Algebra and Arithmetic of Plane Binary Trees:

Theory & Applications of Mapped Regular Pavings

Raazesh Sainudiin

Jennifer Harlow, Kenneth Kuhn, Dominic Lee, Carey Priebe, Gloria Teng and Warwick Tucker

School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

April 2014,

UC Maths & Stats Primer

Fri Apr 4 11:18:48 NZDT 2014

Main Idea & Motivation Motivating Examples Why MRPs?

Theory of Regular Pavings (RPs)

Theory of Mapped Regular Pavings (MRPs)

Theory of Real Mapped Regular Pavings (ℝ-MRPs)

Applications of Mapped Regular Pavings (MRPs)

Randomized Algorithms for IR-MRPs

Conclusions and References

 $reals \rightarrow intervals \rightarrow mapped partitions of interval$

1. arithmetic over reals

- 1. arithmetic over reals
- naturally extends to arithmetic over intervals

- 1. arithmetic over reals
- naturally extends to arithmetic over intervals
- 3. Our Main Idea:
 - is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)

- 1. arithmetic over reals
- naturally extends to arithmetic over intervals
- 3. Our Main Idea:
 - is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)
- 4. **by** exploiting the *algebraic structure of partitions formed* by finite-rooted-binary (frb) trees

- 1. arithmetic over reals
- naturally extends to arithmetic over intervals
- 3. Our Main Idea:
 - is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)
- 4. **by** exploiting the *algebraic structure of partitions formed* by finite-rooted-binary (frb) trees
- thereby provide algorithms for several algebras and their inclusions over frb tree partitions

arithmetic from intervals to their frb-tree partitions

Figure: Arithmetic with coloured spaces.

arithmetic from intervals to their frb-tree partitions

Figure: Intersection of enclosures of two hollow spheres.

arithmetic from intervals to their frb-tree partitions

Figure: Histogram averaging.

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

 Arithmetic on piece-wise constant functions and interval-valued functions;

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

- Arithmetic on piece-wise constant functions and interval-valued functions;
- 2. Exploiting the tree-based structure to obtain interval enclosures of real-valued functions efficiently

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

- Arithmetic on piece-wise constant functions and interval-valued functions;
- 2. Exploiting the tree-based structure to obtain interval enclosures of real-valued functions efficiently
- Statistical set-processing operations like marginal density, conditional density and highest coverage regions, visualization, etc

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

- Arithmetic on piece-wise constant functions and interval-valued functions;
- 2. Exploiting the tree-based structure to obtain interval enclosures of real-valued functions efficiently
- Statistical set-processing operations like marginal density, conditional density and highest coverage regions, visualization, etc
- Other Possibilities: "Tree'd" Contractor Programs and Constraint Propagators (Bounded-error Robotics)

An RP tree a root interval $\boldsymbol{x}_{\rho} \in \mathbb{IR}^d$

The regularly paved boxes of \mathbf{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

An RP tree a root interval $\mathbf{x}_{o} \in \mathbb{IR}^{d}$

The regularly paved boxes of \mathbf{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval $\boldsymbol{x}_{\rho} \in \mathbb{IR}^1$

An RP tree a root interval $\boldsymbol{x}_{\rho} \in \mathbb{IR}^d$

The regularly paved boxes of \mathbf{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

An RP tree a root interval $\boldsymbol{x}_{\rho} \in \mathbb{IR}^d$

The regularly paved boxes of \mathbf{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

By this "RP Peano's curve" frb-trees encode paritions of $oldsymbol{x}_{
ho} \in \mathbb{IR}^d$

Algebraic Structure and Combinatorics of RPs

Leaf-depth encoded RPs

(3, 3, 2, 1)

)

(2, 2, 2, 2)

(2, 3, 3, 1)

XLRR

There are C_k RPs with k splits

Hasse (transition) Diagram of Regular Pavings

Transition diagram over $S_{0:3}$ with split/reunion operations

RS, W.Taylor and G.Teng, Catalan Coefficients, Sequence A185155 in The On-Line Encyclopedia of Integer Sequences, 2012, http://oeis.org

Hasse (transition) Diagram of Regular Pavings

Transition diagram over $S_{0:4}$ with split/reunion operations

- 1. The above state space is denoted by $\mathbb{S}_{0:4}$
- 2. Number of RPs with k splits is the Catalan number C_k
- 3. There is more than one way to reach a RP by *k* splits
- 4. Randomized enclosure algorithms are Markov chains on $\mathbb{S}_{0:\infty}$

RPs are closed under union operations

 $s^{(1)} \cup s^{(2)} = s$ is union of two RPs $s^{(1)}$ and $s^{(2)}$ of $\boldsymbol{x}_{\rho} \in \mathbb{R}^2$.

