Diamonds are a Set Theorist's best friend

Víctor Torres-Pérez
Vienna University of Technology
Funded by the Research Project P 26869-N25 of the Austrian Science Fund (FWF)

Der Wissenschaftsfonds.

Set Theory and its Applications in Topology
Oaxaca, Mexico. September 14th, 2016

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

Remember Jensen's diamond principle \diamond :

Remember Jensen's diamond principle \diamond :
 Definition (\diamond)

Remember Jensen's diamond principle \diamond :
Definition (\diamond)
There is a sequence $\left\langle d_{\alpha}: \alpha<\omega_{1}\right\rangle$ of subsets of ω_{1} such that for every $X \subseteq \omega_{1}$, the set

Remember Jensen's diamond principle \diamond :
Definition (\diamond)
There is a sequence $\left\langle d_{\alpha}: \alpha<\omega_{1}\right\rangle$ of subsets of ω_{1} such that for every $X \subseteq \omega_{1}$, the set

$$
\left\{\alpha \in \omega_{1}: X \cap \alpha=d_{\alpha}\right\}
$$

Remember Jensen's diamond principle \diamond :
Definition (\diamond)
There is a sequence $\left\langle d_{\alpha}: \alpha<\omega_{1}\right\rangle$ of subsets of ω_{1} such that for every $X \subseteq \omega_{1}$, the set

$$
\left\{\alpha \in \omega_{1}: X \cap \alpha=d_{\alpha}\right\}
$$

is stationary.

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

Lemma

Lemma
 $\diamond \rightarrow \mathrm{CH}$.

Lemma
 $\diamond \rightarrow \mathrm{CH}$.

Lemma

Lemma

$\diamond \rightarrow \mathrm{CH}$.

Lemma

- \diamond implies there is an ω_{1}-Suslin tree.

Lemma

$\diamond \rightarrow \mathrm{CH}$.

Lemma

- \diamond implies there is an ω_{1}-Suslin tree.
- CH does not imply there is an ω_{1}-Suslin tree.

Lemma

$\diamond \rightarrow \mathrm{CH}$.

Lemma

- \diamond implies there is an ω_{1}-Suslin tree.
- CH does not imply there is an ω_{1}-Suslin tree.

Therefore, $\mathrm{CH} \nrightarrow \diamond$.

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

Definition

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa$.

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa . \forall_{\kappa}(S)$ is the following principle:

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamond_{\kappa}(S)$ is the following principle:
There is a sequence $\left\langle d_{\alpha}: \alpha \in S\right\rangle$ such that for every $X \subseteq \kappa$,

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamond_{\kappa}(S)$ is the following principle:
There is a sequence $\left\langle d_{\alpha}: \alpha \in S\right\rangle$ such that for every $X \subseteq \kappa$, the set

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamond_{\kappa}(S)$ is the following principle:
There is a sequence $\left\langle d_{\alpha}: \alpha \in S\right\rangle$ such that for every $X \subseteq \kappa$, the set

$$
\left\{\alpha \in S: X \cap \alpha=d_{\alpha}\right\}
$$

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamond_{\kappa}(S)$ is the following principle:
There is a sequence $\left\langle d_{\alpha}: \alpha \in S\right\rangle$ such that for every $X \subseteq \kappa$, the set

$$
\left\{\alpha \in S: X \cap \alpha=d_{\alpha}\right\}
$$

is stationary.

Definition

Let $\kappa>\omega$ be a regular cardinal and $S \subseteq \kappa . \diamond_{\kappa}(S)$ is the following principle:
There is a sequence $\left\langle d_{\alpha}: \alpha \in S\right\rangle$ such that for every $X \subseteq \kappa$, the set

$$
\left\{\alpha \in S: X \cap \alpha=d_{\alpha}\right\}
$$

is stationary. We write just \diamond_{κ} when $S=\kappa$.

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

One cardinal diamonds
Two cardinal diamonds Parametrised Diamonds

Lemma

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$.

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds.

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more,

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get $\diamond_{\kappa^{+}}(S)$

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get $\diamond_{\kappa^{+}}(S)$ for any stationary set

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get $\diamond_{\kappa^{+}}(S)$ for any stationary set $S \subseteq\left\{\alpha<\kappa^{+}: \operatorname{cof}(\alpha) \neq \kappa\right\}$.

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get $\diamond_{\kappa^{+}}(S)$ for any stationary set $S \subseteq\left\{\alpha<\kappa^{+}: \operatorname{cof}(\alpha) \neq \kappa\right\}$.
For example,

Lemma

$\diamond_{\kappa^{+}}$implies $2^{\kappa}=\kappa^{+}$.
Theorem (Shelah)
Suppose κ is a cardinal satisfying $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}$holds. Even more, we can get $\diamond_{\kappa^{+}}(S)$ for any stationary set $S \subseteq\left\{\alpha<\kappa^{+}: \operatorname{cof}(\alpha) \neq \kappa\right\}$.
For example, $2^{\omega_{1}}=\omega_{2}$ implies $\diamond_{\omega_{2}}\left(E_{\omega}^{\omega_{2}}\right)$.

Stationary sets

Stationary sets

Given a cardinal μ and a set A,

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.
Definition

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.

Definition

Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular.

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.
Definition
Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq[\lambda]^{\mu}$ is stationary

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.
Definition
Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq[\lambda]^{\mu}$ is stationary if for every function $f: \lambda^{<\omega} \rightarrow \lambda$,

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.
Definition
Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq[\lambda]^{\mu}$ is stationary if for every function $f: \lambda^{<\omega} \rightarrow \lambda$, there is $X \in S$ such that

Stationary sets

Given a cardinal μ and a set A, we denote by $[A]^{\mu}$ the collection of all of subsets of A of size μ.

