Bases and selectors for cofinal families

Carlos Uzcátegui Aylwin Escuela de Matemáticas Universidad Industrial de Santander Bucaramanga, Colombia

Oaxaca, september 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bases for cofinal families

 $\mathbb{N}^{[\infty]}$ the collection of infinite subsets of \mathbb{N} as subspace of $\{0,1\}^{\mathbb{N}}$.

A collection $C \subseteq \mathbb{N}^{[\infty]}$ is cofinal, if for all $A \in \mathbb{N}^{[\infty]}$ there is $B \subseteq A$ such that $B \in C$.

A base for C is a family $\mathcal{B} \subseteq C$ which is cofinal in C, i.e., for all $A \in C$, there is $B \in \mathcal{B}$ such that $B \subseteq A$.

Bases for cofinal families

 $\mathbb{N}^{[\infty]}$ the collection of infinite subsets of \mathbb{N} as subspace of $\{0,1\}^{\mathbb{N}}$.

- A collection $C \subseteq \mathbb{N}^{[\infty]}$ is cofinal, if for all $A \in \mathbb{N}^{[\infty]}$ there is $B \subseteq A$ such that $B \in C$.
- A base for C is a family $\mathcal{B} \subseteq C$ which is cofinal in C, i.e., for all $A \in C$, there is $B \in \mathcal{B}$ such that $B \subseteq A$.

Questions:

C analytic or co-analytic cofinal. Does C has a Borel base?
 Which cofinal families admit a (topologically) closed base?
 How "simple" can a base be? Simple = of a canonical form.
 Existence of Borel selectors for cofinal families.

An example

Let $\mathbb{N} = \bigcup_n K_n$ be a partition of \mathbb{N} with each K_n finite.

 $\mathcal{C}(K_n)_n = \{A \in \mathbb{N}^{[\infty]} : |A \cap K_n| \leq 1 \text{ for all } n\}.$

An example

Let $\mathbb{N} = \bigcup_n K_n$ be a partition of \mathbb{N} with each K_n finite.

 $\mathcal{C}(K_n)_n = \{A \in \mathbb{N}^{[\infty]} : |A \cap K_n| \leq 1 \text{ for all } n\}.$

$$\mathcal{I} = \{A \in \mathbb{N}^{[\infty]} : \sum_{n \in A} 1/n < \infty\}.$$

An example

Let $\mathbb{N} = \bigcup_n K_n$ be a partition of \mathbb{N} with each K_n finite.

 $\mathcal{C}(K_n)_n = \{A \in \mathbb{N}^{[\infty]} : |A \cap K_n| \leq 1 \text{ for all } n\}.$

$$\mathcal{I} = \{A \in \mathbb{N}^{[\infty]} : \sum_{n \in A} 1/n < \infty\}.$$

Let $K_n = \{m \in \mathbb{N} : n^2 \le m < (n+1)^2\}$, then $\mathcal{C}(K_n)_n \subseteq \mathcal{I}.$

Convergent sequences in sequentially compact spaces

X a Polish space. $\mathcal{B}_1(X)$ = Real valued function on X of the first Baire class. $\mathcal{B}_1(X)$ as a subspace of \mathbb{R}^X .

K is a Rosenthal compact, if it is homeormorphic to a compact subset of $\mathcal{B}_1(X)$. Every Rosenthal compact is sequentially compact. Let $(f_n)_n$ be a sequence of $K \subseteq \mathcal{B}_1(X)$.

 $\mathcal{C}(f_n)_n = \{A \in \mathbb{N}^{[\infty]} : (f_n)_{n \in A} \text{ is pointwise convergent}\}.$

As K is sequentially compact, then $C(f_n)_n$ is cofinal.

Theorem (P. Dodos, 2006 based on a work of G. Debs)

(i) $C(f_n)_n$ is co-analytic. If K is not first countable, then $C(f_n)_n$ is not Borel.

(ii) $C(f_n)_n$ has a Borel base.

Homogeneous sets for colorings

Ramsey's Theorem: Let $\varphi : \mathbb{N}^{[2]} \to 2$.

 $hom(\varphi) = \{ H \in \mathbb{N}^{[\infty]} : H \text{ is } \varphi \text{-homogeneous} \}$

is a closed cofinal family.

Homogeneous sets for colorings

Ramsey's Theorem: Let $\varphi : \mathbb{N}^{[2]} \to 2$.

 $hom(\varphi) = \{H \in \mathbb{N}^{[\infty]} : H \text{ is } \varphi\text{-homogeneous}\}$

is a closed cofinal family.

