A non-commutative Mrówka's Ψ-space

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences, Warsaw

Joint research with Saeed Ghasemi (IM PAN, Warsaw)

ψ-spaces

Ψ-spaces

Definition

Let \mathcal{A} be an almost disjoint family of subsets of \mathbb{N}.

Ψ-spaces

Definition

Let \mathcal{A} be an almost disjoint family of subsets of \mathbb{N}. We consider

$$
\Psi_{\mathcal{A}}=\mathbb{N} \cup\left\{x_{A}: A \in \mathcal{A}\right\}
$$

with the following topology:

Ψ-spaces

Definition

Let \mathcal{A} be an almost disjoint family of subsets of \mathbb{N}. We consider

$$
\Psi_{\mathcal{A}}=\mathbb{N} \cup\left\{x_{A}: A \in \mathcal{A}\right\}
$$

with the following topology:

- elements of \mathbb{N} are isolated

Ψ-spaces

Definition

Let \mathcal{A} be an almost disjoint family of subsets of \mathbb{N}.We consider

$$
\Psi_{\mathcal{A}}=\mathbb{N} \cup\left\{x_{A}: A \in \mathcal{A}\right\}
$$

with the following topology:

- elements of \mathbb{N} are isolated
- for every $A \in \mathcal{A}$ all neighbourhoods of x_{A} are of the form

$$
U_{F}\left(x_{A}\right)=(A \backslash F) \cup\left\{x_{A}\right\} .
$$

Ψ-spaces

Definition

Let \mathcal{A} be an almost disjoint family of subsets of \mathbb{N}.We consider

$$
\Psi_{\mathcal{A}}=\mathbb{N} \cup\left\{x_{A}: A \in \mathcal{A}\right\}
$$

with the following topology:

- elements of \mathbb{N} are isolated
- for every $A \in \mathcal{A}$ all neighbourhoods of x_{A} are of the form

$$
U_{F}\left(x_{A}\right)=(A \backslash F) \cup\left\{x_{A}\right\} .
$$

Mrówka’s ψ-spaces

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

- $\sigma\left[c_{0}\right]$ is an essential ideal of \mathcal{B}

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)
There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version) There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

- $\sigma\left[c_{0}\right]$ is an essential ideal of \mathcal{B}
- the unitization of \mathcal{B} is equal to the multiplier algebra of \mathcal{B}, i.e., $\widetilde{\mathcal{B}}=\mathcal{M}(\mathcal{B})$.

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

- $\sigma\left[c_{0}\right]$ is an essential ideal of \mathcal{B}
- the unitization of \mathcal{B} is equal to the multiplier algebra of \mathcal{B}, i.e., $\widetilde{\mathcal{B}}=\mathcal{M}(\mathcal{B})$.

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

- $\sigma\left[c_{0}\right]$ is an essential ideal of \mathcal{B}
- the unitization of \mathcal{B} is equal to the multiplier algebra of \mathcal{B}, i.e., $\widetilde{\mathcal{B}}=\mathcal{M}(\mathcal{B})$.

Mrówka’s ψ-spaces

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A} \subseteq \wp(\mathbb{N})$ such $\beta\left(\Psi_{\mathcal{A}}\right)=\alpha\left(\Psi_{\mathcal{A}}\right)$.
Theorem (Mrówka, 1977 - an algebraic version)
There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$
0 \rightarrow c_{0} \xrightarrow{\sigma} \mathcal{B} \rightarrow c_{0}(\mathfrak{c}) \rightarrow 0
$$

and

- $\sigma\left[c_{0}\right]$ is an essential ideal of \mathcal{B}
- the unitization of \mathcal{B} is equal to the multiplier algebra of \mathcal{B}, i.e., $\widetilde{\mathcal{B}}=\mathcal{M}(\mathcal{B})$.

Main theorem

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

such that

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

such that

- $\sigma\left[\mathcal{K}\left(\ell_{2}\right)\right]$ is an essential ideal of \mathcal{A}

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

such that

- $\sigma\left[\mathcal{K}\left(\ell_{2}\right)\right]$ is an essential ideal of \mathcal{A}
- the algebra of multipliers $\mathcal{M}(\mathcal{A})$ of \mathcal{A} is equal to the unitization of \mathcal{A},

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

such that

- $\sigma\left[\mathcal{K}\left(\ell_{2}\right)\right]$ is an essential ideal of \mathcal{A}
- the algebra of multipliers $\mathcal{M}(\mathcal{A})$ of \mathcal{A} is equal to the unitization of \mathcal{A},

Main theorem

Theorem (S. Ghasemi, P. K.)

There is a C^{*}-algebra $\mathcal{A} \subseteq \mathcal{B}\left(\ell_{2}\right)$ satisfying the following short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell_{2}\right) \xrightarrow{\sigma} \mathcal{A} \rightarrow \mathcal{K}\left(\ell_{2}(\mathfrak{c})\right) \rightarrow 0,
$$

such that

- $\sigma\left[\mathcal{K}\left(\ell_{2}\right)\right]$ is an essential ideal of \mathcal{A}
- the algebra of multipliers $\mathcal{M}(\mathcal{A})$ of \mathcal{A} is equal to the unitization of \mathcal{A},

Matrix units and almost matrix units

Matrix units and almost matrix units

Fact

A C^{*}-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}\left(\ell_{2}(\kappa)\right)$ if and only if