Definition

Let λ, μ be two infinite cardinals with $\lambda \geq \mu$ and μ regular. We say that a set $S \subseteq[\lambda]^{\mu}$ is stationary if for every function $f: \lambda^{<\omega} \rightarrow \lambda$, there is $X \in S$ such that $f\left[X^{<\omega}\right] \subseteq X$.

Diamond in two cardinals version

Definition

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$.

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$. Then $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ is a $\diamond_{[\lambda]^{\mu}}$-sequence if for all $W \subseteq \lambda$,

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$. Then $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ is a $\diamond_{[\lambda]^{\mu}}$-sequence if for all $W \subseteq \lambda$, the set

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$. Then $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ is a $\diamond_{[\lambda]^{\mu}}$-sequence if for all $W \subseteq \lambda$, the set

$$
\left\{Z \in[\lambda]^{\mu}: W \cap Z=G_{Z}\right\}
$$

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$. Then $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ is a $\diamond_{[\lambda]^{\mu}}$-sequence if for all $W \subseteq \lambda$, the set

$$
\left\{Z \in[\lambda]^{\mu}: W \cap Z=G_{Z}\right\}
$$

is stationary.

Diamond in two cardinals version

Definition

Let $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ be a sequence such that $G_{Z} \subseteq Z$ for all $Z \in[\lambda]^{\mu}$. Then $\left\langle G_{Z}\right\rangle_{Z \in[\lambda]^{\mu}}$ is a $\forall_{[\lambda]^{\mu}}$-sequence if for all $W \subseteq \lambda$, the set

$$
\left\{Z \in[\lambda]^{\mu}: W \cap Z=G_{Z}\right\}
$$

is stationary. The principle $\diamond_{[\lambda]^{\mu}}$ states that there is a $\diamond_{[\lambda]^{\mu}}$-sequence.

Observe that $\diamond_{\left[\omega_{1}\right]^{\omega}}$ is equivalent to $\diamond_{\omega_{1}}$,

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$.

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]} \omega$?

Observe that $\diamond_{\left[\omega_{1}\right]}{ }^{\omega}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]} \omega$?
We have the following:

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]^{\omega}}$?
We have the following:
Theorem (Shelah-Todorcevic, independently)

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]^{\omega}}$?
We have the following:
Theorem (Shelah-Todorcevic, independently)
$\diamond_{[\lambda]} \omega$ holds for every ordinal $\lambda \geq \omega_{2}$.

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]^{\omega}}$?
We have the following:
Theorem (Shelah-Todorcevic, independently)
$\diamond_{[\lambda] \omega}$ holds for every ordinal $\lambda \geq \omega_{2}$.
So what about $\diamond_{[\lambda]^{\omega_{1}}}$?

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]^{\omega}}$?
We have the following:
Theorem (Shelah-Todorcevic, independently)
$\diamond_{[\lambda]} \omega$ holds for every ordinal $\lambda \geq \omega_{2}$.
So what about $\diamond_{[\lambda]^{\omega_{1}}}$?
We have $\diamond_{\left[\omega_{2}\right]^{\omega_{1}}}$

Observe that $\diamond_{\left[\omega_{1}\right]}$ is equivalent to $\diamond_{\omega_{1}}$, or more in general $\diamond_{\left[\kappa^{+}\right]^{\kappa}}$ is equivalent to $\diamond_{\kappa^{+}}$. What about, for example, $\diamond_{\left[\omega_{2}\right]^{\omega}}$?
We have the following:
Theorem (Shelah-Todorcevic, independently)
$\diamond_{[\lambda]} \omega$ holds for every ordinal $\lambda \geq \omega_{2}$.
So what about $\diamond_{[\lambda]^{\omega_{1}}}$?
We have $\diamond_{\left[\omega_{2}\right]^{\omega_{1}}} \rightarrow \diamond_{\omega_{2}} \rightarrow 2^{\omega_{1}}=\omega_{2}$.

Weak Reflection Principle

Weak Reflection Principle

Weak Reflection Principle

Consider the following principle:

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal.

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal. If $S \subseteq[\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$),

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal. If $S \subseteq[\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal. If $S \subseteq[\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

$$
\left\{x \in[\lambda]^{\omega_{1}}: x \supseteq \omega_{1} \text { and } S \cap[x]^{\omega} \text { is stationary in }[x]^{\omega}\right\}
$$

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal. If $S \subseteq[\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

$$
\left\{x \in[\lambda]^{\omega_{1}}: x \supseteq \omega_{1} \text { and } S \cap[x]^{\omega} \text { is stationary in }[x]^{\omega}\right\}
$$

is stationary in $[\lambda]^{\omega_{1}}$.

Weak Reflection Principle

Consider the following principle:
Definition (WRP (λ))
Let $\lambda \geq \aleph_{2}$ be an arbitrary ordinal. If $S \subseteq[\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

$$
\left\{x \in[\lambda]^{\omega_{1}}: x \supseteq \omega_{1} \text { and } S \cap[x]^{\omega} \text { is stationary in }[x]^{\omega}\right\}
$$

is stationary in $[\lambda]^{\omega_{1}}$. So WRP states that $\operatorname{WRP}(\lambda)$ holds for every $\lambda \geq \aleph_{2}$.