Theorem: The following families admit a base of the form $hom(\varphi)$ for a coloring $\varphi : \mathbb{N}^{[2]} \to 2$.

(1) Tall *p*-ideals.

(2) $\{A \in \mathbb{N}^{[\infty]} : (x_n)_{n \in A} \text{ is convergent}\}$ where $(x_n)_n$ is a sequence in a compact metric space.

(3) $nwd(X, \tau)$ where (X, τ) is regular without isolated points.

Connection with Ramsey type properties of ideals

 \mathcal{I}^+ all subsets of \mathbb{N} not belonging to \mathcal{I} .

Kaketov preorder:

 $\mathcal{I} \leq_{K} \mathcal{J}$, if there is $f : \omega \to \omega$ such that $f^{-1}(E) \in \mathcal{J}$ for all $E \in \mathcal{I}$

 $\boldsymbol{\mathcal{R}}$ ideal generated by the homogeneous sets of the random graph

Theorem (Hrusak-Meza) (i) $\omega \to (\mathcal{I}^+)_2^2$ iff $\mathcal{R} \not\leq_{\mathcal{K}} \mathcal{I}$.

(ii) $\mathcal{I}^+ \to (\mathcal{I}^+)_2^2$ iff $\mathcal{R} \not\leq_K \mathcal{I} \lceil A \text{ for all } A \in \mathcal{I}^+.$

There is φ such that $hom(\varphi) \subseteq \mathcal{I}$ iff $\mathcal{R} \leq_{\mathcal{K}} \mathcal{I}$.

Coloring of pairs does not suffice

Let $e = (r_n)_n$ be an enumeration of \mathbb{Q} .

Let $\psi: \mathbb{N}^{[3]} \to 2$ be given by

 $\psi\{k,l,m\} = 1 \quad \Leftrightarrow \quad |r_l - r_k| > |r_m - r_l|, \quad k < l < m.$

There is No $\varphi : \mathbb{N}^{[2]} \to 2$ such that $hom(\varphi) \subseteq hom(\psi)$.

Coloring of pairs does not suffice

Let $e = (r_n)_n$ be an enumeration of \mathbb{Q} .

Let $\psi: \mathbb{N}^{[3]} \to 2$ be given by

 $\psi\{k, l, m\} = 1 \quad \Leftrightarrow \quad |r_l - r_k| > |r_m - r_l|, \quad k < l < m.$

There is No $\varphi : \mathbb{N}^{[2]} \to 2$ such that $hom(\varphi) \subseteq hom(\psi)$.

Sierpinski's coloring of $\mathbb{N}^{[2]}$:

$$\varphi_e\{i,j\} = 1 \quad \Leftrightarrow \quad r_i < r_j, \quad i < j.$$

Theorem: Let $\varphi : \mathbb{N}^{[2]} \to 2$. There is $A \subseteq \mathbb{N}$ such that $(r_n)_{n \in A}$ is order isomorphic to \mathbb{Q} and

 $hom(\varphi_e[A) \subseteq hom(\varphi).$

Local version

Theorem: For any F_{σ} tall (i.e cofinal) ideal \mathcal{I} and any $A \in \mathcal{I}^+$ there is $B \in \mathcal{I}^+$ with $B \subseteq A$ and a coloring $\varphi : \mathbb{N}^{[2]} \to 2$ such that

 $hom(\varphi \lceil B) \subseteq \mathcal{I}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is an open question whether the previous fact holds for every tall Borel ideal (Hrusak-Meza).

Theorem: (Galvin, 1968) Let $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ be an open set and $A \subseteq \mathbb{N}$ infinite. There is $B \subseteq A$ infinite such that

 $B^{[\infty]} \cap \mathcal{O} = \emptyset \quad \text{or} \quad B^{[\infty]} \subseteq \mathcal{O}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem: (Galvin, 1968) Let $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ be an open set and $A \subseteq \mathbb{N}$ infinite. There is $B \subseteq A$ infinite such that

 $B^{[\infty]} \cap \mathcal{O} = \emptyset$ or $B^{[\infty]} \subseteq \mathcal{O}$.

For each $\mathcal{F} \subseteq \mathsf{FIN}$, let $\mathcal{O}_{\mathcal{F}} = \bigcup_{s \in \mathcal{F}} \{A \in \mathbb{N}^{[\infty]} : s \sqsubset A\}$ Every open set $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ is of the form $\mathcal{O}_{\mathcal{F}}$ for some $\mathcal{F} \subseteq \mathsf{FIN}$.

 $hom(\mathcal{F}) =$ the homogeneous sets for the partition given by $\mathcal{O}_{\mathcal{F}}$.

