Diamonds are a Set Theorist's best friend

Víctor Torres-Pérez

Vienna University of Technology Funded by the Research Project P 26869-N25 of the Austrian Science Fund (FWF)

Set Theory and its Applications in Topology Oaxaca, Mexico. September 14th, 2016

A (10) × (10) × (10) ×

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Remember Jensen's diamond principle \diamondsuit :

・ロト ・回ト ・ヨト ・ヨト 三日

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

・ロト ・四ト ・ヨト ・ヨト

Э

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

There is a sequence $\langle d_{\alpha} : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subseteq \omega_1$, the set

イロト イポト イヨト イヨト

Remember Jensen's diamond principle \diamond :

Definition (\diamondsuit)

There is a sequence $\langle d_\alpha : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subseteq \omega_1$, the set

$$\{\alpha \in \omega_1 : X \cap \alpha = d_\alpha\}$$

イロト イポト イヨト イヨト

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

There is a sequence $\langle d_\alpha : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subseteq \omega_1$, the set

$$\{\alpha \in \omega_1 : X \cap \alpha = d_\alpha\}$$

is stationary.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Lemma

$\begin{array}{l} \mathsf{Lemma} \\ \diamondsuit \to \mathrm{CH.} \end{array}$

・ロト ・四ト ・ヨト ・ヨト 三日

$\begin{array}{l} \mathsf{Lemma} \\ \diamondsuit \to \mathrm{CH}. \end{array}$

Lemma

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

$\begin{array}{l} \mathsf{Lemma} \\ \diamondsuit \to \mathrm{CH.} \end{array}$

Lemma

• \diamond implies there is an ω_1 -Suslin tree.

・ロト ・四ト ・ヨト ・ヨト

Э

$\begin{array}{l} \mathsf{Lemma} \\ \diamondsuit \to \mathrm{CH.} \end{array}$

Lemma

- \diamond implies there is an ω_1 -Suslin tree.
- CH does not imply there is an ω_1 -Suslin tree.

イロン 不同 とくほど 不同 とう

$\begin{array}{l} \mathsf{Lemma} \\ \diamondsuit \to \mathrm{CH.} \end{array}$

Lemma

- \blacktriangleright \diamond implies there is an ω_1 -Suslin tree.
- CH does not imply there is an ω_1 -Suslin tree.

Therefore, $CH \not\rightarrow \diamondsuit$.

イロト イヨト イヨト イヨト

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Definition

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$.

イロン 不同 とうほう 不同 とう

Э

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\Diamond_{\kappa}(S)$ is the following principle:

イロン 不同 とくほど 不同 とう

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$,

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in S : X \cap \alpha = d_{\alpha}\}$$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in S : X \cap \alpha = d_{\alpha}\}$$

is stationary.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in S : X \cap \alpha = d_{\alpha}\}$$

is stationary. We write just \diamondsuit_{κ} when $S = \kappa$.

・ 同 ト ・ ヨ ト ・ ヨ ト

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Lemma

Lemma \Diamond_{κ^+} implies $2^{\kappa} = \kappa^+$.

(日)

Lemma \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

・ロト ・四ト ・ヨト ・ヨト

Э

Lemma \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$.

イロン 不同 とくほど 不同 とう

Lemma \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \Diamond_{κ^+} holds.

イロン 不同 とうほう 不同 とう

Lemma \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more,

Lemma \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more, we can get

Lemma

 \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$

イロト イポト イヨト イヨト

Lemma

 \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \Diamond_{κ^+} holds. Even more, we can get $\Diamond_{\kappa^+}(S)$ for any stationary set

Lemma

 \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}.$

イロト イポト イヨト イヨト

Lemma

 \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}.$

For example,

Lemma

 \diamondsuit_{κ^+} implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}.$

For example, $2^{\omega_1} = \omega_2$ implies $\diamondsuit_{\omega_2}(E_{\omega}^{\omega_2})$.

イロト イポト イヨト イヨト
Stationary sets

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

ヘロア 人間 アメヨア 人間 アー

2

Stationary sets

Given a cardinal μ and a set A,

イロト イヨト イヨト イヨト

э

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

イロト イヨト イヨト イヨト

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

イロト イヨト イヨト イヨト

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

Let λ,μ be two infinite cardinals with $\lambda\geq\mu$ and μ regular.

イロト イポト イヨト イヨト

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

Let λ, μ be two infinite cardinals with $\lambda \ge \mu$ and μ regular. We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary

イロト イヨト イヨト イヨト

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary if for every function $f : \lambda^{<\omega} \to \lambda$,

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary if for every function $f : \lambda^{<\omega} \to \lambda$, there is $X \in S$ such that

A (10) × (10) × (10) ×

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ .

Definition

Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary if for every function $f : \lambda^{<\omega} \to \lambda$, there is $X \in S$ such that $f[X^{<\omega}] \subseteq X$.

イロト イポト イヨト イヨト

Diamond in two cardinals version

Definition

Victor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

Э

Diamond in two cardinals version

Definition Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$

イロト イヨト イヨト イヨト

Diamond in two cardinals version

Definition Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$.

(4回) (4回) (日)

Diamond in two cardinals version

Definition

Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$. Then $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$,

Diamond in two cardinals version

Definition

Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$. Then $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

Diamond in two cardinals version

Definition

Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$. Then $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

$$\{Z \in [\lambda]^{\mu} : W \cap Z = G_Z\}$$

Diamond in two cardinals version

Definition

Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$. Then $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

$$\{Z\in [\lambda]^{\mu}: W\cap Z=G_Z\}$$

is stationary.

Diamond in two cardinals version

Definition

Let $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $G_Z \subseteq Z$ for all $Z \in [\lambda]^{\mu}$. Then $\langle G_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

$$\{Z\in [\lambda]^{\mu}: W\cap Z=G_Z\}$$

is stationary. The principle $\Diamond_{[\lambda]^{\mu}}$ states that there is a $\Diamond_{[\lambda]^{\mu}}$ -sequence.

Observe that $\diamondsuit_{[\omega_1]^\omega}$ is equivalent to \diamondsuit_{ω_1} ,

・ロト ・四ト ・ヨト ・ヨト

Ð,

Observe that $\Diamond_{[\omega_1]^{\omega}}$ is equivalent to \Diamond_{ω_1} , or more in general $\Diamond_{[\kappa^+]^{\kappa}}$ is equivalent to \Diamond_{κ^+} .

イロン 不同 とくほど 不同 とう

(1) マント (1) マント

(日本) (日本) (日本)

Theorem (Shelah-Todorcevic, independently)

Theorem (Shelah-Todorcevic, independently) $\Diamond_{[\lambda]^{\omega}}$ holds for every ordinal $\lambda \geq \omega_2$.

(1) マント (1) マント

Theorem (Shelah-Todorcevic, independently) $\Diamond_{[\lambda]^{\omega}}$ holds for every ordinal $\lambda \ge \omega_2$. So what about $\Diamond_{[\lambda]^{\omega_1}}$?

(1) マント (1) マント

Theorem (Shelah-Todorcevic, independently) $\Diamond_{[\lambda]^{\omega}}$ holds for every ordinal $\lambda \ge \omega_2$. So what about $\Diamond_{[\lambda]^{\omega_1}}$? We have $\Diamond_{[\omega_2]^{\omega_1}}$

Theorem (Shelah-Todorcevic, independently) $\Diamond_{[\lambda]^{\omega}}$ holds for every ordinal $\lambda \ge \omega_2$. So what about $\Diamond_{[\lambda]^{\omega_1}}$? We have $\Diamond_{[\omega_2]^{\omega_1}} \rightarrow \Diamond_{\omega_2} \rightarrow 2^{\omega_1} = \omega_2$.

(1) マント (1) マント

Weak Reflection Principle

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

Ð,

Weak Reflection Principle

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

Ð,

Weak Reflection Principle

Consider the following principle:

(4回) (4回) (4回)

Weak Reflection Principle

Consider the following principle: Definition (WRP(λ))

- 4 回 ト 4 三 ト 4 三 ト

Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$),

æ

Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

 $\{x \in [\lambda]^{\omega_1} : x \supseteq \omega_1 \text{ and } S \cap [x]^{\omega} \text{ is stationary in } [x]^{\omega}\}$

イロン 不良 とうせい かけいし

Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

$$\{x \in [\lambda]^{\omega_1} : x \supseteq \omega_1 \text{ and } S \cap [x]^{\omega} \text{ is stationary in } [x]^{\omega}\}$$

is stationary in $[\lambda]^{\omega_1}$.
Weak Reflection Principle

Consider the following principle:

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

 $\{x \in [\lambda]^{\omega_1} : x \supseteq \omega_1 \text{ and } S \cap [x]^{\omega} \text{ is stationary in } [x]^{\omega}\}$

is stationary in $[\lambda]^{\omega_1}$. So WRP states that WRP (λ) holds for every $\lambda \geq \aleph_2$.

イロト イポト イヨト イヨト

Some consequences of WRP

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とうほう 不同 とう

Ð,

Some consequences of WRP

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とうほう 不同 とう

Ð,

Some consequences of WRP

1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$

イロン 不同 とくほど 不同 とう

э

Some consequences of WRP

1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).