One cardinal diamonds
Two cardinal diamonds
Parametrised Diamonds

Some consequences of WRP

One cardinal diamonds
Two cardinal diamonds
Parametrised Diamonds

Some consequences of WRP

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
3. WRP implies $\lambda^{\omega}=\lambda$ for every regular $\lambda \geq \omega_{2}$, so in particular it implies SCH

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
3. WRP implies $\lambda^{\omega}=\lambda$ for every regular $\lambda \geq \omega_{2}$, so in particular it implies SCH (Shelah, 2008).

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
3. WRP implies $\lambda^{\omega}=\lambda$ for every regular $\lambda \geq \omega_{2}$, so in particular it implies SCH (Shelah, 2008).
4. WRP does not imply $\aleph_{2}^{\aleph_{1}}=\aleph_{2}$

Some consequences of WRP

1. $\operatorname{WRP}\left(\omega_{2}\right)$ implies $2^{\aleph_{0}} \leq \aleph_{2}$ (Todorčević, 1984).
2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah, 1988).
3. WRP implies $\lambda^{\omega}=\lambda$ for every regular $\lambda \geq \omega_{2}$, so in particular it implies SCH (Shelah, 2008).
4. WRP does not imply $\aleph_{2}^{\aleph_{1}}=\aleph_{2}$ (Woodin, 1999).

Saturation of $\mathrm{NS}_{\omega_{1}}$

Saturation of $\mathrm{NS}_{\omega_{1}}$

Saturation of $\mathrm{NS}_{\omega_{1}}$

Definition (Saturation of $\mathrm{NS}_{\omega_{1}}$)

Saturation of $\mathrm{NS}_{\omega_{1}}$

Definition (Saturation of $\mathrm{NS}_{\omega_{1}}$)
Let W be a collection of stationary sets in ω_{1} such that for every S and T in W,

Saturation of $\mathrm{NS}_{\omega_{1}}$

Definition (Saturation of $\mathrm{NS}_{\omega_{1}}$)
Let W be a collection of stationary sets in ω_{1} such that for every S and T in $W, S \cap T$ is nonstationary.

Saturation of $\mathrm{NS}_{\omega_{1}}$

Definition (Saturation of $\mathrm{NS}_{\omega_{1}}$)
Let W be a collection of stationary sets in ω_{1} such that for every S and T in $W, S \cap T$ is nonstationary. Then $|W| \leq \omega_{1}$.

Theorem (T., 2009)

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$,

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]^{\omega_{1}}}$.

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]^{\omega_{1}}}$.
Even more,

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]^{\omega_{1}}}$.
Even more, we can get

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]_{1} \omega_{1}}$.
Even more, we can get

$$
\diamond_{[\lambda]^{\omega_{1}}}\left(\left\{a \in[\lambda]^{\omega_{1}}: \operatorname{cof}(\sup (a))=\omega_{1}\right\}\right)
$$

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]_{1} \omega_{1}}$.
Even more, we can get

$$
\diamond_{[\lambda]^{\omega_{1}}}\left(\left\{a \in[\lambda]^{\omega_{1}}: \operatorname{cof}(\sup (a))=\omega_{1}\right\}\right) .
$$

In particular, it implies $\diamond_{\omega_{2}}\left(\left\{\delta<\omega_{2}: \operatorname{cof} \delta=\omega_{1}\right\}\right)$.

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]^{\omega_{1}}}$.
Even more, we can get

$$
\diamond[\lambda]^{\omega_{1}}\left(\left\{a \in[\lambda]^{\omega_{1}}: \operatorname{cof}(\sup (a))=\omega_{1}\right\}\right) .
$$

In particular, it implies $\diamond_{\omega_{2}}\left(\left\{\delta<\omega_{2}: \operatorname{cof} \delta=\omega_{1}\right\}\right)$.
Additionally, we get the following cardinal arithmetic:

Theorem (T., 2009)

For every ordinal $\lambda \geq \omega_{2}$, saturation of the ideal $\mathrm{NS}_{\omega_{1}}$ and $\operatorname{WRP}(\lambda)$ imply $\diamond_{[\lambda]^{\omega_{1}}}$.
Even more, we can get

$$
\diamond_{[\lambda]^{\omega_{1}}}\left(\left\{a \in[\lambda]^{\omega_{1}}: \operatorname{cof}(\sup (a))=\omega_{1}\right\}\right)
$$

In particular, it implies $\diamond_{\omega_{2}}\left(\left\{\delta<\omega_{2}: \operatorname{cof} \delta=\omega_{1}\right\}\right)$.
Additionally, we get the following cardinal arithmetic:

$$
\lambda^{\omega_{1}}= \begin{cases}\lambda & \text { if } \operatorname{cof} \lambda>\omega_{1} \\ \lambda^{+} & \text {if } \operatorname{cof} \lambda \leq \omega_{1}\end{cases}
$$

We recall Shelah's weak diamond:

We recall Shelah's weak diamond:
 Definition (Φ)

We recall Shelah's weak diamond:
 Definition (Φ)

For every $F: 2^{<\omega_{1}} \rightarrow 2$,

We recall Shelah's weak diamond:

Definition (Φ)
For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$,

We recall Shelah's weak diamond:

Definition (Φ)
For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$, the set

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha<\omega_{1}: F\left(f \upharpoonright_{\alpha}\right)=g(\alpha)\right\}
$$

We recall Shelah's weak diamond:
Definition (Φ)
For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha<\omega_{1}: F\left(f \upharpoonright_{\alpha}\right)=g(\alpha)\right\}
$$

is stationary.

