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Topological dimension of Rn

Recall topological dimension:

Definition

A topological space X has dimension ≤ n if it admits a basis of sets whose
boundaries have dimension ≤ n − 1, and dimX = −1 ..⇔ X = ∅.

Let In ..= [0, 1]n denote the closed unit cube in Rn.

Theorem (Brouwer 1913)

dim In = n.

Corollary

@ continuous injective Rn+1 ↪→ Rn.

Can “injective” be replaced with “injective on a large set”?
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Large in measure

This question was considered by Izzo and Li in the measure-theoretic

context: they wanted to determine the minimum number of functions

needed to generate Lp(Rn).

It was also resolved by them:

Theorem (Izzo–Li 2013, Izzo 2015)

Let X be a metric space and µ a σ-finite regular Borel measure on X .

There is a continuous f : X → [0, 1] that is one-to-one on a µ-conull set.

Proof.

I Measure µ lives on a countable disjoint union of Cantor sets and they

embed everywhere.

I Finite union of Cantor sets is closed, so these embeddings continuously

extend (Tietze) to the whole X .
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Large in Baire category?

It is perhaps not surprising that there are such embeddings mod null
because measure doesn’t see enough of the topology.

What about Baire category?

Conjecture (Izzo–Li 2013)

@ continuous Rn+1 → Rn that is one-to-one on a comeager set.

Answer (Ts. 2015)

Yes for n = 1.

What about n ≥ 2? I don’t know, do you?

For the rest of the talk we will discuss two proofs of the n = 1 case and
possible approaches/counter-examples for n ≥ 2.
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Reduction to compact domain and injectivity points

The conjecture is equivalent to its restriction to a compact domain:

Conjecture

@ continuous In+1 → Rn that is one-to-one on a comeager set.

Definition

Call f : X → Y generically injective if there is a comeager C ⊆ X such
that f �C is one-to-one.

This has the following strengthening:

Definition

For f : X → Y , call x ∈ X an injectivity point of f if f −1
(
f (x)

)
= {x}.

Call f generically absolutely injective if it has comeager many injectivity
points.
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Splitting the question into two

We split our question into two subquestions.

Question 1

Is every generically injective continuous f : In+1 → Rn generically
absolutely injective?

Question 2

Is there a generically absolutely injective continuous f : In+1 → Rn?

Question 1 is tightly connected to the Kuratowski–Ulam property.
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The forward Kuratowski–Ulam property

Recall the classical Kuratowski–Ulam theorem:

Theorem (Kuratowski–Ulam)

For second-countable spaces Y ,Z and any Baire measurable A ⊆ Y × Z ,

A is comeager in Y × Z ⇐⇒ (∀∗y ∈ Y ) Ay is comeager in Z .

Rewrite in terms of the projection function π : Y × Z → Y :

A is comeager in Y × Z ⇐⇒ (∀∗y ∈ Y ) A ∩ π−1(y) is comeager in π−1(y).

Definition

For topological spaces X ,Y , say that f : X → Y has the KU property if
for every Baire measurable A ⊆ X ,

A is comeager in X ⇐⇒ (∀∗y ∈ Y ) A ∩ f −1(y) is comeager in f −1(y).
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Generic injectivity vs. generic true injectivity

Proposition

Let X ,Y be Polish and f : X → Y continuous with the KU property.

f is generically injective ⇐⇒ f is generically absolutely injective.

Proof.

I Let A ⊆ X be a comeager set on which f is one-to-one.

I Forward KU gives: for a comeager set Y ′ of y ∈ Y , A ∩ f −1(y) is
comeager in f −1(y).

I But A∩ f −1(y) = {x}, so it must be equal to f −1(y), and hence x is an
injectivity point.

I So all points in f −1(Y ′) are injectivity points, but the latter set is
comeager by the backward KU.

When does a function have the KU property?
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Category-preserving maps

For topological spaces X ,Y , say that f : X → Y is category-preserving if
preimages of meager sets are meager.

Theorem (Melleray–Tsankov)

For Polish spaces X ,Y and continuous f : X → Y , the following are
equivalent:

1 f is category-preserving;

2 f maps nonempty open sets to somewhere dense;

3 f has the KU property.