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson's group) is closed under union operations.

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson's group) is closed under union operations.

Proof: by a "transparency overlay process" argument (cf. Meier 2008).

$$s^{(1)} \cup s^{(2)} = s$$
 is union of two RPs $s^{(1)}$ and $s^{(2)}$ of $\boldsymbol{x}_{\rho} \in \mathbb{R}^2$.

Algorithm 1: RPUnion $(\rho^{(1)}, \rho^{(2)})$

```
: Root nodes \rho^{(1)} and \rho^{(2)} of RPs s^{(1)} and s^{(2)}, respectively, with root box \boldsymbol{x}_{o(1)} = \boldsymbol{x}_{o(2)}
output : Root node \rho of RP s = s^{(1)} \cup s^{(2)}
if IsLeaf(\rho^{(1)}) & IsLeaf(\rho^{(2)}) then
        \rho \leftarrow \text{Copy}(\rho^{(1)})
        return o
end
else if !IsLeaf(\rho^{(1)}) & IsLeaf(\rho^{(2)}) then
        \rho \leftarrow \text{Copv}(\rho^{(1)})
        return p
end
else if IsLeaf(\rho^{(1)}) & !IsLeaf(\rho^{(2)}) then
        \rho \leftarrow \text{Copy}(\rho^{(2)})
        return o
end
else
        !IsLeaf(\rho^{(1)}) & !IsLeaf(\rho^{(2)})
end
Make \rho as a node with \boldsymbol{x}_{\rho} \leftarrow \boldsymbol{x}_{\rho(1)}
Graft onto \rho as left child the node RPUnion(\rho^{(1)}L, \rho^{(2)}L)
Graft onto \rho as right child the node RPUnion(\rho^{(1)}R, \rho^{(2)}R)
return o
```

Note: this is not the minimal union of the (Boolean mapped) RPs of Jaulin et. al. 2001

Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $m{x}_{
ho} \in \mathbb{IR}^d$

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $\mathbf{x}_{\rho} \in \mathbb{IR}^d$
- ▶ and let Y be a non-empty set.

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $m{x}_{
 ho} \in \mathbb{IR}^d$
- and let Y be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $m{x}_{
 ho} \in \mathbb{IR}^d$
- and let Y be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- Let f: V(s) → Y map each node of s to an element in Y as follows:

$$\{\rho \mathsf{V} \mapsto f_{\rho \mathsf{V}} : \rho \mathsf{V} \in \mathbb{V}(s), f_{\rho \mathsf{V}} \in \mathbb{Y}\}$$
.

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $\mathbf{x}_{\rho} \in \mathbb{IR}^d$
- and let Y be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- ▶ Let $f : \mathbb{V}(s) \to \mathbb{Y}$ map each node of s to an element in \mathbb{Y} as follows:

$$\{\rho \mathsf{V} \mapsto f_{\rho \mathsf{V}} : \rho \mathsf{V} \in \mathbb{V}(s), f_{\rho \mathsf{V}} \in \mathbb{Y}\}$$
.

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $m{x}_{
 ho} \in \mathbb{IR}^d$
- ▶ and let Y be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- ▶ Let $f : \mathbb{V}(s) \to \mathbb{Y}$ map each node of s to an element in \mathbb{Y} as follows:

$$\{\rho \mathsf{V} \mapsto f_{\rho \mathsf{V}} : \rho \mathsf{V} \in \mathbb{V}(s), f_{\rho \mathsf{V}} \in \mathbb{Y}\}$$
.

- ▶ Thus, a \mathbb{Y} -MRP f is obtained by augmenting each node ρv of the RP tree s with an additional data member $f_{\rho v}$.