We recall Shelah's weak diamond:
Definition (Φ)
For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha<\omega_{1}: F\left(f \upharpoonright_{\alpha}\right)=g(\alpha)\right\}
$$

is stationary.
Theorem (Devlin-Shelah)

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_{1}} \rightarrow 2$, there is $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha<\omega_{1}: F\left(f \upharpoonright_{\alpha}\right)=g(\alpha)\right\}
$$

is stationary.
Theorem (Devlin-Shelah)
Φ is equivalent to $2^{\aleph_{0}}<2^{\aleph_{1}}$.

Definition

Definition

An invariant is a triple (A, B, R) such that

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant,

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its evaluation $\langle A, B, R\rangle$ is given by

Definition

An invariant is a triple (A, B, R) such that

1. A and B are sets of cardinality at most \mathfrak{c},
2. $R \subseteq A \times B$,
3. for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
4. for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its evaluation $\langle A, B, R\rangle$ is given by

$$
\langle A, B, R\rangle=\min \{|X|: X \subseteq B \text { and } \forall a \in A \exists b \in X(a R b)\}
$$

Definition

Definition

An invariant (A, B, R) is Borel

Definition
 An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition
 An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition

Definition

An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition
Suppose that A is a Borel subset of some Polish space A.

Definition

An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition
Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_{1}} \rightarrow A$ is Borel

Definition

An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_{1}} \rightarrow A$ is Borel if for every $\delta<\omega_{1}$,

Definition

An invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_{1}} \rightarrow A$ is Borel if for every $\delta<\omega_{1}$, the restriction of F to 2^{δ} is a Borel map.

Definition

Definition

Let (A, B, R) a Borel invariant.

Definition
 Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$,

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$,

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha \in \omega_{1}: F\left(f \upharpoonright_{a}\right) \operatorname{Rg}(\alpha)\right\}
$$

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha \in \omega_{1}: F\left(f \upharpoonright_{a}\right) \operatorname{Rg}(\alpha)\right\}
$$

is stationary.

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha \in \omega_{1}: F\left(f \upharpoonright_{a}\right) \operatorname{Rg}(\alpha)\right\}
$$

is stationary.
If $A=B$, we write just $\diamond(A, R)$.

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha \in \omega_{1}: F\left(f \upharpoonright_{a}\right) \operatorname{Rg}(\alpha)\right\}
$$

is stationary.
If $A=B$, we write just $\diamond(A, R)$. Also, if an invariant (A, B, R) has already a common representation,

Definition

Let (A, B, R) a Borel invariant. $\diamond(A, B, R)$ is the following statement:
For every Borel map $F: 2^{<\omega_{1}} \rightarrow A$, there is $g: \omega_{1} \rightarrow B$ such that for every $f: \omega_{1} \rightarrow 2$, the set

$$
\left\{\alpha \in \omega_{1}: F\left(f \upharpoonright_{a}\right) \operatorname{Rg}(\alpha)\right\}
$$

is stationary.
If $A=B$, we write just $\diamond(A, R)$. Also, if an invariant (A, B, R) has already a common representation, we use such representation instead.

In this talk we deal with the following instances:

In this talk we deal with the following instances: $\diamond(2, \neq)$,

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$ and $\diamond(\mathfrak{b})$.

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$ and $\diamond(\mathfrak{b})$.
Theorem (Moore-Hrušák-Džamonja)

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$ and $\diamond(\mathfrak{b})$.
Theorem (Moore-Hrušák-Džamonja)

- $\diamond(2, \neq) \rightarrow \mathfrak{t}=\omega_{1}$,

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$ and $\diamond(\mathfrak{b})$.
Theorem (Moore-Hrušák-Džamonja)

- $\diamond(2, \neq) \rightarrow \mathfrak{t}=\omega_{1}$,
- $\diamond(\mathfrak{r}) \rightarrow \mathfrak{u}=\omega_{1}$,

In this talk we deal with the following instances: $\diamond(2, \neq), \diamond(\mathfrak{r})$ and $\diamond(\mathfrak{b})$.
Theorem (Moore-Hrušák-Džamonja)

- $\diamond(2, \neq) \rightarrow \mathfrak{t}=\omega_{1}$,
- $\diamond(\mathfrak{r}) \rightarrow \mathfrak{u}=\omega_{1}$,
- $\diamond(\mathfrak{b}) \rightarrow \mathfrak{a}=\omega_{1}$.

The Tower Game

The Tower Game

Definition (Almost contained)

The Tower Game

Definition (Almost contained)
 X is almost contained in Y,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq \subseteq^{*} Y$,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if, for every $\alpha<\delta$:

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if, for every $\alpha<\delta$:

1. $X_{\alpha} \in[\omega]^{\omega}$,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if, for every $\alpha<\delta$:

1. $X_{\alpha} \in[\omega]^{\omega}$,
2. if $\beta<\alpha$ then $X_{\alpha} \subseteq^{*} X_{\beta}$,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if, for every $\alpha<\delta$:

1. $X_{\alpha} \in[\omega]^{\omega}$,
2. if $\beta<\alpha$ then $X_{\alpha} \subseteq^{*} X_{\beta}$,
and for every $X \in[\omega]^{\omega}$,

The Tower Game

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^{*} Y$, if $X \backslash Y$ is finite.

Definition (Tower)
A sequence $\left\langle X_{\alpha}: \alpha<\delta\right\rangle$ is a tower if, for every $\alpha<\delta$:

1. $X_{\alpha} \in[\omega]^{\omega}$,
2. if $\beta<\alpha$ then $X_{\alpha} \subseteq^{*} X_{\beta}$,
and for every $X \in[\omega]^{\omega}$, there is $\alpha<\delta$ such that $X \not \mathbb{E}^{*} X_{\alpha}$.