Corollary

Any nonsingular (doesn’t map nonempty open to a point) continuous map
f : In → R has the KU property.

Proof. f maps connected to connected, so open balls to nontrivial
intervals, hence nonempty open to somewhere dense.
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A proof for n = 1

Corollary

Any generically injective continuous map f : In → R is generically
absolutely injective.

Proposition (Ts.)

There is no generically injective continuous f : In+1 → R.

Proof:

I Note that I ..= f (In+1) is a closed nontrivial interval.

I By the previous corollary, f has comeager-many injectivity points.

I In particular, there is x ∈ In+1 such that f (x) ∈ Int(I ).

I I \ f (x) is disconnected, but its f -preimage is just In+1 \ {x}, which is
still connected!
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Another proof for n = 1

Proposition (Ts.)

There is no generically injective continuous f : In+1 → R.

Another (more promising) proof:

I Let C be the set of injectivity points, hence comeager.

I Viewing In+1 = I× In, put, Inp ..= {p} × In, for every p ∈ I.
I Classical KU theorem ⇒ (∀∗p ∈ I) C ∩ Inp is comeager in Inp.

I Compactness of Inp and definition of C ⇒ f (C ∩ Inp) is dense Gδ in f (Inp).

I In particular, f (Inp) is a nontrivial interval ⇒ has nonempty interior.

I Therefore, f (C ∩ Inp) is nonmeager in R, for comeager-many p ∈ I.
I But the sets f (C ∩ Inp) are disjoint for different p ∈ I.
I We have obtained a disjoint family of continuum-many nonmeager sets,

a contradiction.
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Generalize to n ≥ 2?

To generalize the last proof, we need to:

1 Prove the KU property (only forward direction would be enough) for
generically injective maps f : In+1 � f (In+1) ⊆ Rn.

I This will turn generically injective into generically absolutely injective.

2 Prove that for any generically absolutely injective continuous
g : In → Rn, the image f (In) has nonempty interior.

I This is equivalent to dim(f (In)) = n and this is where dimension theory
should enter the picture.

Granted these, the same argument as in the last proof would imply

@ generically injective continuous f : In+1 → Rn.

However, I have some discouraging examples regarding both parts...
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An example regarding the KU property

It would suffice to prove that a generically injective f : In � f (In) ⊆ Rn

satisfies the forward KU for n ≥ 2.

I Note that the images of open are Kσ, due to the compactness of In.

I When they are also Gδ, then the forward KU holds.

— This follows from my refinement of the Melleray–Tsankov theorem.

I However, I have an example of a continuous generically absolutely
injective function f : B̄n → B̄n, n ≥ 2, such that f (Bn) is not Gδ.

I The construction of this f amounts to fishing rational points out from
the interior to the boundary.
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An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.

I One way to do this is to prove that the image of a generically absolutely
injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



An example regarding the f (In) having interior

Recall: we want to show that the image of a generically absolutely
injective f : In → Rn has nonempty interior.
I One way to do this is to prove that the image of a generically absolutely

injective continuous f : Sn−1 → Rn disconnects Rn, i.e. creates a hole.

I For injective f , this is true: Jordan Separation theorem.

I However, when f is only generically absolutely injective, this is false: I
have an example of a continuous generically absolutely injective function
f : S1 → R2 such that f (S1) does not disconnect R2.

I In other words, it is possible to pinch together only meager-many points
of the circle to turn it into a tree.

I I think this example can be used to build a counter-example to the
conjecture for n = 2.



W/o connectivity KU epically fails: the ultimate mohawk

There is a compact space H ⊆ 2N × [0, 1] ⊆ I2, the hairy arc, such that

1 for each c ∈ 2N, Hc = [0, hc ] for some
0 ≤ hc ≤ 1;

2 the set T ..=
{

(c , hc) : c ∈ 2N
}

is dense
Gδ (hence comeager) in H.

In particular, the projection
π : H � 2N ⊆ [0, 1] witnesses the failure of
the forward KU property.

Remarks.

I H/2N × {0} ∼= Lelek fan.

I T ∼= the complete Erdős space due to
Kawamura, Oversteegen, and Tymchatyn.

Suggestion. ask your hair stylist to give you a haircut such that the tips
of your hair amount to 99% of its total volume.
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