Examples of $\mathbb{Y}\text{-MRPs}$

If $\mathbb{Y} = \mathbb{R}$

 \mathbb{R} -MRP over s_{221} with $x_{\rho} = [0, 8]$

Examples of \mathbb{Y} -MRPs

If $\mathbb{Y} = \mathbb{B}$

B-MRP over s_{122} with $x_{\rho} = [0, 1]^2$ (e.g. Jaulin et. al. 2001)

Examples of Y-MRPs

If $\mathbb{Y} = \mathbb{IR}$

- frb tree representation for interval inclusion algebra

IR-MRP enclosure of the Rosenbrock function with $x_o = [-1, 1]^2$

Examples of \mathbb{Y} -MRPs

If
$$\mathbb{Y} = [0, 1]^3$$

- R G B colour maps

 $\left[0,1
ight]^3$ -MRP over s_{3321} with $x_{
ho}=\left[0,1
ight]^3$

Examples of Y-MRPs

If
$$\mathbb{Y} = \mathbb{Z}_+ := \{0, 1, 2, ...\}$$

- radar-measured aircraft trajectory data

Y-MRP Arithmetic

If $\star: \mathbb{Y} \times \mathbb{Y} \to \mathbb{Y}$ then we can extend \star point-wise to two \mathbb{Y} -MRPs f and g with root nodes $\rho^{(1)}$ and $\rho^{(2)}$ via MRPOperate $(\rho^{(1)}, \rho^{(2)}, \star)$.

This is done using MRPOperate $(\rho^{(1)}, \rho^{(2)}, +)$

\mathbb{R} -MRP Addition by MRPOperate $(\rho^{(1)}, \rho^{(2)}, +)$

adding two piece-wise constant functions or $\mathbb{R}\text{-}\mathsf{MRPs}$

Algorithm 2: MRPOperate($\rho^{(1)}, \rho^{(2)}, \star$)

input

```
: two root nodes \rho^{(1)} and \rho^{(2)} with same root box {\bf x}_{o(1)}={\bf x}_{o(2)} and binary operation \star.
output: the root node \rho of Y-MRP h = f \star a.
Make a new node \rho with box and image
\mathbf{x}_{\rho} \leftarrow \mathbf{x}_{o(1)}; h_{\rho} \leftarrow f_{o(1)} \star g_{o(2)}
if IsLeaf(\rho^{(1)}) & !IsLeaf(\rho^{(2)}) then
         Make temporary nodes L'. R'
         \mathbf{x}_{\mathsf{L}'} \leftarrow \mathbf{x}_{o^{(1)}\mathsf{L}}; \mathbf{x}_{\mathsf{R}'} \leftarrow \mathbf{x}_{o^{(1)}\mathsf{R}}
         f_{L'} \leftarrow f_{\alpha(1)}, f_{R'} \leftarrow f_{\alpha(1)}
         Graft onto \rho as left child the node MRPOperate(L', \rho^{(2)}L, \star)
         Graft onto \rho as right child the node MRPOperate(R', \rho^{(2)}R, \star)
end
else if !IsLeaf(\rho^{(1)}) & IsLeaf(\rho^{(2)}) then
         Make temporary nodes L', R'
         \mathbf{x}_{\mathsf{L}'} \leftarrow \mathbf{x}_{o(2)\mathsf{L}}; \mathbf{x}_{\mathsf{R}'} \leftarrow \mathbf{x}_{o(2)\mathsf{R}}
         g_{L'} \leftarrow g_{\alpha(2)}, g_{R'} \leftarrow g_{\alpha(2)}
         Graft onto \rho as left child the node MRPOperate(\rho^{(1)}L, L', \star)
         Graft onto \rho as right child the node MRPOperate(\rho^{(1)}R, R', \star)
end
else if !IsLeaf(\rho^{(1)}) & !IsLeaf(\rho^{(2)}) then
         Graft onto \rho as left child the node MRPOperate(\rho^{(1)}L, \rho^{(2)}L, \star)
         Graft onto \rho as right child the node MRPOperate (\rho^{(1)}R, \rho^{(2)}R, \star)
end
return \rho
```

Unary transformations are easy too

Let $\mathtt{MRPTransform}(\rho,\tau)$ apply the unary transformation $\tau:\mathbb{R}\to\mathbb{R}$ to a given $\mathbb{R} ext{-MRP}$ f with root node ρ as follows:

- ▶ copy f to g
- recursively set $f_{\rho v} = \tau(f_{\rho v})$ for each node ρv in g
- return g as $\tau(f)$