Consider the following game of length ω_{1} :

Consider the following game of length ω_{1} : | Builder | Y_{0} | | \cdots | Y_{α} | | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Spoiler | | Y_{1} | \cdots | | $Y_{\alpha+1}$ | \cdots |

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows.

Consider the following game of length ω_{1} :

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always $\subseteq{ }^{*}$-decreasing.

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always
\subseteq^{*}-decreasing.
The Builder plays during pair $\left(\omega_{1}\right)$, i.e.

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always
\subseteq^{*}-decreasing.
The Builder plays during pair $\left(\omega_{1}\right)$, i.e. ordinals of the form $\beta+2 k$,

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always \subseteq^{*}-decreasing.
The Builder plays during pair $\left(\omega_{1}\right)$, i.e. ordinals of the form $\beta+2 k$, with β limit and $k \in \omega$.

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always \subseteq^{*}-decreasing.
The Builder plays during pair $\left(\omega_{1}\right)$, i.e. ordinals of the form $\beta+2 k$, with β limit and $k \in \omega$. The Spoiler plays during $\operatorname{odd}\left(\omega_{1}\right)=\omega_{1} \backslash \operatorname{pair}\left(\omega_{1}\right)$.

Consider the following game of length ω_{1} :

Builder	Y_{0}		\cdots	Y_{α}		\cdots
Spoiler		Y_{1}	\cdots		$Y_{\alpha+1}$	\cdots

The game G_{t} is played as follows. Each player plays infinite sets of ω such that the partial sequence $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is always \subseteq^{*}-decreasing.
The Builder plays during pair $\left(\omega_{1}\right)$, i.e. ordinals of the form $\beta+2 k$, with β limit and $k \in \omega$. The Spoiler plays during $\operatorname{odd}\left(\omega_{1}\right)=\omega_{1} \backslash \operatorname{pair}\left(\omega_{1}\right)$.
The Builder wins the match if $\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a tower.

We have the following:

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

We have the following:

Theorem (Brendle-Hrušák-T., 2016)

We have the following:
Theorem (Brendle-Hrušák-T., 2016)

1. $\forall(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game G_{t}

We have the following:
Theorem (Brendle-Hrušák-T., 2016)

1. $\forall(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \rightarrow \mathfrak{t}=\omega_{1}$.

We have the following:
Theorem (Brendle-Hrušák-T., 2016)

1. $\forall(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \rightarrow \mathfrak{t}=\omega_{1}$.
2. $\forall(2, \neq) \nleftarrow$ the Builder has a winning strategy in the tower game G_{t}

We have the following:
Theorem (Brendle-Hrušák-T., 2016)

1. $\forall(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \rightarrow \mathfrak{t}=\omega_{1}$.
2. $\forall(2, \neq) \nleftarrow$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \nleftarrow \mathfrak{t}=\omega_{1}$.

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

Lemma

CH implies the Builder has a winning strategy in G_{t}

Lemma
CH implies the Builder has a winning strategy in G_{t}.

CH implies the Builder has a winning strategy in G_{t}

Lemma
CH implies the Builder has a winning strategy in G_{t}.

Fact

CH implies the Builder has a winning strategy in G_{t}

Lemma
CH implies the Builder has a winning strategy in G_{t}.
Fact
Every infinite \subseteq^{*}-decreasing sequence generates a filter.

CH implies the Builder has a winning strategy in G_{t}

Lemma
CH implies the Builder has a winning strategy in G_{t}.
Fact
Every infinite \subseteq^{*}-decreasing sequence generates a filter.
Fact

CH implies the Builder has a winning strategy in G_{t}

Lemma

CH implies the Builder has a winning strategy in G_{t}.
Fact
Every infinite \subseteq^{*}-decreasing sequence generates a filter.
Fact
Every infinite countable \subseteq^{*}-decreasing sequence can always be extended.

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

Proof.

CH implies the Builder has a winning strategy in G_{t}

> Proof.
> Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$.

CH implies the Builder has a winning strategy in G_{t}

Proof.

Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match,

CH implies the Builder has a winning strategy in G_{t}

Proof.
Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match, where the Spoiler played Y_{β}.

CH implies the Builder has a winning strategy in G_{t}

Proof.
Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match, where the Spoiler played Y_{β}. Let

$$
Y_{\beta+1}= \begin{cases}Y_{\beta} \backslash A_{\beta} & \text { if } Y_{\beta} \backslash A_{\beta} \text { is infinite } \\ Y_{\beta} \cap A_{\beta} & \text { otherwise }\end{cases}
$$

CH implies the Builder has a winning strategy in G_{t}

Proof.
Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match, where the Spoiler played Y_{β}. Let

$$
Y_{\beta+1}= \begin{cases}Y_{\beta} \backslash A_{\beta} & \text { if } Y_{\beta} \backslash A_{\beta} \text { is infinite } \\ Y_{\beta} \cap A_{\beta} & \text { otherwise }\end{cases}
$$

Since any infinite countable \subseteq^{*}-decreasing sequence can be always extended,

CH implies the Builder has a winning strategy in G_{t}

Proof.
Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match, where the Spoiler played Y_{β}. Let

$$
Y_{\beta+1}= \begin{cases}Y_{\beta} \backslash A_{\beta} & \text { if } Y_{\beta} \backslash A_{\beta} \text { is infinite } \\ Y_{\beta} \cap A_{\beta} & \text { otherwise }\end{cases}
$$

