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A review of some terms

Definition

An infinite set X ⊆ ω is said to be immune if it does not contain any infinite r.e.
subset.

Definition

An infinite set X ⊆ ω is said to be e�ectively immune if there is a recursive
function f such that for all e, if We is a subset of X , then |We| ≤ f (e).

The study of sets whose immunity is witnessed in an e�ective manner dates back
to Post.



E�ective immunity in the co-r.e. sets

Post (1944) called an r.e. set whose complement is immune simple. He provided a
construction in the hope that it could be shown or adapted to produce a
Turing-incomplete nonrecursive r.e. set.

Smullyan (1964) observed that Post’s simple set is actually e�ectively simple, i.e., its
complement is e�ectively immune.

In fact, one has to try hard to produce a simple set that is not e�ectively simple,
and such sets were constructed implicitly by Friedberg (1957) and Muchnik (1956),
and explicitly by Sacks (1964), via priority arguments.

Soon a�er, Martin (1966) showed, in a result later generalized by the Arslanov
Completeness Criterion, that every e�ectively simple set is complete.



E�ective immunity outside the co-r.e. sets

The notion of e�ective immunity turned out to be an important one outside the
context of the co-r.e. sets:

Theorem (Jockusch, 1989)

Every DNR degree contains an e�ectively immune set.

This, together with an earlier observation by Arslanov, Nadirov, and Solov’ev
(1977), showed that the Turing degrees of the DNR functions and those of the
e�ectively immune sets coincide.



Bi-immune sets

A set is bi-immune if both it and its complement are immune.

Theorem (Jockusch and Lewis, 2013)

Every DNR function computes a bi-immune set.

The same authors asked:

�estion

Call a set e�ectively bi-immune (or EBI) if both it and its complement are e�ectively
immune. Does every DNR function compute an e�ectively bi-immune set?

When the function f witness the e�ective immunity of both X and its complement,
we say X is e�ectively immune via f .



DNR functions and e�ectively bi-immune sets

Theorem (Beros, 2015)

There is a DNR function that computes no EBI set.

To summarize, every DNR function computes an e�ectively immune set (in fact, of
the same degree), and a bi-immune set. But not necessarily an e�ectively
bi-immune set.

E�ective bi-immunity is a measure-typical property: every Martin-Löf random real
is e�ectively bi-immune. However, weaker levels of randomness like Schnorr and
computable randomness do not su�ice.



DNR functions and e�ectively bi-immune sets

Beros’s proof is a direct construction involving some intricate combinatorics, but it
also follows from an existing result and the following observation:

Proposition

Every EBI set computes a recursively bounded DNR function.

Proof

• Suppose X is e�ectively bi-immune via f .

• Let h be a recursive function such that for all n, Wh(n) is the finite set coded by
ϕn(n), if it converges.

• Let g(n) be the code for the set consisting of the first f (h(n)) + 1 elements of
X .

• Let ḡ(n) be the code for the set consisting of the first f (h(n)) + 1 elements of
X̄ .

• g and ḡ are DNR.

• Now let g∗ = min(g, ḡ). Clearly, it is DNR. Moreover, the largest element in
the finite set coded by g∗(n) is bounded by 2(f (h(n))) + 1.



DNR functions and e�ectively bi-immune sets

It’s enough now to appeal to the following result:

Theorem (Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman, 2004)

There is a DNR function that computes no recursively bounded DNR function.

This DNR function cannot compute an EBI set.



Implications

→ means ≥w

HDIM1 = e�ective Hausdor� dimension 1
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EBI and slow-growing DNRs

By an order function we mean a recursive, nondecreasing, and unbounded function
that takes on values greater or equal to 2.

Theorem

Let q be any order function. Then for any oracle X , there is a q-bounded DNR
function relative to X that computes no EBI set.



EBI and slow-growing DNRs (sketch)

Construct a q-bounded DNR g by forcing
with conditions of the form (σ,B) where

• σ ∈ q<ω and B ⊂ q<ω , and

• B is q(|σ|)-small above σ.

B is a set of “bad” strings that we cannot
extend. There is no e�ectivity
assumption on it.

Given a reduction Γ and a recursive
function h, we want to extend σ to a
string τ /∈ B so as to force the fact that
Γg is not an h-EBI.
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EBI and slow-growing DNRs (sketch)

We cannot force Γ to be total, but we can
make sure that it converges “a lot”.

We argue that there exists an extension τ
of σ and an infinite tree S, bushy
“enough” above τ such that Γ is
i.o.-constant on S:

• For infinitely many n, Γf (n) is
constant as f ranges over [S].

S isn’t e�ective.
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EBI and slow-growing DNRs (sketch)

But because it exists, uniformly in k, we
can e�ectively find a finite tree Sk , such
that for k distinct inputs, Γρ is constant
as ρ ranges over the leaves of Sk .

For i ∈ {0, 1}, the set of inputs such that
the constant output is i is an r.e. set.

Use the recursion theorem to choose k
large enough so that one of these is
bigger than the bound h allows.

Extend τ to a “good” leaf ρ of Sk to force
this r.e. set into Γg (or Γg).
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EBI and slow-growing DNRs (sketch)

The none�ective argument for the
existence of S splits into two cases.

The more involved of these is one where
there is a good extension τ of σ above
which Γ infinitely o�en favors one
output heavily over the other.

More precisely, for infinitely many inputs
n, the set of ρ extending τ such that
Γρ(n) = i is much bigger than the set of
those such that Γρ(n) = 1− i.

These “dominant majority” sets don’t
necessarily form a coherent sequence
when viewed as trees. But their pairwise
intersections are very large.
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EBI and slow-growing DNRs (sketch)

This allows us to inductively construct S.
Given Sk and an infinite collection of
majority trees C0, C1, C2, ..., all of which
contain Sk , we consider how C0 ∩ Cj

extends Sk .

C0 ∩ Cl possibly extends Sk di�erently.

But since C0 is finite, for infinitely many
j > 0, C0 ∩ Cj gives the same extension of
Sk . Keep these majority trees, which
“elect” the same extension of Sk to Sk+1,
and discard the rest.
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E�ective Hausdor� dimension and bi-immunity

Corollary

There is a real of e�ective Hausdor� dimension 1 that computes no EBI set.

Compare this to:

Theorem (Greenberg and Miller, 2011)

There is a real of e�ective Hausdor� dimension 1 that computes no MLR set.



An open question

From this perspective, EBI appears to be closer than expected to MLR.

�estion

Does every EBI compute an MLR set?

We know that there is an EBI Turing degree that contains no MLR set: First, the
join of two EBI sets is EBI. Second, every PA degree contains the join of two MLR
sets (Barmpalias, Lewis, and Ng, 2010), and therefore, an EBI set. In particular, any
incomplete PA degree contains an EBI set, and cannot contain an MLR set, by a
theorem of Stephan.



Thank you


