# Topological partition relations for $\omega^{2}$ 

Claribet Piña<br>Universidad de los Andes

Workshop on Set Theory and its applications in
Topology

Оахаса<br>September 16, 2016

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

if for any $f:[\alpha]^{r} \longrightarrow \ell$, there is a subspace $\gamma$ of $\alpha$ such that:
(1) $\gamma$ is homeomorphic to $\beta$, and
(2) $\left|f^{\prime \prime}[\gamma]^{r}\right| \leq m$.

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

if for any $f:[\alpha]^{r} \longrightarrow \ell$, there is a subspace $\gamma$ of $\alpha$ such that:
(1) $\gamma$ is homeomorphic to $\beta$, and
(2) $\left|f^{\prime \prime}[\gamma]^{r}\right| \leq m$.

We will consider $\beta=\omega^{2}+1$ and $r=2$.

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

if for any $f:[\alpha]^{r} \longrightarrow \ell$, there is a subspace $\gamma$ of $\alpha$ such that:
(1) $\gamma$ is homeomorphic to $\beta$, and
(2) $\left|f^{\prime \prime}[\gamma]^{r}\right| \leq m$.

We will consider $\beta=\omega^{2}+1$ and $r=2$.

## Theorem (Baumgartner)

Given $X$ a countable Hausdorff space, there is a coloring $g:[X]^{2} \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1, \ldots, 2 n-1\} \subseteq g^{\prime \prime}[Y]^{2}$ whenever $Y^{(n)} \neq \varnothing$.

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

if for any $f:[\alpha]^{r} \longrightarrow \ell$, there is a subspace $\gamma$ of $\alpha$ such that:
(1) $\gamma$ is homeomorphic to $\beta$, and
(2) $\left|f^{\prime \prime}[\gamma]^{r}\right| \leq m$.

We will consider $\beta=\omega^{2}+1$ and $r=2$.

## Theorem (Baumgartner)

Given $X$ a countable Hausdorff space, there is a coloring $g:[X]^{2} \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1, \ldots, 2 n-1\} \subseteq g^{\prime \prime}[Y]^{2}$ whenever $Y^{(n)} \neq \varnothing$.

Remarks: The relation above makes sense for $\beta<\omega^{\omega}$.

## Partition relations for ordinal spaces

Consider $\alpha, \beta<\omega_{1}$ endowed with the order topology, $r, \ell>0$ and $m<\ell$, we write

$$
\alpha \rightarrow(\operatorname{top} \beta)_{\ell, m}^{r}
$$

if for any $f:[\alpha]^{r} \longrightarrow \ell$, there is a subspace $\gamma$ of $\alpha$ such that:
(1) $\gamma$ is homeomorphic to $\beta$, and
(2) $\left|f^{\prime \prime}[\gamma]^{r}\right| \leq m$.

We will consider $\beta=\omega^{2}+1$ and $r=2$.

## Theorem (Baumgartner)

Given $X$ a countable Hausdorff space, there is a coloring $g:[X]^{2} \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1, \ldots, 2 n-1\} \subseteq g^{\prime \prime}[Y]^{2}$ whenever $Y^{(n)} \neq \varnothing$.

Remarks: The relation above makes sense for $\beta<\omega^{\omega}$. Moreover, if $\beta=\omega^{2}+1$ then $m \geq 4$.

## A problem on partition of families in FIN

## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, m}^{2}
$$

## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, m}^{2}
$$

- we consider $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type $\alpha$,


## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, m}^{2}
$$

- we consider $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type $\alpha$,
- given any partition $[\mathcal{F}]^{2}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{\ell-1}$,


## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, m}^{2}
$$

- we consider $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type $\alpha$,
- given any partition $[\mathcal{F}]^{2}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^{2}+1$ such that we can color $[\mathcal{H}]^{2}$ with at most $m$ colors


## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, m}^{2}
$$

- we consider $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type $\alpha$,
- given any partition $[\mathcal{F}]^{2}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^{2}+1$ such that we can color $[\mathcal{H}]^{2}$ with at most $m$ colors:

$$
[\mathcal{H}]^{2} \cap \mathcal{F}_{i} \neq \varnothing \quad \text { for at most } m \text { values of } i<\ell
$$