Since any infinite countable \subseteq^{*}-decreasing sequence can be always extended, if $\left\langle Y_{\alpha}: \alpha<\beta\right\rangle$ is a partial match with β limit,

CH implies the Builder has a winning strategy in G_{t}

Proof.
Let $\left\{A_{\alpha}: \alpha \in \operatorname{odd}\left(\omega_{1}\right)\right\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\left\langle Y_{\alpha}: \alpha \leq \beta\right\rangle$ is a partial match, where the Spoiler played Y_{β}. Let

$$
Y_{\beta+1}= \begin{cases}Y_{\beta} \backslash A_{\beta} & \text { if } Y_{\beta} \backslash A_{\beta} \text { is infinite } \\ Y_{\beta} \cap A_{\beta} & \text { otherwise }\end{cases}
$$

Since any infinite countable \subseteq^{*}-decreasing sequence can be always extended, if $\left\langle Y_{\alpha}: \alpha<\beta\right\rangle$ is a partial match with β limit, let the Builder play any Y_{β} extending it.

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U}_{Y}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U}_{y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U}$ y . Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U}$ Y or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U}$ Y or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha}=Y_{\alpha+1}$,

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U}$ Y or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha}=Y_{\alpha+1}$, and so $\bar{\omega} \backslash A_{\alpha} \in \mathscr{U} \mathcal{Y}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha}=Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U} \mathcal{Y}$.
Case 2: $Y_{\alpha+1}=Y_{\alpha} \cap A_{\alpha}$.

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha}=Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U} \mathcal{Y}$.
Case 2: $Y_{\alpha+1}=Y_{\alpha} \cap A_{\alpha}$. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha}=Y_{\alpha+1}$,

CH implies the Builder has a winning strategy in G_{t}

Let $\mathcal{Y}=\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a complete match played by the Builder with the described strategy.
Claim
The set

$$
\mathscr{U}_{Y}=\left\{X \in[\omega]^{\omega}: \exists \alpha<\omega_{1}\left(Y_{\alpha} \subseteq^{*} X\right)\right\}
$$

is an ultrafilter.
Proof. Let $X \in[\omega]^{\omega}$. We will show that either $X \in \mathscr{U} \mathcal{Y}$ or $\omega \backslash X \in \mathscr{U} \mathcal{Y}$. Let $\alpha \in \operatorname{odd}\left(\omega_{1}\right)$ be such that $X=A_{\alpha}$. We have two cases:
Case 1: $Y_{\alpha+1}=Y_{\alpha} \backslash A_{\alpha}$. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha}=Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U} \mathcal{Y}$.
Case 2: $Y_{\alpha+1}=Y_{\alpha} \cap A_{\alpha}$. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha}=Y_{\alpha+1}$, and so $\overline{A_{\alpha} \in \mathscr{U}} /$.

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower. Suppose otherwise,

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower. Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$.

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$.

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$. As we have mentioned,

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an ultrafilter.

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an ultrafilter.
Take $i \in\{0,1\}$ such that $X_{i} \in \mathscr{U}_{\mathcal{Y}}$,

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an ultrafilter.
Take $i \in\{0,1\}$ such that $X_{i} \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_{1}$ such that $Y_{\xi} \subseteq^{*} X_{i}$.

CH implies the Builder has a winning strategy in G_{t}

We show that the sequence $\left\langle Y_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a tower.
Suppose otherwise, and pick $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} Y_{\alpha}$ for every $\alpha<\omega_{1}$. Let X_{0}, X_{1} be two infinite disjoint subsets of X such that $X=X_{0} \cup X_{1}$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\left\langle Y_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an ultrafilter.
Take $i \in\{0,1\}$ such that $X_{i} \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_{1}$ such that $Y_{\xi} \subseteq^{*} X_{i}$. Then, $Y_{\xi} \cap X_{1-i}$ is finite, and so $X \not \mathbb{E}^{*} Y_{\xi}$.

$\diamond(2, \neq)$ implies the Builder has a winning strategy

$\diamond(2, \neq)$ implies the Builder has a winning strategy

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma
$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}. Proof.

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit,

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{\left.\right|_{i} ^{s}: i \in \omega\right\}$.

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{I_{i}^{s}: i \in \omega\right\}$. Fix an increasing sequence $\left\{\delta_{i}: i \in \omega\right\} \subseteq \delta(s)$ converging to $\delta(s)$.

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{l_{i}^{s}: i \in \omega\right\}$. Fix an increasing sequence $\left\{\delta_{i}: i \in \omega\right\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{l_{i}^{s}: i \in \omega\right\}$. Fix an increasing sequence $\left\{\delta_{i}: i \in \omega\right\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$
I_{0}^{s}=\min \left(Y_{\delta_{i}}^{s}\right),
$$

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{I_{i}^{s}: i \in \omega\right\}$. Fix an increasing sequence $\left\{\delta_{i}: i \in \omega\right\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$
I_{0}^{s}=\min \left(Y_{\delta_{i}}^{s}\right),
$$

and

$\diamond(2, \neq)$ implies the Builder has a winning strategy

Lemma

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.
Proof.
Given an infinite \subseteq^{*}-decreasing sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\left\{I_{i}^{s}: i \in \omega\right\}$. Fix an increasing sequence $\left\{\delta_{i}: i \in \omega\right\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$
I_{0}^{s}=\min \left(Y_{\delta_{i}}^{s}\right),
$$

and

$$
l_{i+1}^{s}=\min \left(\bigcap_{j \leq i+1} Y_{\delta_{j}}^{s} \backslash\left(l_{i}^{s}+1\right)\right)
$$

