TOPOLOGICAL DIMENSION AND BAIRE CATEGORY

Anush Tserunyan

University of Illinois at Urbana-Champaign

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Recall topological dimension:

Definition

A topological space X has dimension $\leq n$ if it admits a basis of sets whose boundaries have dimension $\leq n - 1$, and dim $X = -1 \iff X = \emptyset$.

Recall topological dimension:

Definition

A topological space X has dimension $\leq n$ if it admits a basis of sets whose boundaries have dimension $\leq n - 1$, and dim $X = -1 \iff X = \emptyset$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Let $\mathbb{I}^n := [0,1]^n$ denote the closed unit cube in \mathbb{R}^n .

Theorem (Brouwer 1913)

dim $\mathbb{I}^n = n$.

Recall topological dimension:

Definition

A topological space X has dimension $\leq n$ if it admits a basis of sets whose boundaries have dimension $\leq n - 1$, and dim $X = -1 \iff X = \emptyset$.

Let $\mathbb{I}^n := [0,1]^n$ denote the closed unit cube in \mathbb{R}^n .

Theorem (Brouwer 1913)

dim $\mathbb{I}^n = n$.

Corollary

 \nexists continuous injective $\mathbb{R}^{n+1} \hookrightarrow \mathbb{R}^n$.

Recall topological dimension:

Definition

A topological space X has dimension $\leq n$ if it admits a basis of sets whose boundaries have dimension $\leq n - 1$, and dim $X = -1 \iff X = \emptyset$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let $\mathbb{I}^n := [0,1]^n$ denote the closed unit cube in \mathbb{R}^n .

Theorem (Brouwer 1913)

dim $\mathbb{I}^n = n$.

Corollary

```
\nexists continuous injective \mathbb{R}^{n+1} \hookrightarrow \mathbb{R}^n.
```

Can "injective" be replaced with "injective on a large set"?

This question was considered by Izzo and Li in the measure-theoretic context: they wanted to determine the minimum number of functions needed to generate $L^p(\mathbb{R}^n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

This question was considered by Izzo and Li in the measure-theoretic context: they wanted to determine the minimum number of functions needed to generate $L^p(\mathbb{R}^n)$. It was also resolved by them:

Theorem (Izzo-Li 2013, Izzo 2015)

Let X be a metric space and μ a σ -finite regular Borel measure on X. There is a continuous $f : X \to [0, 1]$ that is one-to-one on a μ -conull set.

This question was considered by Izzo and Li in the measure-theoretic context: they wanted to determine the minimum number of functions needed to generate $L^p(\mathbb{R}^n)$. It was also resolved by them:

Theorem (Izzo-Li 2013, Izzo 2015)

Let X be a metric space and μ a σ -finite regular Borel measure on X. There is a continuous $f : X \to [0, 1]$ that is one-to-one on a μ -conull set.

Proof.

Measure µ lives on a countable disjoint union of Cantor sets and they embed everywhere.

This question was considered by Izzo and Li in the measure-theoretic context: they wanted to determine the minimum number of functions needed to generate $L^p(\mathbb{R}^n)$. It was also resolved by them:

Theorem (Izzo-Li 2013, Izzo 2015)

Let X be a metric space and μ a σ -finite regular Borel measure on X. There is a continuous $f : X \to [0, 1]$ that is one-to-one on a μ -conull set.

Proof.

- Measure µ lives on a countable disjoint union of Cantor sets and they embed everywhere.
- Finite union of Cantor sets is closed, so these embeddings continuously extend (Tietze) to the whole X.

What about Baire category?

What about Baire category?

Conjecture (Izzo–Li 2013)

 \nexists continuous $\mathbb{R}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.

What about Baire category?

Conjecture (Izzo–Li 2013)	
\nexists continuous $\mathbb{R}^{n+1} ightarrow \mathbb{R}^n$ that is one-to-one on a comeager set.	
Answer (Ts. 2015)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Yes for n = 1.

What about Baire category?

Conjecture (Izzo-Li 2013) $\not \equiv \text{ continuous } \mathbb{R}^{n+1} \to \mathbb{R}^n \text{ that is one-to-one on a comeager set.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Answer (Ts. 2015)

Yes for n = 1.

What about $n \ge 2$?

What about Baire category?

