied. Then by Theorem 1 of Lugosi & Nobel (Ann.
Stats., 1996) our f, ; is strongly consistent in L.

4R /7110
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LRandomized Priority Queue Markov chain

Proof Sketch

We will assume that k, — oo, "'k, — 0, M, > n/kp, and
mp/n— 0, as n — oo, and show that the three conditions:

(@ n'm(Lp) =0,
(b) n~'log A%(Lp) — 0, and
()  p(x :diam(x(x)) > v) — 0 with probability 1 for every v > 0,

are satisfied. Then by Theorem 1 of Lugosi & Nobel (Ann.

Stats., 1996) our f, ; is strongly consistent in L.

These conditions mean:

(a) sub-linear growth of the number of leaf boxes

(b) sub-exponential growth of a combinatorial complexity
measure of the growth of the partition

(c) shrinking leaf boxes in the partition

a47/7110
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LF{andomized Priority Queue Markov chain

(a) Sub-linear Growth of the Number of Leaf Boxes

Let {Sn(i)}Y_, on So..c be the Markov chain formed using
SplitMostCounts. The Markov chain terminates at some
state s with partition ¢(S).

42/110
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LF{andomized Priority Queue Markov chain

(a) Sub-linear Growth of the Number of Leaf Boxes

Let {Sn(i)}Y_, on So..c be the Markov chain formed using
SplitMostCounts. The Markov chain terminates at some
state s with partition /(). Associated with the Markov Chain is
a fixed, non-random collection of partitions

L= {0(8): § € S0, P(S(J) = &) > 0} C Som, 1 -

49/110



Statistical Regular Pavings for Nonparametric Density Estimation: Emphasizing Tree Arithmetic

LRandomized Priority Queue Markov chain

(a) Sub-linear Growth of the Number of Leaf Boxes

Let {Sn(i)}Y_, on So..c be the Markov chain formed using
SplitMostCounts. The Markov chain terminates at some
state s with partition /(). Associated with the Markov Chain is
a fixed, non-random collection of partitions

L= {0(8): § € S0, P(S(J) = &) > 0} C Som, 1 -

The size of the largest partition 4(S) in L is given by

m(Ln) = sup |4(8)] <mp .
LS)ELn
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LRandomized Priority Queue Markov chain

(a) Sub-linear Growth of the Number of Leaf Boxes

Let {Sn(i)}Y_, on So..c be the Markov chain formed using
SplitMostCounts. The Markov chain terminates at some
state s with partition /(). Associated with the Markov Chain is
a fixed, non-random collection of partitions

L= {0(8): § € S0, P(S(J) = &) > 0} C Som, 1 -

The size of the largest partition 4(S) in L is given by

m(Ln) = sup |4(8)] <mp .
LS)ELn

Thus, (a) is satisfied by assumption that m,/n — 0.
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LF{andomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971).
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LF{andomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R and let B= {xy,...,xa} € (RY)".
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LRandomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .
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LRandomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .

Define the growth function of £, as

A*(ﬁn, B) = max A(;Cn, B)
Be(r9)"
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LRandomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .

Define the growth function of £, as

A*(ﬁn, B) ‘= max A(;Cn, B) S ‘ﬁn‘
Be(r9)"
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LRandomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .

Define the growth function of £, as

Mn
A*(Ln,B):= max A(Ly, B) < [Ln <) Ck
Be(r9)" =0
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(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .
Define the growth function of £, as

4ﬁn+ 1

i
A*(Lp,B) ;= max A(Lp, B) <|Lp] < Chne —
(Ln, B) (n)‘nkz_%ksmn(ﬂmn)

Be(r9)"
where = is a known partial Catalan sum result (Mattarei, 2010).
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LRandomized Priority Queue Markov chain

(b) Sub-exponential Growth of the Partition

The complexity of £, will be measured by a combinatorial
quantity similar to the growth function for classes of sets
proposed by Vapnik and Chervonenkis (1971). Fix n points
X1,...,xp € R andlet B= {x,...,xs} € (RY)". Let A(Lp, B)
be the number of distinct partitions of the finite set B that are
induced by partitions 4(8) € Ln:

A(Ln,B) = {{xyNB:x, €S8)} :S) € Ln}]| .
Define the growth function of £, as
4mn+1

mp
A*(Lp,B):= max A(Lp B) < |[Lp <) Ck=
k=0

Be(r9)" 3Mp+/(7mmp)

where = is a known partial Catalan sum result (Mattarei, 2010).
This ensures condition (b) is satisfied, i.e. n='log A*(L,) — 0.
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I—Randomized Priority Queue Markov chain