イロン 不同 とくほど 不同 とう

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
- WRP implies λ^ω = λ for every regular λ ≥ ω₂, so in particular it implies SCH

< ロ > < 同 > < 三 > < 三 >

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
- 3. WRP implies $\lambda^{\omega} = \lambda$ for every regular $\lambda \ge \omega_2$, so in particular it implies SCH (Shelah, 2008).

イロン イボン イヨン イヨン

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
- 3. WRP implies $\lambda^{\omega} = \lambda$ for every regular $\lambda \ge \omega_2$, so in particular it implies SCH (Shelah, 2008).
- 4. WRP does not imply $\aleph_2^{\aleph_1} = \aleph_2$

イロン イボン イヨン イヨン

Some consequences of WRP

- 1. WRP(ω_2) implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević, 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
- 3. WRP implies $\lambda^{\omega} = \lambda$ for every regular $\lambda \ge \omega_2$, so in particular it implies SCH (Shelah, 2008).
- 4. WRP does not imply $\aleph_2^{\aleph_1} = \aleph_2$ (Woodin, 1999).

イロン イボン イヨン イヨン

Saturation of \overline{NS}_{ω_1}

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

ヘロア 人間 アメヨア 人間 アー

Saturation of \overline{NS}_{ω_1}

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

ヘロア 人間 アメヨア 人間 アー

Saturation of NS_{ω_1}

Definition (Saturation of NS_{ω_1})

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とくほど 不同 とう

Э

Saturation of NS_{ω_1}

Definition (Saturation of NS_{ω_1})

Let W be a collection of stationary sets in ω_1 such that for every S and T in W,

イロト イポト イヨト イヨト

Saturation of NS_{ω_1}

Definition (Saturation of NS_{ω_1})

Let W be a collection of stationary sets in ω_1 such that for every S and T in W, $S \cap T$ is nonstationary.

Saturation of NS_{ω_1}

Definition (Saturation of NS_{ω_1})

Let W be a collection of stationary sets in ω_1 such that for every S and T in W, $S \cap T$ is nonstationary. Then $|W| \leq \omega_1$.

Theorem (T., 2009)

Theorem (T., 2009) For every ordinal $\lambda \ge \omega_2$,

イロン 不同 とくほど 不同 とう

æ

Theorem (T., 2009)

For every ordinal $\lambda \ge \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply

イロン 不同 とくほど 不同 とう

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\Diamond_{[\lambda]^{\omega_1}}$.

イロン 不同 とくほど 不同 とう

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more,

イロン 不同 とくほど 不同 とう

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more, we can get

イロト イポト イヨト イヨト

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more, we can get

$$\Diamond_{[\lambda]^{\omega_1}} \left(\{ a \in [\lambda]^{\omega_1} : \operatorname{cof} (\operatorname{sup}(a)) = \omega_1 \} \right).$$

イロト イポト イヨト イヨト

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more, we can get

$$\Diamond_{[\lambda]^{\omega_1}} \left(\{ a \in [\lambda]^{\omega_1} : \operatorname{cof} (\operatorname{sup}(a)) = \omega_1 \} \right).$$

In particular, it implies $\Diamond_{\omega_2}(\{\delta < \omega_2 : \operatorname{cof} \delta = \omega_1\})$.

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more, we can get

$$\Diamond_{[\lambda]^{\omega_1}} \left(\{ a \in [\lambda]^{\omega_1} : \operatorname{cof} (\operatorname{sup}(a)) = \omega_1 \} \right).$$

In particular, it implies $\Diamond_{\omega_2}(\{\delta < \omega_2 : \text{cof } \delta = \omega_1\})$. Additionally, we get the following cardinal arithmetic:

A (10) × (10) × (10) ×

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\diamondsuit_{[\lambda]^{\omega_1}}$. Even more, we can get

$$\Diamond_{[\lambda]^{\omega_1}} \left(\{ a \in [\lambda]^{\omega_1} : \mathrm{cof} (\mathrm{sup}(a)) = \omega_1 \} \right).$$

In particular, it implies $\Diamond_{\omega_2}(\{\delta < \omega_2 : \text{cof } \delta = \omega_1\})$. Additionally, we get the following cardinal arithmetic:

$$\lambda^{\omega_1} = \begin{cases} \lambda & \text{if } \mathrm{cof} \ \lambda > \omega_1, \\ \lambda^+ & \text{if } \mathrm{cof} \ \lambda \le \omega_1. \end{cases}$$

A (10) × (10) × (10) ×

We recall Shelah's weak diamond:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

We recall Shelah's weak diamond:

Definition (Φ)

