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Schanuel’s Conjecture:Motivation and Formulation

The setting is the complex field C , with central player the
exponential function exp.

We all know the algebraic laws

1. exp(0) = 1

2. exp(x + y) = exp(x).exp(y)

and the less ”algebraic”

1. exp(π.i) = −1.
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What more do we know , of this kind?

Schanuel’s Conjecture (SC for short) says that anything of this
kind that is true follows from the preceding laws. It was formulated

around 1960 by Steve Schanuel (1934-2014), in terms of two
familiar notions of dependence between complex numbers. These
notions are about dependence over the field Q of rational numbers.

1. Linear Independence over Q, with associated notion of Linear
Dimension ldimQ

2. Algebraic Independence over Q, with associated notion of
Transcendence Degree td|Q

The first dimension is at least as big as the second.
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SC

The Conjecture says:

1. Let λ1, ....λn be complex numbers. Then

tdQ(λ1, ....λn, exp(λ1), ....exp(λn)) ≥ ldimQ(λ1, ..., λn)

Recall that Q -linear relations translate into multiplicative relations
between the corresponding exponentials (as we all know from
working with roots of unity), and SC somehow says that this is the
only way that we can create algebraic relations between
exponentials, except for the use of Euler’s identity.
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Explanatory Power

1. e is transcendental. For take n = 1, λ1 = 1. RHS is 1, and 1
contributes nothing to transcendence degree.

2. . Of course the previous result is proved unconditionally, but
this one is not.Namely, ee is transcendental.. For take n = 2,
λ1 = 1 and λ2 = e. Then RHS is 2, but LHS involves e
twice,as well as 1 so in fact we get that e and ee are
algebraically independent.

3. . π is transcendental. Best to prove i .π transcendental. Take
n = 1, and λ1 = i .π. The RHS is 1, and LHS has a −1 from
Euler,as well as π.

4. . Of course the previous result is proved unconditionally., but
this one is not.Namely, π and e are algebraically
independent.Take n = 2, λ1 = i .π and λ2 = 1. The RHS is 2,
since π is real, whereas LHS has − by Euler, and 1 , so get
algebraic independence of i .π and e.
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Unconditional results ”provable ” easily from SC

1. Hermite-Lindemann. Arbitrary n but the λ assumed algebraic.

2. n = 1, Gelfond-Schneider, transcendence of exp(z) where z is
β.log(α) , with α an algberaic number distinct from 0 and 1,
and β is an irrational algebraic number.

3. Baker’s work on algebraic independence of logarithms of
algebraic numbers .

4. . Nesterenko’s result that π and exp(π) are algebraically
independent.
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How hidden might a counterexample be?

It should be made clear that the evidence for SC is not great. The
beauty of the conjecture is indisputable. One should note, too,
that there are no examples in mathematical history where a
number expected to be transcendental turns out not to be (though
there are intriguing results in ”Periods” by Konsevich and Zagier).

The numbers listed so far in this talk are very explicit,and in
particular are all computable complex numbers. Thus the following
Theorem is rather surprising.

Theorem
If there is a counterexample to SC, there is one in which the λ are
computable.

This was proved by me in 2012, and a proof can be found in a long
paper entitled ”Turing meets Schanuel” in Proceedings of
Manchester ASL Meeting 2012.
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Exponential Algebra

Model theorists have been heavily involved for well over 25 years in
the definability -theoretic content of SC where the quantification is
over arbitrary complex numbers and not just over some fairly
”explicit ” arithmetical numbers. In particular they have been led
to a systematic study of exponential fields, and the correct
definition of exponential dependence (and thus of
exponential-algebraic numbers).
One begins with some abstract algebra, of E − rings , that is,
commutative unital rings R equipped with a map E from R to R
satisfying E (0) = 1 and E (x + y) = E (x).E (y).
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Free Structures

These form an equational class, with classic examples the real and
complex exponentials. There exist free E − rings on any set X .
and indeed free E − rings in X over any E − ring . This is the
analogy with ordinary algebra, but it does not help very much .
The iteration of E causes much complication.It turns out that the
free objects are best construed as iterated group algebras, and in
this way considerable progress has been made. The free E − rings
satisfy SC , and the free E − rings over E − rings satisfying SC
also satisfy SC .Note that if this were not so over R or C then SC
would obviously be false.
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E-polynomials

One could define these in the usual boring syntactical way, but
having the apparatus of free E − rings we define them as elements
of the free object over our given E-ring. But we sometimes pretend
we are using syntactic definition. One has immediately issues

about zeros, say in C or R about such polynomials , even in one
variable. In R they have only finitely many zeros , as Hardy
proved. In C even the simplest may have infinitely many zeros, e.g

f (z) =
∑
λiE (µiz) where the λi and µi are in C and the µi are

distinct, and there are at least two µi .
Note too that

E (z) = z has infinitely many zeros in C (did you all know this?).
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Systems and Families of Systems

The basic objects of study, over an E-field K, are finite systems

F1(x̄1, ..., x̄n,E (x̄1), ...,E (x̄n), w̃1, .., w̃m) = 0,

...

