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Partition relations

Partition relations for ordinal spaces

Consider α,β < ω1 endowed with the order topology, r , ` > 0 and
m < `, we write

α → (top β)r`,m

if for any f ∶ [α]r Ð→ `, there is a subspace γ of α such that:

1 γ is homeomorphic to β, and

2 ∣f ′′[γ]r ∣ ≤ m.

We will consider β = ω2 + 1 and r = 2.

Theorem (Baumgartner)

Given X a countable Hausdorff space, there is a coloring g ∶ [X ]2 Ð→ N
such that if Y ⊆ X and n ∈ N, then {0,1, . . . ,2n − 1} ⊆ g ′′[Y ]2 whenever

Y
(n) ≠ ∅.

Remarks: The relation above makes sense for β < ωω. Moreover,
if β = ω2 + 1 then m ≥ 4.
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Partition of families in FIN

A problem on partition of families in FIN

Given α < ω1 and 0 < m < `, in order to verify that

α → (top ω2 + 1)2`,m

we consider F ⊆ [N]<∞ ⊆ 2N of topological type α,

given any partition [F]2 = F0 ∪F1 ∪⋯ ∪F`−1,

we find a subfamily H ⊆ F of topological type ω2 + 1 such

that we can color [H]2 with at most m colors:

[H]2 ∩Fi ≠ ∅ for at most m values of i < `.

In order to get H ∼ ω2 + 1 we chose H which behaves as [N]≤2.
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Partition of families in FIN

Copies of ω2 + 1

∅

{0}

{0, 1} {0, 2} {0, n}

{1}

{1, 2} {1, 3} {1, n}

{2}

{2, 3} {2, 4} {2, n}

{m}

{m, n}

ω2 + 1 ∼ [N]≤2

. . . . . . . . . . . .

. . .

s

s ∪ s0 s ∪ s1 s ∪ s2 s ∪ sm

s ∪ s0 ∪ s0,1 s ∪ s0 ∪ s0,naaaaaaaaaaaaaaa s ∪ s2 ∪ s2,3 s ∪ sm ∪ sm,n

H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

s < si < sj for every i < j < ω,
si < si ,j < si ,k for every i < j < k < ω,
any two elements intersect just in a root.

For every ω2 + 1 ∼ A ⊆ [N]<∞ there is H ⊆ A as before.
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Oscillations

Configurations of the pairs in H

Theorem (Todorcevic)

There is a coloring osc ∶ [ [N]<∞ ]
2
Ð→ N such that givenA ⊆ [N]<∞

and n < ω, if A is homeomorphic to ωn + 1 then {1,2 . . . ,2n} ⊆
osc′′[A]2.

osc′′[H]2 = {1,2,3,4} for H as before.

Fact: Given F ⊆ [N]<∞ of topological type α > ω2, any partition

[F]2 = F0 ∪ F1 ∪ ⋯ ∪ F`−1 and H ⊆ F as before, then for every
i ∈ {1,2,3,4} there is ki < ` (hopefully unique) satisfying

u, v ∈H (osc({u, v}) = i Ð→ {u, v} ∈ Fki ).
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Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si

s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj

s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p

s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q

Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Oscillations

u, v ∈H = {s} ∪ {s ∪ si ∶ i < ω} ∪ {s ∪ si ∪ si ,j ∶ i < j < ω}

● osc({u, v}) = 1

s si s si si,j s si si,j

● osc({u, v}) = 2

s si sj s si sj sj,q s si si,p sj

s si si,p sj sj,q s si si,p si,q

● osc({u, v}) = 3

s si sj si,p s si sj sj,q si,p

● osc({u, v}) = 4

s si sj si,p sj,q
Topological partition relations for ω2 Claribet Piña 16th Sep 2016



Optimal results

Some optimal partition relations

The number of colors in the following relations are optimal:

α → (top ω2 + 1)2`,11 for every ω2 < α < ωω and every ` > 1,

ωω → (top ω2 + 1)2`,7 for every ` > 1,

α → (top ω2 + 1)2`,6 for every ωω < α < ωωω
and every ` > 1,

ωω → (top ω2)2`,5 for every ωω < α < ωωω
and every ` > 1.

Theorem 1

ωω + 1→ (top ω2 + 1)2`,6 for every ` > 1.
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Theorem 1

Idea of the proof

Fix ` > 1 and [S ]2 = A0∪⋯∪A`−1, where S = {s ∈ FIN ∶ ∣s ∣ = min(s) + 1}.

S = {s ∈ FIN ∶ ∣s ∣ ≤ min(s) + 1} ∼ ωω + 1.
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Theorem 1

We will choose

H = {∅} ∪ {si ∩ (xi + 1) ∶ i < ω} ∪ {si ,j ∩ (yi ,j + 1) ∶ i < j < ω}

with the help of an infinite set M ∈ [N]∞ and subsets ϕ(s) ⊆ s for
every s ∈ S ↾M = {s ∈ S ∶ s ⊆ M}.

∅

s1 ∩ (x1 + 1)

s1,j ∩ (y1,j + 1)

s2 ∩ (x2 + 1)

s2,j ∩ (y2,j + 1)

si ∩ (xi + 1)

si,j ∩ (yi,j + 1)
⋯⋯⋯

⋯

For every i , j < ω we have

si , si,j ∈ S ↾M,

si ∩ (xi + 1) ⊏ si,j ∩ (yi,j + 1),

xi ∈ ϕ(si) ⊆ si ,

xi , yi,j ∈ ϕ(si,j) ⊆ si,j .

We will control de colors in [H]2 by carefully choosing M and ϕ.
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Theorem 1

Ramsey and Nash-Williams

[S ]2 = A0 ∪A1 ∪⋯ ∪A`−1

For pairs with oscillation 1: We color each s ∈ S into ` colors by
x ↦ i iff {∅, s∩(x+1)} ∈ Ai . Then, we get ϕ1(s) ⊆ s for each s ∈ S,
M1 ∈ [N]∞ and i1 < ` such that:

{∅, s ∩ (x + 1)} ∈ Ai1 ∀ x ∈ ϕ1(s) ∀ s ∈ S ↾M1.

Analogously, by colorings each [ϕ1(s)]2 into ` by {x , y} ↦ i iff
{s ∩ (x + 1), s ∩ (y + 1)} ∈ Ai , we get ϕ2(s) ⊆ ϕ1(s) for each s ∈ S,
an infinite set M2 ⊆ M1 and i2 < ` such that:

{s ∩ (x + 1), s ∩ (y + 1)} ∈ Ai2 ∀ x , y ∈ ϕ2(s) ∀ s ∈ S ↾M2.

For pairs with oscillation 2,3 and 4: We use moreover the infinite
Ramsey theorem and diagonalization processes.
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Partition relations for ωn and triplets

ωn and triplets

Theorem

Given n, ` > 1 and ωn < α < ω1. If m = [∑n
i=1 (

2i+1
i+1

)] − n then

α → (top ωn + 1)2`,m.

Optimal values for m satisfy 2n ≤ m ≤ [∑n
i=1 (

2i+1
i+1

)] − n,

In fact, m = [∑n
i=1 (

2i+1
i+1

)] − n is optimal for ωn < α < ωω.

Theorem

Given ω2 < α < ω1 and ` > 1 we have

α → (top ω2 + 1)3`,71.

Moreover, 71 is optimal for every ω2 < α < ωω.
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Partition relations for ωn and triplets

Thank you!
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