## A problem on partition of families in FIN

Given $\alpha<\omega_{1}$ and $0<m<\ell$, in order to verify that

$$
\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, m}^{2}
$$

- we consider $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type $\alpha$,
- given any partition $[\mathcal{F}]^{2}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^{2}+1$ such that we can color $[\mathcal{H}]^{2}$ with at most $m$ colors:

$$
[\mathcal{H}]^{2} \cap \mathcal{F}_{i} \neq \varnothing \quad \text { for at most } m \text { values of } i<\ell
$$

In order to get $\mathcal{H} \sim \omega^{2}+1$ we chose $\mathcal{H}$ which behaves as $[\mathbb{N}]^{\leq 2}$.

## Copies of $\omega^{2}+1$



## Copies of $\omega^{2}+1$



## Copies of $\omega^{2}+1$



$$
\mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i\langle\omega\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i\langle j<\omega\}\right.\right.
$$

## Copies of $\omega^{2}+1$



$$
\mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i\langle\omega\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i\langle j<\omega\}\right.\right.
$$

- $s<s_{i}<s_{j}$ for every $i<j<\omega$,


## Copies of $\omega^{2}+1$



$$
\mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i\langle\omega\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i\langle j<\omega\}\right.\right.
$$

- $s<s_{i}<s_{j}$ for every $i<j<\omega$,
- $s_{i}<s_{i, j}<s_{i, k}$ for every $i<j<k<\omega$,


## Copies of $\omega^{2}+1$



$$
\mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $s<s_{i}<s_{j}$ for every $i<j<\omega$,
- $s_{i}<s_{i, j}<s_{i, k}$ for every $i<j<k<\omega$,
- any two elements intersect just in a root.


## Copies of $\omega^{2}+1$



$$
\mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $s<s_{i}<s_{j}$ for every $i<j<\omega$,
- $s_{i}<s_{i, j}<s_{i, k}$ for every $i<j<k<\omega$,
- any two elements intersect just in a root.

For every $\omega^{2}+1 \sim \mathcal{A} \subseteq[\mathbb{N}]^{<\infty}$ there is $\mathcal{H} \subseteq \mathcal{A}$ as before.

## Configurations of the pairs in $\mathcal{H}$

## Configurations of the pairs in $\mathcal{H}$

## Theorem (Todorcevic)

There is a coloring osc : $\left[[\mathbb{N}]^{<\infty}\right]^{2} \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq[\mathbb{N}]^{<\infty}$ and $n<\omega$, if $\mathcal{A}$ is homeomorphic to $\omega^{n}+1$ then $\{1,2 \ldots, 2 n\} \subseteq$ osc $^{\prime \prime}[\mathcal{A}]^{2}$.

## Configurations of the pairs in $\mathcal{H}$

## Theorem (Todorcevic)

There is a coloring osc : $\left[[\mathbb{N}]^{<\infty}\right]^{2} \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq[\mathbb{N}]^{<\infty}$ and $n<\omega$, if $\mathcal{A}$ is homeomorphic to $\omega^{n}+1$ then $\{1,2 \ldots, 2 n\} \subseteq$ osc $^{\prime \prime}[\mathcal{A}]^{2}$.

## Configurations of the pairs in $\mathcal{H}$

## Theorem (Todorcevic)

There is a coloring osc : $\left[[\mathbb{N}]^{<\infty}\right]^{2} \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq[\mathbb{N}]^{<\infty}$ and $n<\omega$, if $\mathcal{A}$ is homeomorphic to $\omega^{n}+1$ then $\{1,2 \ldots, 2 n\} \subseteq$ osc ${ }^{\prime \prime}[\mathcal{A}]^{2}$.


$$
\operatorname{osc}^{\prime \prime}[\mathcal{H}]^{2}=\{1,2,3,4\} \text { for } \mathcal{H} \text { as before. }
$$