Theorem: (Galvin, 1968) Let $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ be an open set and $A \subseteq \mathbb{N}$ infinite. There is $B \subseteq A$ infinite such that

 $B^{[\infty]} \cap \mathcal{O} = \emptyset$ or $B^{[\infty]} \subseteq \mathcal{O}$.

For each $\mathcal{F} \subseteq \text{FIN}$, let $\mathcal{O}_{\mathcal{F}} = \bigcup_{s \in \mathcal{F}} \{A \in \mathbb{N}^{[\infty]} : s \sqsubset A\}$ Every open set $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ is of the form $\mathcal{O}_{\mathcal{F}}$ for some $\mathcal{F} \subseteq \text{FIN}$. $hom(\mathcal{F}) =$ the homogeneous sets for the partition given by $\mathcal{O}_{\mathcal{F}}$.

Theorem: Let C be a cofinal family. If C has a closed base, then there is $\mathcal{F} \subseteq FIN$ such that $hom(\mathcal{F}) \subseteq C$.

Fact: There is a cofinal ideal \mathcal{I} such that $hom(\mathcal{F}) \not\subseteq \mathcal{I}$ for all $\mathcal{F} \subseteq FIN$.

Theorem: (Galvin, 1968) Let $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ be an open set and $A \subseteq \mathbb{N}$ infinite. There is $B \subseteq A$ infinite such that

 $B^{[\infty]} \cap \mathcal{O} = \emptyset \quad \text{or} \quad B^{[\infty]} \subseteq \mathcal{O}.$

For each $\mathcal{F} \subseteq \text{FIN}$, let $\mathcal{O}_{\mathcal{F}} = \bigcup_{s \in \mathcal{F}} \{A \in \mathbb{N}^{[\infty]} : s \sqsubset A\}$ Every open set $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ is of the form $\mathcal{O}_{\mathcal{F}}$ for some $\mathcal{F} \subseteq \text{FIN}$. $hom(\mathcal{F}) =$ the homogeneous sets for the partition given by $\mathcal{O}_{\mathcal{F}}$.

Theorem: Let C be a cofinal family. If C has a closed base, then there is $\mathcal{F} \subseteq \mathsf{FIN}$ such that $hom(\mathcal{F}) \subseteq C$.

Fact: There is a cofinal ideal \mathcal{I} such that $hom(\mathcal{F}) \not\subseteq \mathcal{I}$ for all $\mathcal{F} \subseteq FIN$.

¿Which cofinal families admit a base of the form $hom(\mathcal{F})$?

$F_{\sigma\delta}$ families

Theorem: Let \mathcal{C} be a cofinal family such that

$$\mathcal{C}=\bigcap_n F_n$$

each F_n is F_{σ} hereditary and closed under finite changes. Then there is a $\mathcal{F} \subseteq \text{FIN}$ such that $hom(\mathcal{F}) \subseteq \mathcal{C}$.

$F_{\sigma\delta}$ families

Theorem: Let \mathcal{C} be a cofinal family such that

$$\mathcal{C}=\bigcap_n F_n$$

each F_n is F_{σ} hereditary and closed under finite changes. Then there is a $\mathcal{F} \subseteq \text{FIN}$ such that $hom(\mathcal{F}) \subseteq \mathcal{C}$.

Questions:

(Farah) Is every $F_{\sigma\delta}$ ideal of the previous form?

(Hrusak) Does any Borel tall ideal contains a F_{σ} tall ideal?

Let \mathcal{I} be a Borel ideal over \mathbb{N} . Is there $\mathcal{F} \subseteq \mathsf{FIN}$ such that

 $\mathit{hom}(\mathcal{F}) \subseteq \mathcal{I} \cup \mathcal{I}^{\perp}$

 $\mathcal{I}^{\perp} = \{ A \subseteq \mathbb{N} : A \cap B \text{ is finite for all } B \in \mathcal{I} \}$

A selector for a cofinal family $\mathcal C$ is $\Phi:\mathbb N^{[\infty]}\to\mathbb N^{[\infty]}$ such that

 $\Phi(A) \subseteq A \& \Phi(A) \in \mathcal{C}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

¿Which cofinal families admit Borel selectors?

A selector for a cofinal family $\mathcal C$ is $\Phi:\mathbb N^{[\infty]}\to\mathbb N^{[\infty]}$ such that

 $\Phi(A) \subseteq A \& \Phi(A) \in \mathcal{C}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¿Which cofinal families admit Borel selectors?