Matrix units and almost matrix units

Fact

A C*-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}\left(\ell_{2}(\kappa)\right)$ if and only ifit is generated by "matrix units", that is nonzero elements ($a_{\beta, \alpha}: \alpha, \beta \in \kappa$) satisfying for each $\alpha, \beta, \xi, \eta<\kappa$:

Matrix units and almost matrix units

Fact

A C*-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}\left(\ell_{2}(\kappa)\right)$ if and only ifit is generated by "matrix units", that is nonzero elements ($a_{\beta, \alpha}: \alpha, \beta \in \kappa$) satisfying for each $\alpha, \beta, \xi, \eta<\kappa$:

- $\left(a_{\beta, \alpha}\right)^{*}=a_{\alpha, \beta}$,

Matrix units and almost matrix units

Fact

A C*-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}\left(\ell_{2}(\kappa)\right)$ if and only ifit is generated by "matrix units", that is nonzero elements ($a_{\beta, \alpha}: \alpha, \beta \in \kappa$) satisfying for each $\alpha, \beta, \xi, \eta<\kappa$:

- $\left(a_{\beta, \alpha}\right)^{*}=a_{\alpha, \beta}$,
- $a_{\eta, \xi} a_{\beta, \alpha}=\delta_{\xi, \beta} a_{\eta, \alpha}$.

Matrix units and almost matrix units

Fact

A C^{*}-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}\left(\ell_{2}(\kappa)\right)$ if and only ifit is generated by "matrix units", that is nonzero elements ($a_{\beta, \alpha}: \alpha, \beta \in \kappa$) satisfying for each $\alpha, \beta, \xi, \eta<\kappa$:

- $\left(a_{\beta, \alpha}\right)^{*}=a_{\alpha, \beta}$,
- $a_{\eta, \xi} a_{\beta, \alpha}=\delta_{\xi, \beta} a_{\eta, \alpha}$.

Definition

A sequence ($a_{\beta, \alpha}: \alpha, \beta \in \kappa$) of noncompact elements of $\mathcal{B}\left(\ell_{2}\right)$ is called a "system of almost matrix units" if it satisfies for each $\alpha, \beta, \xi, \eta<\kappa$:

- $\left(a_{\beta, \alpha}\right)^{*}={ }^{*} a_{\alpha, \beta}$,
- $a_{\eta, \xi} a_{\beta, \alpha}={ }^{*} \delta_{\xi, \beta} a_{\eta, \alpha}$,
where $a={ }^{*} b$ means $a-b \in \mathcal{K}\left(\ell_{2}\right)$.

Example 1

Example 1

For each $\xi \in 2^{\mathbb{N}}$ we can associate a set $A_{\xi}=\left\{s \in 2^{<\mathbb{N}}: s \subseteq \xi\right\}$.

Example 1

For each $\xi \in 2^{\mathbb{N}}$ we can associate a set $A_{\xi}=\left\{s \in 2^{<\mathbb{N}}: s \subseteq \xi\right\}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in\{0,1\}$ the sets $\left\{\xi \in 2^{\mathbb{N}}: A_{\xi} \cap X={ }^{*} \lambda A_{\xi}\right\}$ are Borel.

Example 1

For each $\xi \in 2^{\mathbb{N}}$ we can associate a set $A_{\xi}=\left\{s \in 2^{<\mathbb{N}}: s \subseteq \xi\right\}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in\{0,1\}$ the sets $\left\{\xi \in 2^{\mathbb{N}}: A_{\xi} \cap X={ }^{*} \lambda A_{\xi}\right\}$ are Borel.

For each pair $(\xi, \eta) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ we associate an operator on $\ell_{2}\left(2^{<\mathbb{N}}\right)$

$$
T_{\eta, \xi}(s)= \begin{cases}e_{\eta \mid k} & \text { if } s=e_{\xi \mid k} \text { for some } k \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Example 1

For each $\xi \in 2^{\mathbb{N}}$ we can associate a set $A_{\xi}=\left\{s \in 2^{<\mathbb{N}}: s \subseteq \xi\right\}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in\{0,1\}$ the sets $\left\{\xi \in 2^{\mathbb{N}}: A_{\xi} \cap X={ }^{*} \lambda A_{\xi}\right\}$ are Borel.

For each pair $(\xi, \eta) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ we associate an operator on $\ell_{2}\left(2^{<\mathbb{N}}\right)$

$$
T_{\eta, \xi}(s)= \begin{cases}e_{\eta \mid k} & \text { if } s=e_{\xi \mid k} \text { for some } k \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Lemma

Let $R \in \mathcal{B}(\mathcal{H})$ and U be a Borel subset of \mathbb{C}, then the set

$$
B_{U}^{R}=\left\{(\eta, \xi) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}}: T_{\eta, \eta} R T_{\xi, \xi}={ }^{*} \lambda T_{\eta, \xi}, \lambda \in U\right\}
$$

is Borel in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. In particular, if B_{U}^{R} is either countable or of size of the continuum.

Example 2

Example 2

Fact

Let \mathcal{A} be $M A D$ and $X \subseteq \mathbb{N}$ infinite. Then

$$
\{A \cap X: A \in \mathcal{A}\}
$$

is MAD in $\wp(X)$.

Example 2

Fact

Let \mathcal{A} be $M A D$ and $X \subseteq \mathbb{N}$ infinite. Then

$$
\{A \cap X: A \in \mathcal{A}\}
$$

is MAD in $\wp(X)$.

If P, Q are projections, then $P Q$ is not a projection unless P and Q commute.