Minimal Representation of \mathbb{R} -MRP

Algorithm 3: MinimiseLeaves (ρ)

Thus, we can obtain arithmetical expressions specified by finitely many sub-expressions in a **directed acyclic graph** whose:

Thus, we can obtain arithmetical expressions specified by finitely many sub-expressions in a **directed acyclic graph** whose:

▶ inputs and output **nodes** are themselves ℝ-MRPs

Thus, we can obtain arithmetical expressions specified by finitely many sub-expressions in a **directed acyclic graph** whose:

- ightharpoonup inputs and output **nodes** are themselves \mathbb{R} -MRPs
- and whose edges involve:

Thus, we can obtain arithmetical expressions specified by finitely many sub-expressions in a **directed acyclic graph** whose:

- ightharpoonup inputs and output **nodes** are themselves \mathbb{R} -MRPs
- and whose edges involve:
 - 1. a binary arithmetic operation $\star \in \{+,-,\cdot,/\}$ over two $\mathbb{R}\text{-MRPs}.$
 - 2. a standard transformation of \mathbb{R} -MRP by elements of $\mathfrak{S} := \{\exp, \sin, \cos, \tan, \ldots\}$ and
 - their compositions.

Theorem

Let \mathcal{F} be the class of \mathbb{R} -MRPs with the same root box \mathbf{x}_{ρ} . Then \mathcal{F} is dense in $C(\mathbf{x}_{\rho}, \mathbb{R})$, the algebra of real-valued continuous functions on \mathbf{x}_{ρ} .

Theorem

Let $\mathcal F$ be the class of $\mathbb R$ -MRPs with the same root box $\mathbf x_\rho$. Then $\mathcal F$ is dense in $C(\mathbf x_\rho,\mathbb R)$, the algebra of real-valued continuous functions on $\mathbf x_\rho$.

Proof:

Since $\mathbf{x}_{\rho} \in \mathbb{IR}^d$ is a compact Hausdorff space, by the Stone-Weierstrass theorem we can establish that \mathcal{F} is dense in $C(\mathbf{x}_{\rho},\mathbb{R})$ with the topology of uniform convergence, provided that \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho},\mathbb{R})$ that separates points in \mathbf{x}_{ρ} and which contains a non-zero constant function.

Theorem

Let $\mathcal F$ be the class of $\mathbb R$ -MRPs with the same root box $\mathbf x_\rho$. Then $\mathcal F$ is dense in $C(\mathbf x_\rho,\mathbb R)$, the algebra of real-valued continuous functions on $\mathbf x_\rho$.

Proof:

Since $\mathbf{x}_{\rho} \in \mathbb{IR}^d$ is a compact Hausdorff space, by the Stone-Weierstrass theorem we can establish that \mathcal{F} is dense in $C(\mathbf{x}_{\rho},\mathbb{R})$ with the topology of uniform convergence, provided that \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho},\mathbb{R})$ that separates points in \mathbf{x}_{ρ} and which contains a non-zero constant function.

We will show all these conditions are satisfied by ${\mathcal F}$

▶ \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho}, \mathbb{R})$ since it is closed under addition and scalar multiplication.

- ▶ \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho}, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- $ightharpoonup \mathcal{F}$ contains non-zero constant functions

- ▶ \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho}, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \triangleright \mathcal{F} contains non-zero constant functions
- ▶ Finally, RPs can clearly separate distinct points $x, x' \in \mathbf{x}_{\rho}$ into distinct leaf boxes by splitting deeply enough.

- ▶ \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho}, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \triangleright \mathcal{F} contains non-zero constant functions
- ▶ Finally, RPs can clearly separate distinct points $x, x' \in \mathbf{x}_{\rho}$ into distinct leaf boxes by splitting deeply enough.
- ▶ Thus, \mathcal{F} , the class of \mathbb{R} -MRPs with the same root box \boldsymbol{x}_{ρ} , is dense in $C(\boldsymbol{x}_{\rho}, \mathbb{R})$, the algebra of real-valued continuous functions on \boldsymbol{x}_{ρ} .