Fk(x̄1, ..., x̄n, ,E (x̄1), ...,E (x̄n), .., w̃1, ..., w̃m) = 0,

where each Fj(X̄ , Ȳ , W̃ ) is a polynomial over Q. There is no gain

in generality in allowing inequations as well.
Note that iterated exponentiation is avoided, at the cost
(potentially very great!) of moving into higher dimensions.

The variables are of two kinds. The w̃ ’s are parameters, to be
replaced by values ã, thus yielding a system of equations over K in
the unknown X̄ ’s. The resulting system is written Σ(X̄ , ã).
As ã varies we get a family of systems.
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Hovanski Systems

A family of systems (as described earlier) gives a Hovanski
system if there are exactly n equations, where n is the length of
the tuple X̄ , and we add the requirement that the X̄ -solution
satisfies the extra condition (an inequation) that the formal
Jacobian of the system with respect to X̄ be nonzero. That is :

F1(x̄1, ..., x̄n,E (x̄1), ...,E (x̄n), w̃1, .., w̃m) = 0,

...

Fn(x̄1, ..., x̄n,E (x̄1), ...,E (x̄n), w̃1, .., w̃m) = 0,

JacobianX̄ 6= 0.

Note that there is an obvious natural algebraic notion of formal
derivative of an E-polynomial with respect to a variable, inducing a
formal definition of Jacobian.
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E-algebraic, E-closure

This definition is given for any E-field of characteristic 0.
An element t is E-algebraic over a set A if there is a Hovanski
system Σ(X̄ , Ȳ , W̃ ) over Q, and elements ã from A and a solution
x̄ of Σ(X̄ , Ȳ , ã), so that t is the first entry of x̄ .

(NOTE that we impose no bound on the length of X̄ ,and allow W̃
to be absent. )

FACT: E-algebraic is a dependence relation, and the E-closure of
A (the set of elements E-algebraic over A) is an E-subfield.
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E-algebraic, E-closure - Substantial results

1. (Hovanski 1980) In the real case the set of solutions of a
Hovanski system is finite, with a cardinality bound depending
only on the family of systems.(Use of Morse Theory).

2. (Macintyre-Wilkie). If Schanuel’s Conjecture (see below),
henceforward SC, holds in the complexes, π is not E-algebraic
over the empty set in the reals. But if π

e is rational, π is
E-algebraic over the empty set in the reals.
But, easily,

3. π is E- algebraic over the empty set in the complexes.
( Proof: exercise).

4. The E-closure of a countable set is countable in the
complexes, by elementary differential topology (solutions are
isolated).
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Dimension

From the dependence relation , which is easily seen to satisfy the
Exchange Axiom, one gets a notion of E-dimension (either
absolute, or relative), analogous to the algebraic-geometric one.
(Note that for algebraically closed fields of characteristic 0 and
polynomials not containing E, the definition we gave is equivalent
to the usual algebraic-geometric one). Zilber started from a
different notion of dimension, which turns out (Kirby, Macintyre,
Wilkie) to be equivalent to the above in Zilber’s setting. Zilber’s
notion is based on deep general ideas of Hrushovski.
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Apparent Inadequacy of a Naive Definition

Why not define E − algebraic in terms of the vanishing of a single
E − polynomial in one variable? Because we can’t prove anything

about it, and the above definition, if specialized to ordinary
polynomials, gives the classical definition in characteristic zero.
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Sketch of Proof of Main Result

Jonathan Kirby proved the nice result that SC holds in C if and
only if SC holds in the E-closure of the empty set. I showed in
”Turing Meets Schanuel” that every number in the E- closure of
the empty set is computable (the proof is not ”uniform”). An
interesting consequence I drew is that although SC appears to
involve nonarithmetic quantification, it is in fact equivalent to an
arithmetical statement. The exact syntactic complexity of such a
statement is under investigation by me, van den Dries and Marker.
The best known so far is a Π0

4 definition. We have hopes of
removing one quantifier block, but getting down to purely universal
would be dramatic indeed. This would say that there is one
polynomial over the integers such that SC is equivalent to the
unsolvability of that polynomial!
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Some great conjectures are naturally equivalent to
unsolvability statements

One should not overdramatize. Kreisel (following earlier work of
Turing) showed that the Riemann Hypothesis is equivalent to such
an unsolvability statement (strictly speaking one had to wait for
Matejasevic’s resul of 1970 giving unsolvability of Hilbert’s Tenth
Problem, but the essential work on complex approximations was
done by Kreisel around 1950). More recently I showed that the
Modularity Conjecture for elliptic curves over Q (from which
Fermat’s Last Theorem follows) is also equivalent to such an
unsolvablity statement.
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Uniformity in Real Case

Kirby and Zilber showed a very strong unconditional result (with a
rather easy proof) for the real case, using cell-decomposition in
o-minimality. Namely

Theorem
If SC holds in R then there is a computable function which to each
variety V over Q of dimension less than n in 2n variables
z1, ...zn,w1, ..wn provides an integer M so that for any REAL
numbers a1, ...an such that (a1, ..an, exp(a1), ..exp(an)) is in V
then here is a nontrivial linear relation over Z in the a1, ..an with
coefficients of absolute value bounded by M.

No such result is known for the complex exponential. Notice a

subtlety. It is not immediate to deduce the real version of the Main
Result from the complex version. But the Kirby-Zilber result ,
together with classical results about 0-minimality, does enable one
to prove that the real version holds.
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