Shrinking Cells

diam(x) = \/m X = [Xq9,X1] X ... X [Xg, Xq]

Basically find large enough box [—-M, +M]9 with almost all x
measure and diadically chop it to upper bound number of boxes
with diameter > ~ and using VC # to boxes in RY to show:

(c) p(x : diam(x(x)) > ) — 0 with probability 1 for every v > 0.
Q.E.D.
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Complementary PQ to “carve out” Support -am

SplitMostCounts uses priority = un(X,v).

(a) 20 leaves. (b) 40 leaves.
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I—Randomized Priority Queue Markov chain

Complementary PQ to “carve out” Support -ame

SupportCarver uses priority = (1 — pn(X,v))vol (X,v)).

T [} 1 R 0 1

(a) 20 leaves. (b) 40 leaves.

Necessary to use supportCarver for high-dimensional structured
densities before using SplitMostCounts
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I—Randomized Priority Queue Markov chain

Ugly Revisited: f ~ 6D Gaussian — nitalize McMG by RPQ

Log-posterior traces of SEB RPQ Vs. MCMC started from root node

x 10
09
2
=
E -1
3
2
5
2114
g o SEB RPQ
£ ~———MCMC from rool node
T-1.2
5 |
=
&
Z-1.34
2
o
3 -14-
—
05 1 15 2
State x 10°

Log-posterior trace (unnormalised)

- SEB phase
——MCMC phase

[} 5 10 15
State x 10°

(a) Initial SEB phase compared with MCMC from (b) Combined log-posterior trace to t = 1,000, 000.

root node.

(data drawn from 6D Gaussian Density) — Initialize from highest

log-posterior states visited by RPQ
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I—Randomized Priority Queue Markov chain

Ugly Revisited: f ~ 6D Gaussian — nitalize McMG by RPQ

Multiple MCMC chains started from high log-posterior region

1600
g 1600
ki
g 1400
5]
E @ 1200
E —— Log-posterior ]
g -2.8 Selection region < 1000
= ¥ Maximum b
& : 2 800
£
g 600
g
g82 400
34 200 v . v v
0 1000 2000 3000 4000 5000 1 2 3 4
State Stale x 10°
(a) Selection region. (b) Leaf trace for three chains.

(data drawn from mixture of two 3D Gaussian Densities)
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I—Randomized Priority Queue Markov chain

Some More Examples

Figure: Histogram density estimates their corresponding pavings for
the bivariate Gaussian, Levy and Rosenbrock densities.

Bivariate Gaussian (maxCount = 260) Bivariat Lovy (maxCount = 36) Bivariae Rosenbrock (maxCount = 363)

20 Sub-paving for Bivaiats Gaussian 20 Sub-paving fo Bivarate Rosenbrock

Eits

I s =

5
.
3
2
1
o
4
2|
3
-
s
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LF{andomized Priority Queue Markov chain

Simulations for MCMC and SsplitMostCounts PQ

MIAE (std. err.) for n samples from approximated 1D-, 2D- and 10D-Gaussian densities, and 2D- and 10D-
Rosenbrock densities (L{-minimal Simple function approximation in Sy ).