イロン イヨン イヨン イヨン

Definition (Φ)

For every $F: 2^{<\omega_1} \rightarrow 2$,

イロン イヨン イヨン イヨン

Э

Definition (Φ)

For every $F:2^{<\omega_1}\to 2,$ there is $g:\omega_1\to 2$ such that for every $f:\omega_1\to 2,$

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

Э

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

Э

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

Theorem (Devlin-Shelah)
We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

 $\begin{array}{l} \mbox{Theorem (Devlin-Shelah)}\\ \Phi \mbox{ is equivalent to } 2^{\aleph_0} < 2^{\aleph_1}. \end{array}$

イロト イボト イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Definition

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Definition An *invariant* is a triple (A, B, R) such that

イロン 不同 とうほう 不同 とう

Ð,

Definition

An *invariant* is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c} ,

イロト イヨト イヨト イヨト

臣

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,

イロン 不同 とくほど 不同 とう

臣

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,

イロト イポト イヨト イヨト

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- 4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

イロト イボト イヨト イヨト

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- 4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- 4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition If (A, B, R) is an invariant,

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- 4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its *evaluation* $\langle A, B, R \rangle$ is given by

イロト イヨト イヨト イヨト

An *invariant* is a triple (A, B, R) such that

- 1. A and B are sets of cardinality at most \mathfrak{c} ,
- 2. $R \subseteq A \times B$,
- 3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- 4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its *evaluation* $\langle A, B, R \rangle$ is given by

$$\langle A, B, R \rangle = \min\{|X| : X \subseteq B \text{ and } \forall a \in A \exists b \in X(aRb)\}.$$

イロト イヨト イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Definition

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Definition An invariant (A, B, R) is Borel

イロン イヨン イヨン イヨン

Ð,

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

イロン 不同 とくほど 不同 とう

臣

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

イロン 不同 とくほど 不同 とう

臣

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A.

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is Borel

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is *Borel* if for every $\delta < \omega_1$,

イロト イポト イヨト イヨト

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is *Borel* if for every $\delta < \omega_1$, the restriction of F to 2^{δ} is a Borel map.

イロト イポト イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Definition

Definition Let (A, B, R) a Borel invariant.

イロン 不同 とうほう 不同 とう

Ð,

Definition

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

イロン 不同 とうほう 不同 とう

크

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$,

イロン 不同 とうほう 不同 とう

크

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$,

イロン スロン イヨン イヨン

Э

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement: For every Borel map $F : 2^{<\omega_1} \to A$, there is $g : \omega_1 \to B$ such that for every $f : \omega_1 \to 2$, the set

イロン 不同 とうほう 不同 とう

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

イロン 不同 とうほう 不同 とう

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement: For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that

for every $f:\omega_1
ightarrow 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

is stationary.

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement: For every Borel map $E: 2^{\leq \omega_1} \rightarrow A$ there is $\sigma: (X \rightarrow X)$ B such

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\Diamond(A, R)$.

イロン イヨン イヨン イヨン

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement: For every Borel map $F : 2^{<\omega_1} \to A$, there is $g : \omega_1 \to B$ such that

for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\Diamond(A, R)$. Also, if an invariant (A, B, R) has already a common representation,

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement: For every Borel map $F : 2^{\leq \omega_1} \to A$, there is $g : \omega_1 \to B$ such that

for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\Diamond(A, R)$. Also, if an invariant (A, B, R) has already a common representation, we use such representation instead.

In this talk we deal with the following instances:

イロン 不同 とうほう 不同 とう

Ð,

In this talk we deal with the following instances: $\Diamond(2, \neq)$,

イロン 不同 とうほう 不同 とう

Э
In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とうほう 不同 とう

イロン 不同 とうほう 不同 とう

Theorem (Moore-Hrušák-Džamonja)

イロト イヨト イヨト イヨト

Theorem (Moore-Hrušák-Džamonja)

•
$$(2, \neq) \rightarrow \mathfrak{t} = \omega_1$$
,

イロト イヨト イヨト イヨト

Theorem (Moore-Hrušák-Džamonja)

•
$$\Diamond(2, \neq) \rightarrow \mathfrak{t} = \omega_1$$
,

•
$$\Diamond(\mathfrak{r}) \to \mathfrak{u} = \omega_1$$
,

イロト イヨト イヨト イヨト

Theorem (Moore-Hrušák-Džamonja)

- $(2, \neq) \rightarrow \mathfrak{t} = \omega_1$,
- $\diamondsuit(\mathfrak{r})
 ightarrow \mathfrak{u} = \omega_1$,
- $\blacktriangleright \ \diamondsuit(\mathfrak{b}) \to \mathfrak{a} = \omega_1.$