Fact: Given $\mathcal{F} \subseteq[\mathbb{N}]^{<\infty}$ of topological type $\alpha>\omega^{2}$, any partition $[\mathcal{F}]^{2}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{\ell-1}$ and $\mathcal{H} \subseteq \mathcal{F}$ as before, then for every $i \in\{1,2,3,4\}$ there is $k_{i}<\ell$ (hopefully unique) satisfying

$$
u, v \in \mathcal{H}\left(\operatorname{osc}(\{u, v\})=i \longrightarrow\{u, v\} \in \mathcal{F}_{k_{i}}\right)
$$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $\operatorname{osc}(\{u, v\})=1$
" $\times$ ㅍाII
$S \quad S_{i}$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $\operatorname{osc}(\{u, v\})=1$
" x ㅍाII
$s \quad s_{i}$
$\underset{s}{\sin } \underset{s_{i}}{s_{i, j}}$


$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $\operatorname{osc}(\{u, v\})=1$

雨
s $s_{i}$

- $\operatorname{osc}(\{u, v\})=2$


$\frac{\text { max }}{s} \frac{\text { max }}{s_{i}} \frac{s_{i, j}}{s_{i}}$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- osc $(\{u, v\})=1$
" x ㅍाII $s \quad s_{i}$

$\underset{s}{\text { and }} \frac{s_{i}}{s_{i}}$
- osc $(\{u, v\})=2$





$\begin{array}{llll}s & s_{i} & s_{i, p} & s_{i, q}\end{array}$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- osc $(\{u, v\})=1$
" x ㅍाII $s \quad s_{i}$

$\underset{s}{\text { and }} \underset{s_{i}}{s_{i, j}}$
- $\operatorname{osc}(\{u, v\})=2$



 $\begin{array}{lllll}s & s_{i} & s_{i, p} & s_{j} & s_{j, q}\end{array}$
- $\operatorname{osc}(\{u, v\})=3$

$$
\frac{\operatorname{sex}}{s} \underset{s_{i}}{s_{j}} \frac{x^{2}, p}{s_{i}}
$$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $\operatorname{osc}(\{u, v\})=1$
" x ㅍाII $s \quad s_{i}$
$\underset{s}{\sin } \underset{s_{i}}{s_{i, j}}$

- $\operatorname{osc}(\{u, v\})=2$



 $\begin{array}{lllll}s & s_{i} & s_{i, p} & s_{j} & s_{j, q}\end{array}$
- $\operatorname{osc}(\{u, v\})=3$

$$
\begin{aligned}
& \begin{array}{llll}
s & s_{i} & s_{j} & s_{i, p}
\end{array}
\end{aligned}
$$

" $\times$ x $\begin{array}{llll}s & s_{i} & s_{i, p} & s_{i, q}\end{array}$

$$
u, v \in \mathcal{H}=\{s\} \cup\left\{s \cup s_{i}: i<\omega\right\} \cup\left\{s \cup s_{i} \cup s_{i, j}: i<j<\omega\right\}
$$

- $\operatorname{osc}(\{u, v\})=1$
" x ㅍाII $s \quad s_{i}$


- $\operatorname{osc}(\{u, v\})=2$



 $\begin{array}{lllll}s & s_{i} & s_{i, p} & s_{j} & s_{j, q}\end{array}$
- $\operatorname{osc}(\{u, v\})=3$

" $\begin{array}{llll}s & s_{i} & s_{i, p} & s_{i, q}\end{array}$

$\begin{array}{lllll}s & s_{i} & s_{j} & s_{j, q} & s_{i, p}\end{array}$
- $\operatorname{osc}(\{u, v\})=4$



## Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 11}^{2}$ for every $\omega^{2}<\alpha<\omega^{\omega}$ and every $\ell>1$,


## Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 11}^{2}$ for every $\omega^{2}<\alpha<\omega^{\omega}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 7}^{2}$ for every $\ell>1$,


## Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 11}^{2}$ for every $\omega^{2}<\alpha<\omega^{\omega}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 7}^{2}$ for every $\ell>1$,
- $\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, 6}^{2}$ for every $\omega^{\omega}<\alpha<\omega^{\omega}$ and every $\ell>1$,


## Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 11}^{2}$ for every $\omega^{2}<\alpha<\omega^{\omega}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, 7}^{2}$ for every $\ell>1$,
- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 6}^{2}$ for every $\omega^{\omega}<\alpha<\omega^{\omega^{\omega}}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\text { top } \omega^{2}\right)_{\ell, 5}^{2}$ for every $\omega^{\omega}<\alpha<\omega^{\omega^{\omega}}$ and every $\ell>1$.


## Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 11}^{2}$ for every $\omega^{2}<\alpha<\omega^{\omega}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 7}^{2}$ for every $\ell>1$,
- $\alpha \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, 6}^{2}$ for every $\omega^{\omega}<\alpha<\omega^{\omega}$ and every $\ell>1$,
- $\omega^{\omega} \rightarrow\left(\text { top } \omega^{2}\right)_{\ell, 5}^{2}$ for every $\omega^{\omega}<\alpha<\omega^{\omega^{\omega}}$ and every $\ell>1$.

Theorem 1

$$
\omega^{\omega}+1 \rightarrow\left(\text { top } \omega^{2}+1\right)_{\ell, 6}^{2} \text { for every } \ell>1
$$

## Idea of the proof

Fix $\ell>1$ and $[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \cdots \cup \mathcal{A}_{\ell-1}$, where $\mathcal{S}=\{s \in \mathrm{FIN}:|s|=\min (s)+1\}$.

## Idea of the proof

Fix $\ell>1$ and $[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \cdots \cup \mathcal{A}_{\ell-1}$, where $\mathcal{S}=\{s \in \mathrm{FIN}:|s|=\min (s)+1\}$.

$$
\overline{\mathcal{S}}=\{s \in \operatorname{FIN}:|s| \leq \min (s)+1\} \sim \omega^{\omega}+1 .
$$



We will choose

$$
\mathcal{H}=\{\varnothing\} \cup\left\{s_{i} \cap\left(x_{i}+1\right): i<\omega\right\} \cup\left\{s_{i, j} \cap\left(y_{i, j}+1\right): i<j<\omega\right\}
$$

with the help of an infinite set $M \in[\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in \mathcal{S} \upharpoonright M=\{s \in \mathcal{S}: s \subseteq M\}$.

We will choose

$$
\mathcal{H}=\{\varnothing\} \cup\left\{s_{i} \cap\left(x_{i}+1\right): i<\omega\right\} \cup\left\{s_{i, j} \cap\left(y_{i, j}+1\right): i<j<\omega\right\}
$$

with the help of an infinite set $M \in[\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in \mathcal{S} \upharpoonright M=\{s \in \mathcal{S}: s \subseteq M\}$.


For every $i, j<\omega$ we have

- $s_{i}, s_{i, j} \in \mathcal{S} \upharpoonright M$,
- $s_{i} \cap\left(x_{i}+1\right) \sqsubset s_{i, j} \cap\left(y_{i, j}+1\right)$,
- $x_{i} \in \varphi\left(s_{i}\right) \subseteq s_{i}$,
- $x_{i}, y_{i, j} \in \varphi\left(s_{i, j}\right) \subseteq s_{i, j}$.

We will choose

$$
\mathcal{H}=\{\varnothing\} \cup\left\{s_{i} \cap\left(x_{i}+1\right): i<\omega\right\} \cup\left\{s_{i, j} \cap\left(y_{i, j}+1\right): i<j<\omega\right\}
$$

with the help of an infinite set $M \in[\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in \mathcal{S} \upharpoonright M=\{s \in \mathcal{S}: s \subseteq M\}$.


For every $i, j<\omega$ we have

- $s_{i}, s_{i, j} \in \mathcal{S} \upharpoonright M$,
- $s_{i} \cap\left(x_{i}+1\right) \sqsubset s_{i, j} \cap\left(y_{i, j}+1\right)$,
- $x_{i} \in \varphi\left(s_{i}\right) \subseteq s_{i}$,
- $x_{i}, y_{i, j} \in \varphi\left(s_{i, j}\right) \subseteq s_{i, j}$.