Theorem: $hom(\varphi)$ admits a Borel selector for each $\varphi : \mathbb{N}^{[2]} \to 2$. More generally

A selector for a cofinal family $\mathcal C$ is $\Phi:\mathbb N^{[\infty]}\to\mathbb N^{[\infty]}$ such that

 $\Phi(A) \subseteq A \& \Phi(A) \in \mathcal{C}.$

¿Which cofinal families admit Borel selectors?

Theorem: $hom(\varphi)$ admits a Borel selector for each $\varphi : \mathbb{N}^{[2]} \to 2$.

More generally

Theorem: If $\mathcal{O} \subseteq \mathbb{N}^{[\infty]}$ is clopen, then $hom(\mathcal{O})$ admits a Borel selector.

A \sqsubseteq -antichain $\mathcal{B} \subseteq FIN$ is a *front*, if every infinite set has an initial segment in \mathcal{B} .

A \sqsubseteq -antichain $\mathcal{B} \subseteq FIN$ is a *front*, if every infinite set has an initial segment in \mathcal{B} .

Theorem: Let \mathcal{B} be a front. There is a Borel map $\Phi: 2^{\mathcal{B}} \times \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$ s.t. $\Phi(\mathcal{F}, A) \subseteq A$ and $\Phi(\mathcal{F}, A) \in hom(\mathcal{F})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A \sqsubseteq -antichain $\mathcal{B} \subseteq FIN$ is a *front*, if every infinite set has an initial segment in \mathcal{B} .

Theorem: Let \mathcal{B} be a front. There is a Borel map $\Phi: 2^{\mathcal{B}} \times \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$ s.t. $\Phi(\mathcal{F}, A) \subseteq A$ and $\Phi(\mathcal{F}, A) \in hom(\mathcal{F})$.

Theorem: For each front \mathcal{B} , there is a coanalytic cofinal family \mathcal{I} such that $hom(\mathcal{F}) \not\subseteq \mathcal{I}$ for all $\mathcal{F} \subseteq \mathcal{B}$. There is a co-analytic Ramsey tall ideal \mathcal{I} , i.e.

 $\mathcal{I}^+
ightarrow (\mathcal{I}^+)_2^2.$

A \sqsubseteq -antichain $\mathcal{B} \subseteq FIN$ is a *front*, if every infinite set has an initial segment in \mathcal{B} .

Theorem: Let \mathcal{B} be a front. There is a Borel map $\Phi: 2^{\mathcal{B}} \times \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$ s.t. $\Phi(\mathcal{F}, A) \subseteq A$ and $\Phi(\mathcal{F}, A) \in hom(\mathcal{F})$.

Theorem: For each front \mathcal{B} , there is a coanalytic cofinal family \mathcal{I} such that $hom(\mathcal{F}) \not\subseteq \mathcal{I}$ for all $\mathcal{F} \subseteq \mathcal{B}$. There is a co-analytic Ramsey tall ideal \mathcal{I} , i.e.

 $\mathcal{I}^+
ightarrow (\mathcal{I}^+)_2^2.$

Questions:

(1) Is there a Borel map $\Phi : 2^{\mathsf{FIN}} \times \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$ such that $\Phi(\mathcal{F}, A) \subseteq A$ and $\Phi(\mathcal{F}, A) \in hom(\mathcal{F})$?

(2) Does any closed cofinal family admit a Borel selector?

Uniform selectivity

An ideal \mathcal{I} is uniformly selective if there is a Borel function Φ such that whenever $(D_n)_n$ is a decreasing sequence of sets not in \mathcal{I} , then $\Phi((D_n)_n) = D$ is an infinite set not in \mathcal{I} such that $D/n \subseteq D_n$ for all $n \in D$.

Let \mathcal{A} be an almost disjoint family of infinite subsets of \mathbb{N} . Then $\mathcal{I}(\mathcal{A})$, the ideal generated by \mathcal{A} , is selective (Mathias).

Uniform selectivity

An ideal \mathcal{I} is uniformly selective if there is a Borel function Φ such that whenever $(D_n)_n$ is a decreasing sequence of sets not in \mathcal{I} , then $\Phi((D_n)_n) = D$ is an infinite set not in \mathcal{I} such that $D/n \subseteq D_n$ for all $n \in D$.

Let \mathcal{A} be an almost disjoint family of infinite subsets of \mathbb{N} . Then $\mathcal{I}(\mathcal{A})$, the ideal generated by \mathcal{A} , is selective (Mathias).

Theorem: Any F_{σ} selective ideal is uniformly selective. This holds for $\mathcal{I}(\mathcal{A})$ when \mathcal{A} is a closed almost disjoint family.

Question: Does the previous result hold for any analytic selective ideal?