æ

The Tower Game

・ロト ・回ト ・ヨト ・ヨト 三日

The Tower Game

Definition (Almost contained)

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とくほど 不同 とう

Ð,

The Tower Game

Definition (Almost contained) X is almost contained in Y,

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$,

イロト イヨト イヨト イヨト

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

イロン 不同 とくほど 不同 とう

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

イロト イポト イヨト イヨト

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if,

・ 同 ト ・ ヨ ト ・ ヨ ト

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

1.
$$X_{lpha} \in [\omega]^{\omega}$$
,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

- 1. $X_lpha \in [\omega]^\omega$,
- 2. if $\beta < \alpha$ then $X_{\alpha} \subseteq^* X_{\beta}$,

A (1) × (2) × (3) ×

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

1.
$$X_{\alpha} \in [\omega]^{\omega}$$
,
2. if $\beta < \alpha$ then X

2. if $\beta < \alpha$ then $X_{\alpha} \subseteq^* X_{\beta}$,

and for every $X \in [\omega]^{\omega}$,

A (1) × (2) × (3) ×

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

- 1. $X_{lpha} \in [\omega]^{\omega}$,
- 2. if $\beta < \alpha$ then $X_{\alpha} \subseteq^* X_{\beta}$,

and for every $X \in [\omega]^{\omega}$, there is $\alpha < \delta$ such that $X \not\subseteq^* X_{\alpha}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Consider the following game of length ω_1 :

イロン 不同 とうほう 不同 とう

Ð,

Consider the following game of length ω_1 :									
Builder	Y_0			Y_{α}		• • •			
Spoiler		Y_1	• • •		$Y_{\alpha+1}$	• • •			

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Consider the following game of length ω_1 :									
Builder	Y_0			Y_{lpha}		•••			
Spoiler		Y_1			$Y_{\alpha+1}$				
The game G_t is played as follows.									

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Builder Y_0 \cdots Y_{α} \cdots Spoiler Y_1 \cdots $Y_{\alpha+1}$ \cdots

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subset^* -decreasing.

The Builder plays during $pair(\omega_1)$, i.e.

向下 イヨト イヨト

Builder Y_0 \cdots Y_{α} \cdots Spoiler Y_1 \cdots $Y_{\alpha+1}$ \cdots

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always

 \subseteq^* -decreasing.

The Builder plays during $pair(\omega_1)$, i.e. ordinals of the form $\beta + 2k$,

伺 ト イヨト イヨト

Builder Y_0 \cdots Y_{α} \cdots Spoiler Y_1 \cdots $Y_{\alpha+1}$ \cdots

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always

 \subseteq^* -decreasing.

The Builder plays during pair(ω_1), i.e. ordinals of the form $\beta + 2k$, with β limit and $k \in \omega$.

向下 イヨト イヨト

Builder Y_0 \cdots Y_{α} \cdots Spoiler Y_1 \cdots $Y_{\alpha+1}$ \cdots

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subset^* -decreasing.

The Builder plays during $pair(\omega_1)$, i.e. ordinals of the form $\beta + 2k$, with β limit and $k \in \omega$. The Spoiler plays during $odd(\omega_1) = \omega_1 \setminus pair(\omega_1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Builder Y_0 \cdots Y_{α} \cdots Spoiler Y_1 \cdots $Y_{\alpha+1}$ \cdots

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subset^* -decreasing.

The Builder plays during $pair(\omega_1)$, i.e. ordinals of the form $\beta + 2k$, with β limit and $k \in \omega$. The Spoiler plays during $odd(\omega_1) = \omega_1 \setminus pair(\omega_1)$.

The Builder wins the match if $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is a tower.

・ 同 ト ・ ヨ ト ・ ヨ ト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

We have the following:

ヘロア 人間 アメヨア 人間 アー

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

イロト イヨト イヨト イヨト

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

イロト イヨト イヨト イヨト

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamondsuit(2, \neq) \to$ the Builder has a winning strategy in the tower game G_t

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\Diamond(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_t \rightarrow t = \omega_1$.

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_t \rightarrow t = \omega_1$.
- 2. $\diamondsuit(2, \neq) \not\leftarrow$ the Builder has a winning strategy in the tower game G_t

イロト イボト イヨト イヨト
We have the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_t \rightarrow t = \omega_1$.
- 2. $(2, \neq) \notin$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \notin \mathfrak{t} = \omega_1$.

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Lemma

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

・ 回 ト ・ ヨ ト ・ ヨ ト

CH implies the Builder has a winning strategy in G_t

Lemma CH implies the Builder has a winning strategy in G_t .