Standard Gaussian densities Rosenbrock densities
A n 10D 2D 10D
10° 10° 0.2665 (0.0415) 0.4856 (0.0491) 0.1192 (0.0662) 0.5089 (0.0924) 0.0323 (0.0511)
10° 0.1390 (0.0192) 0.2558 (0.0127) 0.0543 (0.0172) 0.1712 (0.0224) 0.0095 (0.0191)
10% 0.0620 (0.0047) 0.0992 (0.0067) 0.0382 (0.0036) 0.0498 (0.0081) 0.0025 (0.0050)
10° 0.0262 (0.0016) 0.0279 (0.0019) 0.0259 (0.0017) 0.0143 (0.0025) 0.0009 (0.0015)
108 0.0099 (0.0008) 0.0086 (0.0006) 0.0073 (0.0009) 0.0045 (0.0005) 0.0004 (0.0005)
10 0.0026 (0.0002) 0.0027 (0.0003) 0.0025 (0.0004) 0.0017 (0.0010) 0.0001 (0.0003)
10° 102 0.2946 (0.0678) 0.6046 (0.1299) 0.1702 (0.0907) 1.0027 (0.0437) 0.0323 (0.0511)
103 0.1418 (0.0226) 0.2973 (0.0174) 0.0739 (0.0183) 0.4747 (0.0191) 0.0039 (0.0075)
104 0.0648 (0.0052) 0.1586 (0.0067) 0.0555 (0.0045) 0.2139 (0.0054) 0.0013 (0.0028)
10° 0.0292 (0.0014) 0.0768 (0.0016) 0.0295 (0.0020) 0.0789 (0.0023) 0.0004 (0.0006)
108 0.0136 (0.0006) 0.0297 (0.0006) 0.0108 (0.0005) 0.0267 (0.0058) 0.0001 (0.0002)
107 0.0061 (0.0002) 0.0091 (0.0003) 0.0045 (0.0003) 0.0082 (0.0011) 0.0001 (0.0002)
10% 10 0.2864 (0.0487) 0.5508 (0.0590) 0.5210 (0.0799) 1.1391 (0.0545) 0.1941 (0.0820)
10° 0.1380 (0.0152) 0.3301 (0.0120) 0.2719 (0.0251) 0.6018 (0.0139) 0.0791 (0.0223)
104 0.0664 (0.0062) 0.1736 (0.0038) 0.1157 (0.0047) 0.3163 (0.0047) 0.0391 (0.0041)
10° 0.0293 (0.0017) 0.0957 (0.0014) 0.0870 (0.0014) 0.1691 (0.0053) 0.0209 (0.0021)
108 0.0138 (0.0005) 0.0495 (0.0005) 0.0788 (0.0009) 0.0882 (0.0048) 0.0123 (0.0012)
10 0.0063 (0.0001) 0.0244 (0.0008) 0.0563 (0.0018) 0.0479 (0.0057) 0.0096 (0.0017)
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

» Let 6 be the current number of splits in
SplitMostCounts.

» Let f, 9 be the histogram estimate with corresponding SRP
S€ Sy, [fng=1.

» Denote © as the set of the number of splits such that
©:={0,...,my— 1} where m, — 1 is the maximum
number of splits allowed.
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

» Let 6 be the current number of splits in
SplitMostCounts.

» Let f, 9 be the histogram estimate with corresponding SRP
s €Sy, [fop=1.

» Denote © as the set of the number of splits such that
©:={0,...,my— 1} where m, — 1 is the maximum
number of splits allowed.

The goal is to select the optimal estimate amongst the |O)|
candidates, f, 9,6 € © by using a hold-out method proposed by

Devroye and Lugosi, 2004 for minimum distance estimation
(MDE).
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

Let 0 < ¢ < 1/2. Given n points, use n — n points as the

training set and the remaining ¢n points as the validation set.
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I—Minimum Distance Estimation

Minimum Distance Estimation (MDE)

Let 0 < ¢ < 1/2. Given n points, use n — n points as the
training set and the remaining ¢n points as the validation set.

Scheffé set
For a pair (0,6'),0,6' € ©,0 # ¢, the Scheffé set is

Agor = A (fnftpn,@v fnﬂpn,@’) = {X : fnfgpn,e(x) > fnﬂpn,e’(x)} .
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I—Minimum Distance Estimation

Minimum Distance Estimation (MDE)

Let 0 < ¢ < 1/2. Given n points, use n — n points as the
training set and the remaining ¢n points as the validation set.

Scheffé set
For a pair (0,6'),0,6' € ©,0 # ¢, the Scheffé set is

Agor = A (fnftpn,@v fnﬂpn,@/) = {X : fnfgpn,e(x) > fnﬂpn,e’(x)} .

Yatracos class
The class of all sets of the form Ay 4:

Ag = {{X : fopno(X) > fo_yng(X)} : 0,0 €©,60 £6'} .
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I—Minimum Distance Estimation

Minimum Distance Estimation (MDE)

Minimum distance estimate
The minimum distance estimate f,_,n - is the density estimate
fr—on,e Of smallest index 6* that minimizes

Ag = sup
AceAg

/ fnfgon,O(A) - ,U«tpn(A)
A

where 1, is the empirical measure of the validation set
Xn—gon-H ). 7Xn-
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

Let © be the set of the number of splits such that
©:={0,...,mp— 1} where m, — 1 is the maximum number of
splits allowed.

Every time a split happens during SplitMostCounts,

» Obtain the Yatracos class for the current split 6;
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

Let © be the set of the number of splits such that
©:={0,...,mp— 1} where m, — 1 is the maximum number of
splits allowed.