- ▶ \mathcal{F} is a sub-algebra of $C(\mathbf{x}_{\rho}, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \triangleright \mathcal{F} contains non-zero constant functions
- ▶ Finally, RPs can clearly separate distinct points $x, x' \in \mathbf{x}_{\rho}$ into distinct leaf boxes by splitting deeply enough.
- ▶ Thus, \mathcal{F} , the class of \mathbb{R} -MRPs with the same root box \boldsymbol{x}_{ρ} , is dense in $C(\boldsymbol{x}_{\rho}, \mathbb{R})$, the algebra of real-valued continuous functions on \boldsymbol{x}_{ρ} .
- Q.E.D.

B-MRP arithmetic – contractors, propagators & collaborators (bounded-error robotics)

Two Boolean-mapped regular pavings A_1 and A_2 and Boolean arithmetic operations with + for set union, - for symmetric set difference, \times for set intersection, and \div for set difference.

B-MRP arithmetic – contractors, propagators & collaborators (bounded-error robotics)

Two Boolean-mapped regular pavings A_1 and A_2 and Boolean arithmetic operations with + for set union, - for symmetric set difference, \times for set intersection, and \div for set difference.

Nonparametric Density Estimation

Problem: Take samples from an unknown density *f* and consistently reconstruct *f*

Nonparametric Density Estimation

Approach: Use statistical regular paving to get ℝ-MRP data-adaptive histogram

(a) An SRP tree and its constituents.

(b) An SRP histogram and its tree.

Nonparametric Density Estimation

Solution: \mathbb{R} -MRP histogram averaging allows us to produce a consistent Bayesian estimate of the density (up to 10 dimensions)

(Teng, Harlow, Lee and S., ACM Trans. Mod. & Comp. Sim., [r. 2] 2012)

Kernel Density Estimate (visualization of a procedure)

(a) True density.

(c) MCMC bandwidth KDE.

Approximating Kernel Density Estimates by ℝ-MRPs

Approximating Kernel Density Estimates by \mathbb{R} -MRPs

Table J.4: 5-d case: estimated errors for KDE and RMRP-KDE approximations.

	\hat{d}_{KL}	\hat{L}_1 error	Time (s)	Leaves
KDE $(n_K = 2,000)$	0.41	0.66	7,350-8,880	n/a
RMRP-KDE approximations				
$\overline{\psi} = 0.0001$	5.06	0.96	1.0	2,363
$\overline{\psi} = 0.00005$	4.85	0.91	2.3	4,639
$\overline{\psi} = 0.00001$	4.51	0.85	8.7	17,759
$\overline{\psi} = 0.000005$	4.49	0.84	17.2	31, 335
$\overline{\psi} = 0.000001$	3.33	0.76	66.1	133,493
$\overline{\psi} = 0.0000005$	3.31	0.75	131.0	237,561
$\overline{\psi} = 0.0000001$	3.54	0.74	470.0	895,012

Algorithm 4: PointWiseImage (ρ, x)

```
\begin{array}{ll} \text{input} & : \rho \text{ with box } \boldsymbol{x}_{\rho}, \text{ the root node of } \mathbb{R}\text{-MRP } f \text{ with RP } s, \text{ and a point } x \in \boldsymbol{x}_{\rho}. \\ & \text{output} & : \text{Return } f_{\eta(x)} \text{ at the leaf node } \eta(x) \text{ that is associated with the box } \boldsymbol{x}_{\eta(x)} \text{ containing } x. \\ & \text{if } \text{IsLeaf}(\rho) \text{ then } \\ & & \text{return } f_{\rho} \\ & \text{end} \\ & \text{else} \\ & & & | & \text{PointWiseImage}(\rho \mathbf{R}, x) \\ & & \text{end} \\ & & \text{else} \\ & & & | & \text{PointWiseImage}(\rho \mathbf{L}, x) \\ & & & \text{end} \\ \end{array}
```