CH implies the Builder has a winning strategy in G_t

Lemma CH implies the Builder has a winning strategy in G_t .

Fact

CH implies the Builder has a winning strategy in G_t

Lemma

 $\rm CH$ implies the Builder has a winning strategy in $G_t.$

Fact

Every infinite \subseteq^* -decreasing sequence generates a filter.

CH implies the Builder has a winning strategy in G_t

Lemma

 $\rm CH$ implies the Builder has a winning strategy in $G_t.$

Fact

Every infinite \subseteq^* -decreasing sequence generates a filter.

Fact

A (1) × (2) × (3) ×

CH implies the Builder has a winning strategy in G_{t}

Lemma

 $\rm CH$ implies the Builder has a winning strategy in $G_t.$

Fact

Every infinite \subseteq^* -decreasing sequence generates a filter.

Fact

Every infinite countable \subseteq^* -decreasing sequence can always be extended.

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Proof.

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Proof. Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$.

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match,

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} .

・ 同 ト ・ ヨ ト ・ ヨ ト

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} . Let

$$Y_{eta+1} = \left\{ egin{array}{ll} Y_eta ig A_eta & ext{if } Y_eta ig A_eta & ext{is infinite}, \ Y_eta \cap A_eta & ext{otherwise}. \end{array}
ight.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} . Let

$$Y_{eta+1} = \left\{ egin{array}{ll} Y_eta ig A_eta & ext{if } Y_eta ig A_eta & ext{is infinite}, \ Y_eta \cap A_eta & ext{otherwise}. \end{array}
ight.$$

Since any infinite countable \subseteq^* -decreasing sequence can be always extended,

(4回) イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} . Let

$$Y_{eta+1} = \left\{ egin{array}{ll} Y_eta ig A_eta & ext{if } Y_eta ig A_eta & ext{is infinite}, \ Y_eta \cap A_eta & ext{otherwise}. \end{array}
ight.$$

Since any infinite countable \subseteq^* -decreasing sequence can be always extended, if $\langle Y_{\alpha} : \alpha < \beta \rangle$ is a partial match with β limit,

(4月) トイヨト イヨト

CH implies the Builder has a winning strategy in G_t

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} . Let

$$Y_{eta+1} = \left\{ egin{array}{ll} Y_eta ig A_eta & ext{if } Y_eta ig A_eta & ext{is infinite}, \ Y_eta \cap A_eta & ext{otherwise}. \end{array}
ight.$$

Since any infinite countable \subseteq^* -decreasing sequence can be always extended, if $\langle Y_{\alpha} : \alpha < \beta \rangle$ is a partial match with β limit, let the Builder play any Y_{β} extending it.

< ロ > < 同 > < 三 > < 三 >

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロト イヨト イヨト イヨト

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

・ 同 ト ・ ヨ ト ・ ヨ ト

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof.

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$.

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$.

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$.

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1: $Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$.

イロト 不得 トイヨト イヨト

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

$$\underline{ \mathsf{Case 1:} \ Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}. } \ \mathsf{Then} \ \omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1} \mathsf{,}$$

イロト 不得 トイヨト イヨト

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:
CH implies the Builder has a winning strategy in G_t

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X)\}$$

is an ultrafilter.

Proof. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \setminus X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

000

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン イヨン イヨン

CH implies the Builder has a winning strategy in G_t

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン イヨン イヨン

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower.

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise,

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$.

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$.

< ロ > < 同 > < 三 > < 三 >

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned,

A (1) × A (2) × A (2) ×

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is an ultrafilter.

(1) マント (1) マント

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0, 1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$,

(4月) キョン キョン

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0, 1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_1$ such that $Y_{\xi} \subseteq^* X_i$.

CH implies the Builder has a winning strategy in G_t

We show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0, 1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_1$ such that $Y_{\xi} \subseteq^* X_i$. Then, $Y_{\xi} \cap X_{1-i}$ is finite, and so $X \not\subseteq^* Y_{\xi}$.

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とくほど 不同 とう

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とくほど 不同 とう

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

イロン 不同 とくほど 不同 とう

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

イロト イポト イヨト イヨト

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof. Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with

 $\delta(s)$ limit,

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$.

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$. Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$.

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$. Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$. Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$I_0^s = \min\left(Y_{\delta_i}^s\right),\,$$

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$. Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$I_0^s = \min\left(Y_{\delta_i}^s\right),\,$$

and

$\Diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

 $\Diamond(2, \neq)$ implies the Builder has a winning strategy in G_t . Proof.