Conjecture (Izzo–Li 2013)	
\nexists continuous $\mathbb{R}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.	
Answer (Ts. 2015)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Yes for n = 1.

What about $n \ge 2$? I don't know,

What about Baire category?

Conjecture (Izzo–Li 2013)
\nexists continuous $\mathbb{R}^{n+1} o \mathbb{R}^n$ that is one-to-one on a comeager set.
Answer (Ts. 2015)
Ves for $n-1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

What about $n \ge 2$? I don't know, do you?

What about Baire category?

Conjecture (Izzo-Li 2013) $\not\equiv continuous \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n \text{ that is one-to-one on a comeager set.}$ Answer (Ts. 2015) Yes for n = 1.

What about $n \ge 2$? I don't know, do you?

For the rest of the talk we will discuss two proofs of the n = 1 case and possible approaches/counter-examples for $n \ge 2$.

The conjecture is equivalent to its restriction to a compact domain:

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Conjecture

 \nexists continuous $\mathbb{I}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.

The conjecture is equivalent to its restriction to a compact domain:

Conjecture

 \nexists continuous $\mathbb{I}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.

Definition

Call $f : X \to Y$ generically injective if there is a comeager $C \subseteq X$ such that $f|_C$ is one-to-one.

The conjecture is equivalent to its restriction to a compact domain:

Conjecture

 \nexists continuous $\mathbb{I}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.

Definition

Call $f : X \to Y$ generically injective if there is a comeager $C \subseteq X$ such that $f|_C$ is one-to-one.

This has the following strengthening:

Definition

For $f : X \to Y$, call $x \in X$ an injectivity point of f if $f^{-1}(f(x)) = \{x\}$.

The conjecture is equivalent to its restriction to a compact domain:

Conjecture

 \nexists continuous $\mathbb{I}^{n+1} \to \mathbb{R}^n$ that is one-to-one on a comeager set.

Definition

Call $f : X \to Y$ generically injective if there is a comeager $C \subseteq X$ such that $f|_C$ is one-to-one.

This has the following strengthening:

Definition

For $f : X \to Y$, call $x \in X$ an injectivity point of f if $f^{-1}(f(x)) = \{x\}$. Call f generically absolutely injective if it has comeager many injectivity points. We split our question into two subquestions.

Question 1

Is every generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}^n$ generically absolutely injective?

Question 2

Is there a generically absolutely injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}^n$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

We split our question into two subquestions.

Question 1

Is every generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}^n$ generically absolutely injective?

Question 2

Is there a generically absolutely injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}^n$?

Question 1 is tightly connected to the Kuratowski-Ulam property.

The forward Kuratowski-Ulam property

Recall the classical Kuratowski–Ulam theorem:

Theorem (Kuratowski–Ulam)

For second-countable spaces Y, Z and any Baire measurable $A \subseteq Y \times Z$,

A is comeager in $Y \times Z \iff (\forall^* y \in Y) A_y$ is comeager in Z.

The forward Kuratowski-Ulam property

Recall the classical Kuratowski–Ulam theorem:

Theorem (Kuratowski–Ulam)

For second-countable spaces Y, Z and any Baire measurable $A \subseteq Y \times Z$,

A is comeager in $Y \times Z \iff (\forall^* y \in Y) A_y$ is comeager in Z.

Rewrite in terms of the projection function $\pi: Y \times Z \rightarrow Y$:

A is comeager in $Y \times Z \iff (\forall^* y \in Y) \ A \cap \pi^{-1}(y)$ is comeager in $\pi^{-1}(y)$.

The forward Kuratowski-Ulam property

Recall the classical Kuratowski-Ulam theorem:

Theorem (Kuratowski–Ulam)

For second-countable spaces Y, Z and any Baire measurable $A \subseteq Y \times Z$,

A is comeager in $Y \times Z \iff (\forall^* y \in Y) A_y$ is comeager in Z.

Rewrite in terms of the projection function $\pi: Y \times Z \rightarrow Y$:

A is comeager in $Y \times Z \iff (\forall^* y \in Y) \ A \cap \pi^{-1}(y)$ is comeager in $\pi^{-1}(y)$.

Definition

For topological spaces X, Y, say that $f : X \to Y$ has the KU property if for every Baire measurable $A \subseteq X$,

A is comeager in $X \iff (\forall^* y \in Y) \ A \cap f^{-1}(y)$ is comeager in $f^{-1}(y)$.