Algorithm 5: PointWiseImage (ρ, x)

```
\begin{array}{l} \textbf{input} & : \rho \ \text{with box} \ \textbf{\textit{x}}_{\rho}, \ \text{the root node of } \mathbb{R}\text{-MRP} \ f \ \text{with RP s}, \ \text{and a point} \ x \in \textbf{\textit{x}}_{\rho}. \\ \textbf{output} & : \text{Return} \ f_{\eta(x)} \ \text{at the leaf node} \ \eta(x) \ \text{that is associated with the box} \ \textbf{\textit{x}}_{\eta(x)} \ \text{containing} \ x. \\ \textbf{if} \ \text{IsLeaf}(\rho) \ \textbf{then} \\ & | \ \text{return} \ f_{\rho} \\ \textbf{end} \\ \textbf{else} \\ & | \ \text{PointWiseImage}(\rho \textbf{R}, x) \\ \textbf{end} \\ \textbf{else} \\ & | \ \text{PointWiseImage}(\rho \textbf{L}, x) \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \end{array}
```

lacktriangledown Cost of KDE image $\sim O(n)$ KFLOPs (FLOPs for kernel evaluation procedure)

Algorithm 6: PointWiseImage (ρ, x)

```
\begin{array}{ll} \text{input} & : \rho \text{ with box } \textbf{\textit{x}}_{\rho}, \text{ the root node of } \mathbb{R}\text{-MRP } \textbf{\textit{f}} \text{ with RP } \textbf{\textit{s}}, \text{ and a point } x \in \textbf{\textit{x}}_{\rho}. \\ \text{output} & : \text{Return } f_{\eta(x)} \text{ at the leaf node } \eta(x) \text{ that is associated with the box } \textbf{\textit{x}}_{\eta(x)} \text{ containing } x. \\ \text{if } \text{IsLeaf}(\rho) \text{ then } \\ & | \text{return } f_{\rho} \\ \text{end} \\ \text{else} \\ & | \text{PointWiseImage}(\rho \textbf{R}, x) \\ \text{end} \\ & \text{else} \\ & | \text{PointWiseImage}(\rho \textbf{L}, x) \\ \text{end} \\ \text{end} \\ \end{array}
```

- ightharpoonup Cost of KDE image $\sim O(n)$ KFLOPs (FLOPs for kernel evaluation procedure)
- ▶ 10-fold CV cost $\sim 10 \times O(\frac{1}{10}n\frac{9}{10}n) = O(n^2)$ KFLOPs

Algorithm 7: PointWiseImage (ρ, x)

```
\begin{array}{l} \text{input} &: \rho \text{ with box } \boldsymbol{x}_{\rho}, \text{ the root node of } \mathbb{R}\text{-MRP } f \text{ with RP } s, \text{ and a point } x \in \boldsymbol{x}_{\rho}. \\ \text{output} &: \text{Return } f_{\eta(x)} \text{ at the leaf node } \eta(x) \text{ that is associated with the box } \boldsymbol{x}_{\eta(x)} \text{ containing } x. \\ \text{if } \text{IsLeaf}(\rho) \text{ then } & \text{return } f_{\rho} \\ \text{end} & \text{else} \\ & | f x \in \boldsymbol{x}_{\rho R} \text{ then } \\ & | PointWiseImage}(\rho R, x) \\ & \text{end} & \text{else} \\ & | PointWiseImage}(\rho L, x) \\ & \text{end} & \text{end} \end{array}
```

- ▶ Cost of KDE image $\sim O(n)$ KFLOPs (FLOPs for kernel evaluation procedure)
- ▶ 10-fold CV cost $\sim 10 \times O(\frac{1}{10}n\frac{9}{10}n) = O(n^2)$ KFLOPs
- ▶ But using \mathbb{R} -MRP approximation to KDE requires $10 \times O\left(\frac{1}{10}n\lg\left(\frac{9}{10}n\right)\right) = O(n\lg(n))$ tree-look-ups

Coverage, Marginal & Slice Operators of \mathbb{R} -MRP

 \mathbb{R} -MRP approximation to Levy density and its coverage regions with $\alpha=$ 0.9 (light gray), $\alpha=$ 0.5 (dark gray) and $\alpha=$ 0.1 (black)

Coverage, Marginal & Slice Operators of ℝ-MRP

Marginal densities $f^{\{1\}}(x_1)$ and $f^{\{2\}}(x_2)$ along each coordinate of \mathbb{R} -MRP approximation

Coverage, Marginal & Slice Operators of ℝ-MRP

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

On a Good Day

(G. Teng, K. Kuhn and RS, *J. Aerospace Comput., Inf. & Com.*, 9:1, 14–25, 2012.)

\mathbb{Z}_+ -MRP On a Good Day

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

On a Bad Day

(G. Teng, K. Kuhn and RS, *J. Aerospace Comput., Inf. & Com.*, 9:1, 14–25, 2012.)