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite,

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{l_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{I_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

Let $g: \omega_{1} \rightarrow 2$ be a $\diamond(2, \neq)$-sequence for F.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{I_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

Let $g: \omega_{1} \rightarrow 2$ be a $\diamond(2, \neq)$-sequence for F. We are going to use g to define a winning strategy for the Builder.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{I_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

Let $g: \omega_{1} \rightarrow 2$ be a $\diamond(2, \neq)$-sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ is a partial match with $\delta(s)$ an infinite limit ordinal.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{I_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

Let $g: \omega_{1} \rightarrow 2$ be a $\diamond(2, \neq)$-sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}

For a decreasing \subseteq^{*}-sequence $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define $F(s, C)$ as follows:

$$
F(s, C)= \begin{cases}0 & \text { if } C \subseteq^{*}\left\{I_{2 i}^{s}: i \in \omega\right\} \\ 1 & \text { otherwise }\end{cases}
$$

Let $g: \omega_{1} \rightarrow 2$ be a $\diamond(2, \neq)$-sequence for F. We are going to use g to define a winning strategy for the Builder.
Suppose $s=\left\{Y_{\xi}^{s}: \xi<\delta(s)\right\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

$$
Y_{\delta(s)}= \begin{cases}\left\{I_{2 i}^{s}: i \in \omega\right\} & \text { if } g(\delta(s))=0 \\ \left\{I_{2 i+1}^{s}: i \in \omega\right\} & \text { otherwise }\end{cases}
$$

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.

Let $s=\left\{Y_{\xi}^{s}: \xi<\omega_{1}\right\}$ be a complete match played by the Builder according to the strategy described above.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.

Let $s=\left\{Y_{\xi}^{s}: \xi<\omega_{1}\right\}$ be a complete match played by the Builder according to the strategy described above.
Let $C \subseteq \omega$.

$\diamond(2, \neq)$ implies the Builder has a winning strategy in G_{t}.

Let $s=\left\{Y_{\xi}^{s}: \xi<\omega_{1}\right\}$ be a complete match played by the Builder according to the strategy described above.
Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $\left.F(s\rceil_{\delta}, C\right) \neq g(\delta)$,

$\diamond(2, \neq)$ implies the Builder has a winning strategy in $G_{\text {t }}$.

Let $s=\left\{Y_{\xi}^{s}: \xi<\omega_{1}\right\}$ be a complete match played by the Builder according to the strategy described above.
Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $F\left(s \Upsilon_{\delta}, C\right) \neq g(\delta)$, it is straightforward to see that $C \not \mathbb{*}^{*} Y_{\delta}$.

The Builder having a winning strategy in G_{t} does not imply CH

The Builder having a winning strategy in G_{t} does not imply CH

The Builder having a winning strategy in G_{t} does not imply CH

We have the following:

The Builder having a winning strategy in G_{t} does not imply CH

We have the following:
Theorem (Moore-Hrušák-Džamonja)

The Builder having a winning strategy in G_{t} does not imply CH

We have the following:
Theorem (Moore-Hrušák-Džamonja)
CH does not imply \diamond_{t}.

The Builder having a winning strategy in G_{t} does not imply CH

We have the following:
Theorem (Moore-Hrušák-Džamonja)
CH does not imply \diamond_{t}.
Corollary

The Builder having a winning strategy in G_{t} does not imply CH

We have the following:
Theorem (Moore-Hrušák-Džamonja)
CH does not imply \diamond_{t}.

Corollary

$\diamond(2,=) \nleftarrow$ the Builder has a winning strategy in the tower game G_{t}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in $G_{t}$$t=\omega_{1}$ does not imply the Builder has a winning strategy in G_{t}

Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$. Proof.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Lemma
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in G_{t}.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range.

$t=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range. Construct ($A_{\alpha}: \alpha<\omega_{1}$) and ($B_{\alpha}: \alpha<\omega_{1}$) such that for all α,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range. Construct ($A_{\alpha}: \alpha<\omega_{1}$) and ($B_{\alpha}: \alpha<\omega_{1}$) such that for all α,

- $A_{\alpha} \subseteq^{*} B_{\alpha}, B_{\alpha} \subseteq^{*} A_{\beta}$ for $\beta<\alpha$,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range. Construct ($A_{\alpha}: \alpha<\omega_{1}$) and ($B_{\alpha}: \alpha<\omega_{1}$) such that for all α,

- $A_{\alpha} \subseteq^{*} B_{\alpha}, B_{\alpha} \subseteq^{*} A_{\beta}$ for $\beta<\alpha$,
- B_{α} is chosen according to a given rule, and

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range. Construct ($A_{\alpha}: \alpha<\omega_{1}$) and ($B_{\alpha}: \alpha<\omega_{1}$) such that for all α,

- $A_{\alpha} \subseteq^{*} B_{\alpha}, B_{\alpha} \subseteq^{*} A_{\beta}$ for $\beta<\alpha$,
- B_{α} is chosen according to a given rule, and
- if $\operatorname{ran}\left(f_{\alpha}\left\lceil B_{\alpha}\right)\right.$ is infinite,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Lemma

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy in $G_{\mathfrak{t}}$.
Proof.
Assume CH. Let $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ be a tower. Let $\left(f_{\alpha}: \alpha<\omega_{1}\right)$ list all partial functions from $\omega \rightarrow \omega$ with infinite range. Construct ($A_{\alpha}: \alpha<\omega_{1}$) and ($B_{\alpha}: \alpha<\omega_{1}$) such that for all α,