Proposition

Let X, Y be Polish and $f : X \rightarrow Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

Proposition

Let X, Y be Polish and $f : X \rightarrow Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof.

• Let $A \subseteq X$ be a comeager set on which f is one-to-one.

Proposition

Let X, Y be Polish and $f : X \to Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof.

- Let $A \subseteq X$ be a comeager set on which f is one-to-one.
- Forward KU gives: for a comeager set Y' of y ∈ Y, A ∩ f⁻¹(y) is comeager in f⁻¹(y).

Proposition

Let X, Y be Polish and $f: X \rightarrow Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

Proof.

- Let $A \subseteq X$ be a comeager set on which f is one-to-one.
- Forward KU gives: for a comeager set Y' of y ∈ Y, A ∩ f⁻¹(y) is comeager in f⁻¹(y).
- But A ∩ f⁻¹(y) = {x}, so it must be equal to f⁻¹(y), and hence x is an injectivity point.

Proposition

Let X, Y be Polish and $f: X \rightarrow Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

Proof.

- Let $A \subseteq X$ be a comeager set on which f is one-to-one.
- Forward KU gives: for a comeager set Y' of y ∈ Y, A ∩ f⁻¹(y) is comeager in f⁻¹(y).
- But A ∩ f⁻¹(y) = {x}, so it must be equal to f⁻¹(y), and hence x is an injectivity point.
- So all points in f⁻¹(Y') are injectivity points, but the latter set is comeager by the backward KU.

Proposition

Let X, Y be Polish and $f: X \rightarrow Y$ continuous with the KU property.

f is generically injective $\iff f$ is generically absolutely injective.

Proof.

- Let $A \subseteq X$ be a comeager set on which f is one-to-one.
- Forward KU gives: for a comeager set Y' of y ∈ Y, A ∩ f⁻¹(y) is comeager in f⁻¹(y).
- But A ∩ f⁻¹(y) = {x}, so it must be equal to f⁻¹(y), and hence x is an injectivity point.
- So all points in f⁻¹(Y') are injectivity points, but the latter set is comeager by the backward KU.

When does a function have the KU property?

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

I f is category-preserving;

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

- I f is category-preserving;
- I maps nonempty open sets to somewhere dense;
Category-preserving maps

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

- f is category-preserving;
- I maps nonempty open sets to somewhere dense;
- I has the KU property.

Category-preserving maps

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

- I f is category-preserving;
- I maps nonempty open sets to somewhere dense;
- I has the KU property.

Corollary

Any nonsingular (doesn't map nonempty open to a point) continuous map $f : \mathbb{I}^n \to \mathbb{R}$ has the KU property.

Category-preserving maps

For topological spaces X, Y, say that $f : X \to Y$ is category-preserving if preimages of meager sets are meager.

Theorem (Melleray–Tsankov)

For Polish spaces X, Y and continuous $f : X \to Y$, the following are equivalent:

- I f is category-preserving;
- I maps nonempty open sets to somewhere dense;
- I has the KU property.

Corollary

Any nonsingular (doesn't map nonempty open to a point) continuous map $f : \mathbb{I}^n \to \mathbb{R}$ has the KU property.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Proof. f maps connected to connected, so open balls to nontrivial intervals, hence nonempty open to somewhere dense.

A proof for n = 1

Corollary

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 のへで

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 のへで

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Proof:

• Note that $I := f(\mathbb{I}^{n+1})$ is a closed nontrivial interval.

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Proof:

- Note that $I := f(\mathbb{I}^{n+1})$ is a closed nontrivial interval.
- ▶ By the previous corollary, *f* has comeager-many injectivity points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Proof:

- Note that $I := f(\mathbb{I}^{n+1})$ is a closed nontrivial interval.
- ▶ By the previous corollary, *f* has comeager-many injectivity points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▶ In particular, there is $x \in \mathbb{I}^{n+1}$ such that $f(x) \in \text{Int}(I)$.