\mathbb{Z}_+ -MRP On a Bad Day

(G. Teng, K. Kuhn and RS, *J. Aerospace Comput., Inf. & Com.*, 9:1, 14–25, 2012.) \mathbb{Z}_+ -MRP pattern for Good Day — Bad Day

Example – Prioritised Splitting

```
inclusion function: \mathbf{g}(\mathbf{x}) = \mathbf{x}^2 + (\mathbf{x} + 1)\sin(10\pi\mathbf{x})^2\cos(3\pi\mathbf{x})^2 priority function: \psi(\rho\mathbf{v}) = \mathrm{vol}\,(\rho\mathbf{v})\mathrm{wid}\,(\mathbf{g}(\mathbf{x}_{\rho\mathbf{v}}))
```

To 50 leaves by To 100 leaves by RPQEnclose $^{\bigtriangledown}(\rho, {m g}, \psi, \bar{\ell} = {\sf 50})$ RPQEnclose $^{\bigtriangledown}(\rho, {m g}, \psi, \bar{\ell} = {\sf 100})$

Algorithm 8: RPQEnclose $\nabla(ho, oldsymbol{g}, \psi, ar{\ell})$

```
input
                     : \rho, the root node of IR-MRP f with RP s, root box x_{\rho} and
                         \boldsymbol{f}_{o} = \boldsymbol{q}(\boldsymbol{x}_{o}),
                         \psi: \mathbb{L}(s) \to \mathbb{R} such that
                         \psi(\rho \mathbf{v}) = \text{vol}(\mathbf{x}_{\rho \mathbf{v}})(\mathbf{g}(\mathbf{x}_{\rho \mathbf{v}}) - 0.5(\mathbf{g}(\mathbf{x}_{\rho \mathbf{v} \mathsf{L}}) + \mathbf{g}(\mathbf{x}_{\rho \mathbf{v} \mathsf{R}}))),
                         \bar{\ell} the maximum number of leaves.
output: f with modified RP s such that |\mathbb{L}(s)| = \overline{\ell}
if |\mathbb{L}(s)| < \bar{\ell} then
        \rho \mathbf{V} \leftarrow \text{random\_sample} \left( \underset{\rho \mathbf{V} \in \mathbb{L}(\mathbf{s})}{\operatorname{argmax}} \psi(\rho \mathbf{V}) \right)
         Split \rho v: \nabla(\rho v) = {\rho vL, \rho vR} // split the sampled node
       oldsymbol{f}_{
ho	extsf{VL}}\leftarrowoldsymbol{g}(\Box(oldsymbol{x}_{
ho	extsf{VL}})) \ oldsymbol{f}_{
ho	extsf{VR}}\leftarrowoldsymbol{g}(\Box(oldsymbol{x}_{
ho	extsf{VL}}))
         RPOEnclose \nabla (\rho, \psi, \bar{\ell})
end
```

Example - Prioritised Splitting Continued

inclusion function: $\mathbf{g}(\mathbf{x}) = \mathbf{x}^2 + (\mathbf{x} + 1)\sin(10\pi\mathbf{x})^2\cos(3\pi\mathbf{x})^2$ priority function: $\psi(\rho\mathbf{v}) = \mathrm{vol}(\rho\mathbf{v})\mathrm{wid}(\mathbf{g}(\mathbf{x}_{\rho\mathbf{v}}))$

Can we get tighter enclosures using only 50 leaves by propagating the interval hull of 100-leaved IR-MRP up the tree and then doing a prioritised merging of the cherries?

Hull Propagate up the tree via $HullPropagate(\rho)$

```
Algorithm 9: \operatorname{HullPropagate}(\rho)

input : \rho, the root node of \operatorname{IR-MRP} f with \operatorname{RP} s.

output : \operatorname{Modify} input \operatorname{MRP} f.

if \operatorname{!IsLeaf}(\rho) then

\operatorname{| HullPropagate}(\rho L)
\operatorname{| HullPropagate}(\rho R)
f_{\rho} \leftarrow f_{\rho L} \sqcup f_{\rho R}
end
```

By calling HullPropagate(ρ) on our IR-MRP of Example constructed by RPQEnclose $\nabla(\rho, \boldsymbol{g}, \psi, \bar{\ell} = 100)$ we would have tightened the range enclosures of \boldsymbol{g} in the internal nodes.