Every time a split happens during SplitMostCounts,

» Obtain the Yatracos class for the current split 6;
» Compute Ay = sup /fn_¢n79(A) — pon(A)| for each
A

AcAg
fe0O.
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LMinimum Distance Estimation

Minimum Distance Estimation (MDE)

Let © be the set of the number of splits such that
©:={0,...,m, — 1} where m, — 1 is the maximum number of

splits allowed.
Every time a split happens during SplitMostCounts,

» Obtain the Yatracos class for the current split 6;

» Compute Ay = sup /fn_wnﬁ(A) — pon(A)| for each
AcAg A
0 € 0.

The candidate estimate that minimizes Ay is the minimum
distance estimate.
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LSetting up MDE

Setting up MDE

» Need to track statistics for both the training and validation
data - recursively computable statistics for validation data;
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LSetting up MDE

Setting up MDE

» Need to track statistics for both the training and validation
data - recursively computable statistics for validation data;

» Get the Yatracos class for the current © - use the RP as a
collator (via non-minimal union) to track and compare the
histogram estimate at each leaf box of each candidate.
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LSetting up MDE

Recursively Computable Statistics for Validation Data

» The training data 7 := {xy, ..., Xn—en} drive the
randomized priority queue RPQ to form an SRP s.

» The validation data V := {X,_,n+1, ..., Xn} trickle through s
and stay in the boxes of s that contain the data.

> XoLR

o« X,R
.

XplLle

Figure: An SRP s with training (e) and validation data (¢) and their
respective sample counts (#X,y, #x,,.,) that are updated recursively
as data fall through the nodes of s.
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|—Setting up MDE

Recursively Computable Statistics for Validation Data

MDE requires the histogram estimate from the training data and
the empirical mass of the validation data:

Histogram estimate obtained from the set of training data

#Xpy

fo—on(pV) = n-vol (X,y)

The empirical measure of the validation data

Xy
Hcpn(xpv): on
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LSetting up MDE

Recursively Computable Statistics for Validation Data

The training data and the empirical mass of the validation data
can be tracked as (fr—ena(pVv), en(X,v)) at each leaf node.

<><> X,LR
: &
« X,R
¢ o
XoLle

Figure: Tracking the histogram estimate and empirical mass at each
node of an SRP s built from a unit square.
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LSetting up MDE

RP as a Collator

» Need to compare the estimates between each SRP
s 1< i< oo

» An efficient way to approach this is to collate these
histograms onto an collator regular paving or CRP where
the space of CRP is also Sy...

» Consider two SRPs s(?) and s(?) that have the same
mother box and for which the corresponding histogram
estimates f, ;) and f, 4 are computed.

» By collating the two SRPs we get a CRP c that stores f,, 4
and f, . for each node pv of ¢, such that each node pf/
has a vector fnc(pv) := (f, 50 (pV), f, 5@ (pV))-
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LSetting up MDE

RP as a Collator
Collating two SRPs s(?) and s(?) with the same root box x,:

Figure: Make the SRP s() into a CRP c.

s(®) with box x,, ¢ with box x,,

(fn,s(G)(PLR))

fo.s@ (pLR)

fnys(g) (pR) (fn,s(9>(pR))

f LL
fnﬂs(e)(pLL) ( n,s(e)(p ))
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LSetting up MDE

RP as a Collator

Collating two SRPs s(?) and s(?) with the same root box x,:

Figure: Collate the SRP s(?") onto c.

s with box x,, ¢ with box x,,
fnﬁs(e’)(PRR) (fn,s(f’) (/"—R))
fo.sen (L) U (frso(pR)) | =
fn,s(o/)(pRL) (fn,s(g) (pLL))
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LSetting up MDE

RP as a Collator

Collating two SRPs s(?) and s(?) with the same root box x,:

Figure: Collate the SRP s(?") onto c.
¢ with box X,

(fn,s(ﬂ)(PLR)> ( fn,s(O)(PR)
fn}s(9')(p|‘) fn,s(gl)(pRR)

(fn,s(H)(pLL)> < fn,s(H)(pR)
fn7s(9/)(p|—) fn,s(ﬁ/)(pRL)

fe1~4
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Minimum Distance Estimation (MDE): An Example

First candidate: sg, 6 = 0.
Second candidate: sy 1, 0 = 1.
So©®=0;={0,1}.