Any generically injective continuous map $f : \mathbb{I}^n \to \mathbb{R}$ is generically absolutely injective.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Proof:

- Note that $I := f(\mathbb{I}^{n+1})$ is a closed nontrivial interval.
- ▶ By the previous corollary, *f* has comeager-many injectivity points.
- ▶ In particular, there is $x \in \mathbb{I}^{n+1}$ such that $f(x) \in Int(I)$.
- I \ f(x) is disconnected, but its f-preimage is just Iⁿ⁺¹ \ {x}, which is still connected!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

▶ Let *C* be the set of injectivity points, hence comeager.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 のへで

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 のへで

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .
- Compactness of \mathbb{I}_p^n and definition of $C \Rightarrow f(C \cap \mathbb{I}_p^n)$ is dense G_{δ} in $f(\mathbb{I}_p^n)$.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .
- Compactness of \mathbb{I}_p^n and definition of $C \Rightarrow f(C \cap \mathbb{I}_p^n)$ is dense G_{δ} in $f(\mathbb{I}_p^n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

▶ In particular, $f(\mathbb{I}_p^n)$ is a nontrivial interval \Rightarrow has nonempty interior.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .
- Compactness of \mathbb{I}_p^n and definition of $C \Rightarrow f(C \cap \mathbb{I}_p^n)$ is dense G_{δ} in $f(\mathbb{I}_p^n)$.

- ▶ In particular, $f(\mathbb{I}_p^n)$ is a nontrivial interval \Rightarrow has nonempty interior.
- ▶ Therefore, $f(C \cap \mathbb{I}_p^n)$ is nonmeager in \mathbb{R} , for comeager-many $p \in \mathbb{I}$.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .
- Compactness of \mathbb{I}_p^n and definition of $C \Rightarrow f(C \cap \mathbb{I}_p^n)$ is dense G_{δ} in $f(\mathbb{I}_p^n)$.

- ▶ In particular, $f(\mathbb{I}_p^n)$ is a nontrivial interval \Rightarrow has nonempty interior.
- ▶ Therefore, $f(C \cap \mathbb{I}_p^n)$ is nonmeager in \mathbb{R} , for comeager-many $p \in \mathbb{I}$.
- ▶ But the sets $f(C \cap \mathbb{I}_p^n)$ are disjoint for different $p \in \mathbb{I}$.

Proposition (Ts.)

There is no generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}$.

Another (more promising) proof:

- ▶ Let *C* be the set of injectivity points, hence comeager.
- ▶ Viewing $\mathbb{I}^{n+1} = \mathbb{I} \times \mathbb{I}^n$, put, $\mathbb{I}_p^n := \{p\} \times \mathbb{I}^n$, for every $p \in \mathbb{I}$.
- ▶ Classical KU theorem \Rightarrow ($\forall^* p \in \mathbb{I}$) $C \cap \mathbb{I}_p^n$ is comeager in \mathbb{I}_p^n .
- Compactness of \mathbb{I}_p^n and definition of $C \Rightarrow f(C \cap \mathbb{I}_p^n)$ is dense G_{δ} in $f(\mathbb{I}_p^n)$.
- ▶ In particular, $f(\mathbb{I}_p^n)$ is a nontrivial interval \Rightarrow has nonempty interior.
- ▶ Therefore, $f(C \cap \mathbb{I}_p^n)$ is nonmeager in \mathbb{R} , for comeager-many $p \in \mathbb{I}$.
- ▶ But the sets $f(C \cap \mathbb{I}_p^n)$ are disjoint for different $p \in \mathbb{I}$.
- We have obtained a disjoint family of continuum-many nonmeager sets, a contradiction.

Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.

- Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.
 - ► This will turn generically injective into generically absolutely injective.

- Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.
 - ► This will turn generically injective into generically absolutely injective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Prove that for any generically absolutely injective continuous g : Iⁿ → ℝⁿ, the image f(Iⁿ) has nonempty interior.

- Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.
 - ► This will turn generically injective into generically absolutely injective.
- Prove that for any generically absolutely injective continuous g : Iⁿ → ℝⁿ, the image f(Iⁿ) has nonempty interior.
 - ► This is equivalent to dim(f(Iⁿ)) = n and this is where dimension theory should enter the picture.

- Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.
 - ► This will turn generically injective into generically absolutely injective.
- Prove that for any generically absolutely injective continuous g : Iⁿ → ℝⁿ, the image f(Iⁿ) has nonempty interior.
 - ► This is equivalent to dim(f(Iⁿ)) = n and this is where dimension theory should enter the picture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Granted these, the same argument as in the last proof would imply

 \nexists generically injective continuous $f : \mathbb{I}^{n+1} \to \mathbb{R}^n$.