Given an infinite \subseteq^* -decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$. Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$I_0^{\boldsymbol{s}} = \min\left(Y_{\delta_i}^{\boldsymbol{s}}\right),\,$$

and

$$I_{i+1}^{s} = \min\left(igcap_{j\leq i+1}Y_{\delta_{j}}^{s}ackslash(l_{i}^{s}+1)
ight).$$

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{ m t}$

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{ m t}$

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite,

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

(日本) (日本) (日本)

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s, C) = \begin{cases} 0 & \text{if } C \subseteq^* \{ I_{2i}^s : i \in \omega \}, \\ 1 & \text{otherwise.} \end{cases}$$

(日本) (日本) (日本)

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s, C) = \begin{cases} 0 & \text{if } C \subseteq^* \{ I_{2i}^s : i \in \omega \}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\diamondsuit(2, \neq)$ -sequence for F.

$\Diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s, C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\Diamond(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder.

$\Diamond(2, eq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$\mathsf{F}(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\Diamond(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal.

$\Diamond(2, eq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$\mathsf{F}(\mathsf{s},\mathsf{C}) = \begin{cases} 0 & \text{if } \mathsf{C} \subseteq^* \{I_{2i}^{\mathsf{s}} : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\Diamond(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

$\Diamond(2, eq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq^* -sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$\mathsf{F}(\mathsf{s},\mathsf{C}) = \begin{cases} 0 & \text{if } \mathsf{C} \subseteq^* \{I_{2i}^{\mathsf{s}} : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\Diamond(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

$$Y_{\delta(s)} = \begin{cases} \{l_{2i}^s : i \in \omega\} & \text{if } g(\delta(s)) = 0, \\ \{l_{2i+1}^s : i \in \omega\} & \text{otherwise.} \end{cases}$$

$\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Let $s = \{Y_{\xi}^{s} : \xi < \omega_{1}\}$ be a complete match played by the Builder according to the strategy described above.
$\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Let $s = \{Y_{\xi}^{s} : \xi < \omega_1\}$ be a complete match played by the Builder according to the strategy described above. Let $C \subseteq \omega$.

$\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Let $s = \{Y_{\xi}^{s} : \xi < \omega_{1}\}$ be a complete match played by the Builder according to the strategy described above. Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $F(s|_{\delta}^{s}, C) \neq g(\delta)$,

$\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Let $s = \{Y_{\xi}^{s} : \xi < \omega_{1}\}$ be a complete match played by the Builder according to the strategy described above. Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $F(s|_{\delta}^{\circ}, C) \neq g(\delta)$, it is straightforward to see that $C \not\subseteq^{*} Y_{\delta}$.

The Builder having a winning strategy in G_t does not imply CH

イロン 不同 とくほど 不同 とう

The Builder having a winning strategy in G_t does not imply CH

イロン 不同 とくほど 不同 とう

The Builder having a winning strategy in G_t does not imply CH

We have the following:

The Builder having a winning strategy in G_t does not imply CH

We have the following:

Theorem (Moore-Hrušák-Džamonja)

(4月) トイヨト イヨト

The Builder having a winning strategy in G_t does not imply CH

We have the following:

Theorem (Moore-Hrušák-Džamonja) CH does not imply \diamondsuit_t .

A (1) × (2) × (3) ×

The Builder having a winning strategy in G_t does not imply CH

We have the following:

Theorem (Moore-Hrušák-Džamonja) CH does not imply \diamondsuit_t .

Corollary

A (1) × (2) × (3) ×

The Builder having a winning strategy in G_t does not imply CH

We have the following:

Theorem (Moore-Hrušák-Džamonja) CH does not imply \diamondsuit_t .

Corollary $\Diamond(2,=) \not\leftarrow$ the Builder has a winning strategy in the tower game G_t .

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

Lemma

Víctor Torres-Pérez Diamonds are a Set Theorist's best friend

・ 回 ト ・ ヨ ト ・ ヨ ト …

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$. Proof.

Assume CH.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range.

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\cal G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range. Construct $(A_{\alpha} : \alpha < \omega_1)$ and $(B_{\alpha} : \alpha < \omega_1)$ such that for all α ,

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\cal G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range. Construct $(A_{\alpha} : \alpha < \omega_1)$ and $(B_{\alpha} : \alpha < \omega_1)$ such that for all α ,

•
$$A_{\alpha} \subseteq^* B_{\alpha}$$
, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\cal G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range. Construct $(A_{\alpha} : \alpha < \omega_1)$ and $(B_{\alpha} : \alpha < \omega_1)$ such that for all α ,

•
$$A_{\alpha} \subseteq^* B_{\alpha}$$
, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,