Collate the two candidates:

So S1,1 c
p p P
@
11 U =
oL pR pL pR

(1.2,0.6) (0.8,04) , 06\/1, 04
1.2, 0.6/\0.8, 04

Figure: Collating sp and s 1.
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Minimum Distance Estimation (MDE): An Example

Compare fp_,ngp,0 € © for each leaf box x,, € ¢(c).

c
p

A/’R

1, 06\/ 1, 04

1.2, 0.6/\0.8, 04
At X,L;

foono=0(Xo) = 1< fa_pno—1(X,L) = 1.2 .

But,
fnf¢n,9:1(xpL) > fnfcpnﬁ:O(xpL) :

Thus Ag—1,9—0 = {X,L} and is in the Yatracos class Ae,.

Q7
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Minimum Distance Estimation (MDE): An Example

Compare fp_,np,0 € © for each leaf box x,, € ¢(c).

c
p

1, 0.6 1, 04
12, 0.6)\0.8, 04
At X,R»

fn—gonﬁ:O(pr) =1> fn_¢n79:1(pr) =0.8.

Thus Ag—o,9=1 = {X,r} and is in the Yatracos class Ae,.
Finally, we have Ag, = {X,L,X,R}.
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Minimum Distance Estimation (MDE): An Example

Compare fr_,ng,0 € © for each leaf box x,, € ¢(c).

c
P

.pL/\.pR
1, 06\/ 1, 04
12, 06)\0.8, 04

Can also express Ag, in a matrix as follows:

Aoo Ao 1> < O x R)
Ao, = ’ ) = A . 1
© <A1,o A1 XL 0 O
Note that the diagonal elements are all empty sets because
there are no comparisons for the set {6,0'} where 6 = ¢'.
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Minimum Distance Estimation (MDE): An Example

Make another split at node pL to produce the nodes pLL and

pLR and get the SRP s,,1. Perform collation to get the following
collator c:

c
p
pR
1 04
pLL  pLR 08 04
08 04

1 02 1 04
1.2 0.2 12 04
0.8 02 16 04
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Minimum Distance Estimation (MDE): An Example

Current © is now © = {0, 1,2}. To update the Yatracos class:
» Denote x7, as the leaf box that is being split currently.

» Since only one leaf box is split every time, instead of
comparing the estimates f,_.n6(X,/) at each leaf box, we
need only compare the estimates of its sub-boxes
{Xf)u x;R} to update the Yatracos class.

» Thus we need not check the estimates at all the leaf boxes.
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Minimum Distance Estimation (MDE): An Example

Here x7,, = x,.. Only need to compare the estimates for each ¢
at the leaf boxes x,. . and X, r.

PR

1 04

LL LR (o,s 0‘4)

08 04
1 02 1 04
(1,2 02) (1.2 0,4)
08 02 16 0.4

Compare the estimates of the pair (0,2) at X, :

fr—ono—=0(XpLL) = 1> fo_oner—2(X,L) = 0.8 .

Thus x,._ will be taken into the set Ag 5.
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Minimum Distance Estimation (MDE): An Example

Here x7,, = x,.. Only need to compare the estimates for each ¢
at the leaf boxes x,. . and X, r.

pR

1 04
pLL  pLR 08 04

08 04

1 02 1 04
12 02 12 04
08 0.2 16 04

From Ag 1 of Equation 1, we also know that f,_ .5 9—o(X,R) is

larger than f,_ . g—o(X pR) This will also be true for the pair
(0,2). Thus the set Ag o is X,r U X
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Minimum Distance Estimation (MDE): An Example

» If Ap,1 was a box that was split, no unions will be taken with
this box since it is no longer a leaf box.

» In general, at some leaf box X, for which its estimates are
being compared, for any pair (6,6'),0 # ¢, if
Ao or # {X,v+ }, Where X~ was the box being split, we will
take the union of x,, with the elements of the set Ag_1 4.

» Besides, since the sub-boxes will have the same estimate
as its parent box, it will be redundant to make comparisons
for the pair {0,1} .