- Prove the KU property (only forward direction would be enough) for generically injective maps f : Iⁿ⁺¹ → f(Iⁿ⁺¹) ⊆ ℝⁿ.
 - ► This will turn generically injective into generically absolutely injective.
- Prove that for any generically absolutely injective continuous g : Iⁿ → ℝⁿ, the image f(Iⁿ) has nonempty interior.
 - ► This is equivalent to dim(f(Iⁿ)) = n and this is where dimension theory should enter the picture.

Granted these, the same argument as in the last proof would imply

```
\nexists generically injective continuous f : \mathbb{I}^{n+1} \to \mathbb{R}^n.
```

However, I have some discouraging examples regarding both parts...

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• When they are also G_{δ} , then the forward KU holds.

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

- ▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .
- When they are also G_{δ} , then the forward KU holds.
 - This follows from my refinement of the Melleray–Tsankov theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

- ▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .
- When they are also G_{δ} , then the forward KU holds.
 - This follows from my refinement of the Melleray–Tsankov theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ However, I have an example of a continuous generically absolutely injective function $f : \overline{\mathbb{B}}^n \to \overline{\mathbb{B}}^n$, $n \ge 2$, such that $f(\mathbb{B}^n)$ is not G_{δ} .

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

- ▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .
- When they are also G_{δ} , then the forward KU holds.
 - This follows from my refinement of the Melleray–Tsankov theorem.
- ▶ However, I have an example of a continuous generically absolutely injective function $f : \overline{\mathbb{B}}^n \to \overline{\mathbb{B}}^n$, $n \ge 2$, such that $f(\mathbb{B}^n)$ is not G_{δ} .
- The construction of this f amounts to fishing rational points out from the interior to the boundary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

It would suffice to prove that a generically injective $f : \mathbb{I}^n \twoheadrightarrow f(\mathbb{I}^n) \subseteq \mathbb{R}^n$ satisfies the forward KU for $n \geq 2$.

- ▶ Note that the images of open are K_{σ} , due to the compactness of \mathbb{I}^n .
- When they are also G_{δ} , then the forward KU holds.
 - This follows from my refinement of the Melleray-Tsankov theorem.
- ▶ However, I have an example of a continuous generically absolutely injective function $f : \overline{\mathbb{B}}^n \to \overline{\mathbb{B}}^n$, $n \ge 2$, such that $f(\mathbb{B}^n)$ is not G_{δ} .
- The construction of this f amounts to fishing rational points out from the interior to the boundary.

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

▶ One way to do this is to prove that the image of a generically absolutely injective continuous $f: S^{n-1} \to \mathbb{R}^n$ disconnects \mathbb{R}^n , i.e. creates a hole.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

▶ One way to do this is to prove that the image of a generically absolutely injective continuous $f: S^{n-1} \to \mathbb{R}^n$ disconnects \mathbb{R}^n , i.e. creates a hole.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

► For injective *f*, this is true: Jordan Separation theorem.

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

- One way to do this is to prove that the image of a generically absolutely injective continuous f : S^{n−1} → ℝⁿ disconnects ℝⁿ, i.e. creates a hole.
- ► For injective *f*, this is true: Jordan Separation theorem.
- However, when f is only generically absolutely injective, this is false: I have an example of a continuous generically absolutely injective function f : S¹ → ℝ² such that f(S¹) does not disconnect ℝ².

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

- One way to do this is to prove that the image of a generically absolutely injective continuous f : S^{n−1} → ℝⁿ disconnects ℝⁿ, i.e. creates a hole.
- ► For injective *f*, this is true: Jordan Separation theorem.
- However, when f is only generically absolutely injective, this is false: I have an example of a continuous generically absolutely injective function f: S¹ → ℝ² such that f(S¹) does not disconnect ℝ².
- In other words, it is possible to pinch together only meager-many points of the circle to turn it into a tree.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで
An example regarding the $f(\mathbb{I}^n)$ having interior

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

- One way to do this is to prove that the image of a generically absolutely injective continuous f : S^{n−1} → ℝⁿ disconnects ℝⁿ, i.e. creates a hole.
- ► For injective *f*, this is true: Jordan Separation theorem.
- However, when f is only generically absolutely injective, this is false: I have an example of a continuous generically absolutely injective function f: S¹ → ℝ² such that f(S¹) does not disconnect ℝ².
- In other words, it is possible to pinch together only meager-many points of the circle to turn it into a tree.