We will control de colors in $[\mathcal{H}]^{2}$ by carefully choosing $M$ and $\varphi$.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2, 3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1 : We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2,3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1 : We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2,3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2,3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2, 3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## Ramsey and Nash-Williams

$$
[\overline{\mathcal{S}}]^{2}=\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{\ell-1}
$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into $\ell$ colors by $x \mapsto i$ iff $\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i}$. Then, we get $\varphi_{1}(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_{1} \in[\mathbb{N}]^{\infty}$ and $i_{1}<\ell$ such that:

$$
\{\varnothing, s \cap(x+1)\} \in \mathcal{A}_{i_{1}} \quad \forall x \in \varphi_{1}(s) \forall s \in \mathcal{S} \upharpoonright M_{1} .
$$

Analogously, by colorings each $\left[\varphi_{1}(s)\right]^{2}$ into $\ell$ by $\{x, y\} \mapsto i$ iff $\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i}$, we get $\varphi_{2}(s) \subseteq \varphi_{1}(s)$ for each $s \in \mathcal{S}$, an infinite set $M_{2} \subseteq M_{1}$ and $i_{2}<\ell$ such that:

$$
\{s \cap(x+1), s \cap(y+1)\} \in \mathcal{A}_{i_{2}} \quad \forall x, y \in \varphi_{2}(s) \forall s \in \mathcal{S} \upharpoonright M_{2} .
$$

For pairs with oscillation 2,3 and 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

## $\omega^{n}$ and triplets

## $\omega^{n}$ and triplets

## Theorem

Given $n, \ell>1$ and $\omega^{n}<\alpha<\omega_{1}$. If $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ then

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{n}+1\right)_{\ell, m}^{2}
$$

## $\omega^{n}$ and triplets

## Theorem

Given $n, \ell>1$ and $\omega^{n}<\alpha<\omega_{1}$. If $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ then

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{n}+1\right)_{\ell, m}^{2} .
$$

- Optimal values for $m$ satisfy $2 n \leq m \leq\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$,


## $\omega^{n}$ and triplets

## Theorem

Given $n, \ell>1$ and $\omega^{n}<\alpha<\omega_{1}$. If $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ then

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{n}+1\right)_{\ell, m}^{2}
$$

- Optimal values for $m$ satisfy $2 n \leq m \leq\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$,
- In fact, $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ is optimal for $\omega^{n}<\alpha<\omega^{\omega}$.


## $\omega^{n}$ and triplets

## Theorem

Given $n, \ell>1$ and $\omega^{n}<\alpha<\omega_{1}$. If $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ then

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{n}+1\right)_{\ell, m}^{2} .
$$

- Optimal values for $m$ satisfy $2 n \leq m \leq\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$,
- In fact, $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ is optimal for $\omega^{n}<\alpha<\omega^{\omega}$.


## Theorem

Given $\omega^{2}<\alpha<\omega_{1}$ and $\ell>1$ we have

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 71}^{3}
$$

## $\omega^{n}$ and triplets

## Theorem

Given $n, \ell>1$ and $\omega^{n}<\alpha<\omega_{1}$. If $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ then

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{n}+1\right)_{\ell, m}^{2} .
$$

- Optimal values for $m$ satisfy $2 n \leq m \leq\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$,
- In fact, $m=\left[\sum_{i=1}^{n}\binom{2 i+1}{i+1}\right]-n$ is optimal for $\omega^{n}<\alpha<\omega^{\omega}$.


## Theorem

Given $\omega^{2}<\alpha<\omega_{1}$ and $\ell>1$ we have

$$
\alpha \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\ell, 71}^{3} .
$$

Moreover, 71 is optimal for every $\omega^{2}<\alpha<\omega^{\omega}$.

## Thank you!

## References

圊 C. Piña,
A topological Ramsey classification of countable ordinals, Acta Math. Hungar., 147 (2): 477-509 (2015).
© C. Piña,
A topological Ramsey classification of countable ordinals. II, Acta Math. Hungar., 147 (2): 510-527 (2015).