» Therefore instead of doing (3) comparisons, we now only

need (f) comparisons, i.e. comparing the estimates at the
pairs {0,2} and {1,2}.
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Minimum Distance Estimation (MDE): An Example

Continue the comparisons for the other sub-box X, r and for all
remaining comparison pairs.
The final Yatracos class Ag, is:

Aoo Aot Aoz 0 X,r X,RUXLL
Ao, = | Ao A1 A = xL 0 X,
Ao Azq Az2 X LR X,LR 0
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Minimum Distance Estimation (MDE): An Example

The corresponding Ay values for Ag, and Ae,:

VRS fxpv fa—on — Hon(Xpv)
0 ©;={0,1} | ©2, ={0,1,2}
6=0 0.1 0.15
0=1 0 0.1
=2 - 0

Table: Table of Ay values.

> Take Ag, to be the final Yatracos class;
> Observe the column associated with ©5;
> The minimum distance estimate f,_n ¢+ is the estimate at 6 = 2 since Ag_» is

the minimum over all 6 € ©5.

[e]~3
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Conclusions

» Statistical Regular Paving (SRP) is a stat. sufficient
data-adaptive structure for density estimation

» Arithmetic is efficiently extended through R-MRPs
» Combining PQ-based (L;-consistent) initialization +
Bayesian MCMC is powerful

» Further decisions can be made with appropriate R-MRP
arithmetic (regression, anomaly detection, etc.)
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Conclusions

» Statistical Regular Paving (SRP) is a stat. sufficient
data-adaptive structure for density estimation

» Arithmetic is efficiently extended through R-MRPs

» Combining PQ-based (L;-consistent) initialization +
Bayesian MCMC is powerful

» Further decisions can be made with appropriate R-MRP
arithmetic (regression, anomaly detection, etc.)

» MDE over Yatracoss Classes of SRP histograms (., sehoor's

Universal Performance Guarantees)

» Future 1: Arithmetic over hyper-plane binary split trees

account for linear transformation invariance)
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KDE (diagonal badwidth) Vs. SRP MCMC

Figure B.2: Density II, d = 2.

When d = 2 Density 1l is a mixture of two bivariate Normal densities and is the same as

Density A studied in Zhang et al. (2006):
o5 - 1 03 .
03 1

N £ D G S !
ma=\y) Ba=_0 ) m={

@

18
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KDE (diagonal badwidth) Vs. SRP MCMC

Density I is a mixture of two multivariate Normal densities for x € R?. Density II has high

correlation between data coordinates and high bimodality:

1 1
Jri(@ ] oy Sa, pn, Ep) = E@(.p\ My Xa) + Eap(.r\ fin, Eb),

where (x| g1, ¥) is the multivariate Normal density with mean p € R? and d x d variance-

covariance matrix X, and

9.0 ga(z1.71) oalw1,ma) - cal®r.mq)
) - oa(r2,71) 0a(®2,72) - O, 24)
Ha = : B a = R . R
2.0 !
oa(Ta: 1) Oa(za,w2) v ou(Ta,Ta)
15 op(r1,21)  op(r1,22) - oy(@1, 7a)
. ’ 5 op(xa, 1) op(wa,x0) o0 op(x2,24)
o = : B b= . . .
-15
op(wd. 1) op(Ta.32) o Oy(Ta, Ta)
and
1 it i = j, 1 iti=j,
ooz, r5) = I o op(xi, xj) = o o
—0.9079 if i # 4, 03171 if ¢ £ j,
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KDE (diagonal badwidth) Vs. SRP MCMC

Table 7.2: Estimated errors for KDE and averaged SRP histogram RMRP.

rZ,\f L L 1 error Time (s) Leaves
min. max. min. max.
2-d
KDE (ny = 2,000) 004 020 5000 7,200 n/a
Averaged RMRP histogram
n = 10,000 0.06 0.22 2 13 811 902
n = 50,000 0.03 0.15 15 2,168 1,546 1,719
3-d
KDE (n, = 2,000) 0.13 0.35 5,600 7,200 n/a
Averaged RMRP histogram
n = 10,000 0.24 0.41 21 451 1,573 1,718
n = 50,000 0.12 0.30 295 27,832 3,507 3,783
4-d
KDE (nx = 2.000) 0.25 0.51 7,200 8,050 n/a
Averaged RMRP histogram
n = 50,000 0.32 0.47 2,524 53,190 6,241 6,570
n = 100,000 0.25 042 10,382 82,684 9,431 9,775
5-d
KDE (nx = 2,000) 0.41 0.66 7,350 8,880 n/a
Averaged RMRP histogram
n = 50,000 0.65 0.67 28,841 277,071 9,342 9,803
n = 100,000 0.53 0.60 24,244 399,016 15,160 15,563
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(b) d =1

r = 2.0, n = 50,000.
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