・ロト ・ 日 ・ モー・ ・ 日 ・ うへの

An example regarding the $f(\mathbb{I}^n)$ having interior

Recall: we want to show that the image of a generically absolutely injective $f : \mathbb{I}^n \to \mathbb{R}^n$ has nonempty interior.

- ▶ One way to do this is to prove that the image of a generically absolutely injective continuous $f: S^{n-1} \to \mathbb{R}^n$ disconnects \mathbb{R}^n , i.e. creates a hole.
- ► For injective *f*, this is true: Jordan Separation theorem.
- However, when f is only generically absolutely injective, this is false: I have an example of a continuous generically absolutely injective function f: S¹ → ℝ² such that f(S¹) does not disconnect ℝ².
- In other words, it is possible to pinch together only meager-many points of the circle to turn it into a tree.

・ロト ・四ト ・ヨト ・ヨト ・ のへの

► I think this example can be used to build a counter-example to the conjecture for n = 2.

There is a compact space $H \subseteq 2^{\mathbb{N}} \times [0,1] \subseteq \mathbb{I}^2$, the hairy arc, such that

(日) (部) (注) (注)

There is a compact space $H \subseteq 2^{\mathbb{N}} \times [0,1] \subseteq \mathbb{I}^2$, the hairy arc, such that

• for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;

(ロ) (部) (E) (E)

There is a compact space $H \subseteq 2^{\mathbb{N}} \times [0,1] \subseteq \mathbb{I}^2$, the hairy arc, such that

- for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;
- **②** the set $T := \{(c, h_c) : c \in 2^{\mathbb{N}}\}$ is dense G_{δ} (hence comeager) in H.

There is a compact space $H \subseteq 2^{\mathbb{N}} \times [0,1] \subseteq \mathbb{I}^2$, the hairy arc, such that

- for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;
- Solution is dense C_δ (hence comeager) in H.
 Is dense G_δ (hence comeager) in H.

In particular, the projection $\pi: H \twoheadrightarrow 2^{\mathbb{N}} \subseteq [0, 1]$ witnesses the failure of the forward KU property.

There is a compact space $H \subseteq 2^{\mathbb{N}} \times [0,1] \subseteq \mathbb{I}^2$, the hairy arc, such that

- for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;
- Solution is dense C_δ (hence comeager) in H.
 Is dense G_δ (hence comeager) in H.

In particular, the projection $\pi: H \twoheadrightarrow 2^{\mathbb{N}} \subseteq [0, 1]$ witnesses the failure of the forward KU property.

Remarks.

• $H/2^{\mathbb{N}} \times \{0\} \cong$ Lelek fan.

There is a compact space $H\subseteq 2^{\mathbb{N}}\times [0,1]\subseteq \mathbb{I}^2$, the hairy arc, such that

- for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;
- Solution is dense C_δ (hence comeager) in H.
 Is dense G_δ (hence comeager) in H.

In particular, the projection $\pi: H \twoheadrightarrow 2^{\mathbb{N}} \subseteq [0, 1]$ witnesses the failure of the forward KU property.

Remarks.

- $H/2^{\mathbb{N}} \times \{0\} \cong$ Lelek fan.
- ► T ≅ the complete Erdős space due to Kawamura, Oversteegen, and Tymchatyn.

There is a compact space $H\subseteq 2^{\mathbb{N}}\times [0,1]\subseteq \mathbb{I}^2$, the hairy arc, such that

- for each $c \in 2^{\mathbb{N}}$, $H_c = [0, h_c]$ for some $0 \le h_c \le 1$;
- Solution is dense C_δ (hence comeager) in H.
 Is dense G_δ (hence comeager) in H.

In particular, the projection $\pi: H \twoheadrightarrow 2^{\mathbb{N}} \subseteq [0, 1]$ witnesses the failure of the forward KU property.

Remarks.

- $H/2^{\mathbb{N}} \times \{0\} \cong$ Lelek fan.
- ► T ≅ the complete Erdős space due to Kawamura, Oversteegen, and Tymchatyn.

Suggestion. ask your hair stylist to give you a haircut such that the tips of your hair amount to 99% of its total volume.

THANK YOU

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 のへで