- $A_{\alpha} \subseteq^{*} B_{\alpha}, B_{\alpha} \subseteq^{*} A_{\beta}$ for $\beta<\alpha$,
- B_{α} is chosen according to a given rule, and
- if $\operatorname{ran}\left(f_{\alpha}{ }_{B_{\alpha}}\right)$ is infinite, then $\operatorname{ran}\left(f_{\alpha}\left\lceil A_{\alpha}\right)\right.$ is almost disjoint from some $Y_{\beta_{\alpha}}$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$t=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha} \bigvee_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha} \bigvee_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha}\left\lceil_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right)\right.$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha} \bigvee_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha}\left\lceil B_{\alpha}\right) \backslash Y_{\beta_{\alpha}}\right)\right.$. This is as required.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha} \bigvee_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha} _{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right)$. This is as required. Let \mathcal{F} be the filter generated by the A_{α}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha} \bigvee_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha} \backslash{ }_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right)$. This is as required. Let \mathcal{F} be the filter generated by the A_{α}. Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha}\left\lceil_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right.$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha} \backslash\right.\right.$ B $\left.\left._{\alpha}\right) \backslash Y_{\beta_{\alpha}}\right)$. This is as required. Let \mathcal{F} be the filter generated by the A_{α}. Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F}.
Assume the following:

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}To choose A_{α} note that there is $\beta<\omega_{1}$ such that $\operatorname{ran}\left(f_{\alpha}\left\lceil_{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right.$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha}=f_{\alpha}^{-1}\left(\operatorname{ran}\left(f_{\alpha} _{B_{\alpha}}\right) \backslash Y_{\beta_{\alpha}}\right)$. This is as required. Let \mathcal{F} be the filter generated by the A_{α}. Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F}.
Assume the following:
Claim
$\mathbb{L}_{\mathcal{F}}$ preserves \mathcal{Y}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.

Proof.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.

Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder.

$t=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$. At stage γ force with $\dot{\mathbb{Q}}_{\gamma}=\mathbb{L}_{\dot{\mathcal{F}}}$

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$. At stage γ force with $\dot{\mathbb{Q}}_{\gamma}=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$. At stage γ force with $\dot{\mathbb{Q}}_{\gamma}=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_{α} and \dot{B}_{α} as above

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy
in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$. At stage γ force with $\dot{\mathbb{Q}}_{\gamma}=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_{α} and \dot{B}_{α} as above and the \dot{B}_{α} are obtained from the $\dot{A}_{\beta}, \dot{B}_{\beta}, \beta<\alpha$, using Builder's (name of a) strategy handed down by $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
Corollary

It is consistent that $\mathfrak{t}=\omega_{1}$ and the Builder has no winning strategy
in G_{t}.
Proof.
Assume $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$ and CH. Fix a tower $\mathcal{Y}=\left(Y_{\alpha}: \alpha<\omega_{1}\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma<\omega_{2}\right)$. At stage γ force with $\dot{\mathbb{Q}}_{\gamma}=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_{α} and \dot{B}_{α} as above and the \dot{B}_{α} are obtained from the $\dot{A}_{\beta}, \dot{B}_{\beta}, \beta<\alpha$, using Builder's (name of a) strategy handed down by $\diamond\left(E_{\omega_{1}}^{\omega_{2}}\right)$. Force with $\mathbb{P}_{\omega_{2}}$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}
$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.

$t=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.
On the other hand,

$t=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.
On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_{2}}}$,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.
On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_{2}}}$, there is $\gamma<\omega_{2}$ such that $\left.\Sigma\right|_{V^{\mathbb{P}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F}.

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.
On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_{2}}}$, there is $\gamma<\omega_{2}$ such that $\left.\Sigma\right|_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F}. Hence there is a game according to Σ which the Builder looses,

$\mathfrak{t}=\omega_{1}$ does not imply the Builder has a winning strategy

 in G_{t}Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_{2}}}$. In particular $\mathfrak{t}=\omega_{1}$.
On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_{2}}}$, there is $\gamma<\omega_{2}$ such that $\left.\Sigma\right|_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F}. Hence there is a game according to Σ which the Builder looses, as witnessed by the $\mathbb{L}_{\mathcal{F}}$-generic added in $V^{\mathbb{P}_{\gamma+1}}$.

One cardinal diamonds Two cardinal diamonds Parametrised Diamonds

We have also the following:

One cardinal diamonds Two cardinal diamonds Parametrised Diamonds

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

One cardinal diamonds Two cardinal diamonds Parametrised Diamonds

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}}$

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.

We have also the following:
Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game G_{a}

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

1. $\diamond(\mathfrak{r}) \nleftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}}$

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

1. $\diamond(\mathfrak{r}) \nleftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \nleftarrow \mathfrak{u}=\omega_{1}$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

1. $\diamond(\mathfrak{r}) \nleftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \nleftarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \nLeftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

1. $\diamond(\mathfrak{r}) \nleftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \nleftarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \nLeftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

Open question:

We have also the following:

Theorem (Brendle-Hrušák-T., 2016)

1. $\diamond(\mathfrak{r}) \rightarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \rightarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \rightarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}} \rightarrow \mathfrak{a}=\omega_{1}$.

Also, we have

1. $\diamond(\mathfrak{r}) \nleftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \nleftarrow \mathfrak{u}=\omega_{1}$.
2. $\diamond(\mathfrak{b}) \nLeftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

Open question:
The Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$ $\nleftarrow \mathfrak{a}=\omega_{1}$?

Thank you!