Prioritised Merging via RPQEnclose $^{\triangle}(ho,\psi,ar{\ell}')$

```
Algorithm 10: RPQEnclose (\rho, \psi, \bar{\ell}')
                 : \rho, the root node of IR-MRP f with RP s, box \mathbf{x}_{\rho},
input
                    \psi: \mathbb{C}(s) \to \mathbb{R} \text{ as } \psi(\rho \mathsf{v}) = \mathrm{vol}\left(\boldsymbol{x}_{\rho \mathsf{v}}\right) \left(\boldsymbol{f}_{\rho \mathsf{v}} - 0.5 \left(\boldsymbol{f}_{\rho \mathsf{v}\mathsf{L}} + \boldsymbol{f}_{\rho \mathsf{v}\mathsf{R}}\right)\right),
                    \bar{\ell}' the maximum number of leaves.
output: modified f with RP s such that |\mathbb{L}(s)| = \bar{\ell}' or \mathbb{C}(s) = \emptyset.
if |\mathbb{L}(s)| \geq \bar{\ell}' & \mathbb{C}(s) \neq \emptyset then
       \rho \mathbf{V} \leftarrow \text{random\_sample} \left( \operatorname{argmin}_{\rho \mathbf{V} \in \mathbb{C}(\mathbf{s})} \psi(\rho \mathbf{V}) \right)
                                                                                                 // choose a
        random node with smallest \psi
       Prune(\rhoL)
       Prune(\rhoR)
       RPQEnclose (\rho, \psi, \bar{\ell}')
end
```

Example - Split, Propogating & Prune

Yes we can!

 $\texttt{RPQEnclose}^{\textstyle \bigtriangledown}(\rho, \pmb{g}, \psi, \bar{\ell} = \texttt{100}) \texttt{; HullPropagate}(\rho) \texttt{; RPQEnclose}^{\textstyle \bigtriangleup}(\rho, \psi, \bar{\ell}' = \texttt{50})$

Conclusions

- Y-MRPs provide frb-tree partition arithmetic
- IY-MRPs allow efficient arithmetic for Neumaier's inclusion algebras
- ▶ IY can be IR for $f : IR^d \to IR$
- ▶ $\mathbb{I}\mathbb{Y}$ can be $\mathbb{I}\mathbb{R}^m$ for $f: \mathbb{I}\mathbb{R}^d \to \mathbb{I}\mathbb{R}^m$
- ▶ IY can be (IR, IR m , IR $^{m^2}$) for range, gradient & Hessian of $f: \mathbb{IR}^d \to \mathbb{IR}$
- Other obvious extensions include arithmetic over Taylor polynomial inclusion algebras
- ▶ In general the domain and range of *f* can be complete lattices with intervals and bisection operations
- ▶ We have seen several statistical applications of Y-MRPs
- ► CODE: mrs: a C++ class library for statistical set processing by Bycroft, Harlow, Sainudiin, Teng and York.

References

Jaulin, L., Kieffer, M., Didrit, O. & Walter, E. (2001). *Applied interval analysis*. London: Springer-Verlag.

Meier, J., Groups, graphs and trees: an introduction to the geometry of infinite groups, CUP, Cambridge, 2008.

Neumaier, A., *Interval methods for systems of equations*, CUP, Cambridge, 1990.

Lugosi, G. and Nobel, A. (1996). Consistency of data-driven histogram methods for density estimation and classification. *The Annals of Statistics* **24** 687–706.

Sainudiin, R. and York, T. L. (2005). *An Auto-validating Rejection Sampler*. BSCB Dept. Technical Report BU-1661-M, Cornell University, Ithaca, New York.

Acknowledgements

- RS's external consulting revenues from the New Zealand Ministry of Tourism
- ▶ WT's Swedish Research Council Grant 2008-7510 that enabled RS's visits to Uppsala in 2006 and 2009
- Erskine grant from University of Canterbury that enabled WT's visit to Christchurch in 2011 & 2014
- EU Marie Curie International Research Staff Exchange Grants (CORCON 2014-2017 & CONSTRUMATH 2009-2012)
- University of Canterbury MSc Scholarship to JH.

Thank you!