• B_{α} is chosen according to a given rule, and

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range. Construct $(A_{\alpha} : \alpha < \omega_1)$ and $(B_{\alpha} : \alpha < \omega_1)$ such that for all α ,

•
$$A_{\alpha} \subseteq^* B_{\alpha}$$
, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,

- B_{α} is chosen according to a given rule, and
- if $ran(f_{\alpha}|_{B_{\alpha}})$ is infinite,

イロト イヨト イヨト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Lemma

 $\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range. Construct $(A_{\alpha} : \alpha < \omega_1)$ and $(B_{\alpha} : \alpha < \omega_1)$ such that for all α ,

•
$$A_{\alpha} \subseteq^* B_{\alpha}$$
, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,

- B_{α} is chosen according to a given rule, and
- if ran(f_α|_{B_α}) is infinite, then ran(f_α|_{A_α}) is almost disjoint from some Y_{β_α}.

A D D A D D A D D A D D A

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}).$

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} .

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} . Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F} .

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} . Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F} . Assume the following:

(1) マント (1) マント

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} . Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F} . Assume the following:

Claim

 $\mathbb{L}_{\mathcal{F}}$ preserves \mathcal{Y} .

(日本) (日本) (日本)

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

Corollary

It is consistent that $\mathfrak{t} = \omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}$.

イロト イポト イヨト イヨト

æ

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t} = \omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}$.

Proof.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\diamondsuit(E_{\omega_1}^{\omega_2})$ and CH.
$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ as above.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder.

(4月) キョン キョン

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration

(4月) トイヨト イヨト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma = \mathbb{L}_{\dot{\mathcal{F}}}$

イロト イヨト イヨト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma = \mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma = \mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma = \mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above and the \dot{B}_α are obtained from the $\dot{A}_\beta, \dot{B}_\beta, \beta < \alpha$, using Builder's (name of a) strategy handed down by $\Diamond (E_{\omega_1}^{\omega_2})$.

< ロ > < 同 > < 三 > < 三 >

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Corollary

It is consistent that $\mathfrak{t}=\omega_1$ and the Builder has no winning strategy in $G_{\mathfrak{t}}.$

Proof.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma : \gamma < \omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma = \mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above and the \dot{B}_α are obtained from the $\dot{A}_\beta, \dot{B}_\beta, \beta < \alpha$, using Builder's (name of a) strategy handed down by $\Diamond (E_{\omega_1}^{\omega_2})$. Force with \mathbb{P}_{ω_2} .

< ロ > < 同 > < 三 > < 三 >

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$

Since towers are preserved in limit steps of finite support iterations,

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$.

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$.

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$. On the other hand,

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$,

$\mathfrak{t} = \omega_1$ does not imply the Builder has a winning strategy in $\mathcal{G}_\mathfrak{t}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$. On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F} .

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}\omega_2}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}\gamma}}$ is a strategy in $V^{\mathbb{P}\gamma}$ and was used to construct the B_{α} and \mathcal{F} . Hence there is a game according to Σ which the Builder looses,

$\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in ${\it G}_{\mathfrak{t}}$

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$. In particular $\mathfrak{t} = \omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F} . Hence there is a game according to Σ which the Builder looses, as witnessed by the $\mathbb{L}_{\mathcal{F}}$ -generic added in $V^{\mathbb{P}_{\gamma+1}}$.

イロト イヨト イヨト

We have also the following:

・ロト ・回ト ・ヨト ・ヨト 三日

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

イロン 不同 とくほど 不同 とう

æ

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

イロン 不同 とくほど 不同 とう

æ

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamondsuit(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game G_{u}

イロト イヨト イヨト イヨト

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.

イロン 不同 とうほう 不同 とう

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$

イロト イポト イヨト イヨト

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

イロト イポト イヨト イヨト

3

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

イロト イポト イヨト イヨト

크

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

1. $\Diamond(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}}$

イロト イポト イヨト イヨト

3

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\Diamond(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

1. $\Diamond(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \not\leftarrow \mathfrak{u} = \omega_1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\Diamond(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

- 1. $\Diamond(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \not\leftarrow \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \not\leftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\Diamond(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

- 1. $\Diamond(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \not\leftarrow \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \not\leftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

Open question:

イロト イヨト イヨト イヨト 三日

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

- 1. $\Diamond(\mathfrak{r}) \to$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \to$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

- 1. $\Diamond(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \not\leftarrow \mathfrak{u} = \omega_1$.
- 2. $\diamondsuit(\mathfrak{b}) \not\leftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

Open question:

The Builder has a winning strategy in the almost disjoint game G_a $\not\leftarrow \mathfrak{a} = \omega_1$?

Thank you!

・ロト ・回ト ・ヨト ・ヨト 三日