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Bases for cofinal families

NI the collection of infinite subsets of N as subspace of {0, 1}".

A collection C C NI is cofinal, if for all A € N[>l there is B C A
such that B € C.

A base for C is a family B C C which is cofinal in C, i.e., for all
A € C, there is B € B such that B C A.
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A collection C C NI is cofinal, if for all A € N[>l there is B C A
such that B € C.
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Questions:

(1) C analytic or co-analytic cofinal. Does C has a Borel base?

(2) Which cofinal families admit a (topologically) closed base?

(3) How "simple” can a base be? Simple = of a canonical form.
)

(4) Existence of Borel selectors for cofinal families.
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An example

Let N =, K, be a partition of N with each K, finite.

C(Kn)n={Ae Nl JAnK,| <1 forall n}.

T={AeNF: Y 1/n< oo}

neA

Let K, ={m e N: n> <m< (n+1)?}, then

C(Kp)n C T.



Convergent sequences in sequentially compact spaces

X a Polish space. B1(X)= Real valued function on X of the first
Baire class. B1(X) as a subspace of RX.

K is a Rosenthal compact, if it is homeormorphic to a compact
subset of B1(X). Every Rosenthal compact is sequentially compact.
Let (f,)n be a sequence of K C By(X).

C(f)n = {A e N>l (£),ca is pointwise convergent}.
As K is sequentially compact, then C(f,), is cofinal.
Theorem (P. Dodos, 2006 based on a work of G. Debs)

(i) C(fn)n is co-analytic. If K is not first countable, then C(f,), is
not Borel.

(i) C(fn)n has a Borel base.



Homogeneous sets for colorings
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Homogeneous sets for colorings

Ramsey’s Theorem: Let ¢ : NI& — 2.
hom(p) = {H € NI*®! : H is >-homogeneous}

is a closed cofinal family.

Theorem: The following families admit a base of the form
hom() for a coloring ¢ : NIl — 2.

(1) Tall p-ideals.

(2) {A e Nl (x,)nea is convergent}

where (x,), is a sequence in a compact metric space.

(3) nwd(X, 7) where (X, 7) is regular without isolated points.



Connection with Ramsey type properties of ideals

Z7 all subsets of N not belonging to Z.

Kaketov preorder:

T <k J, if thereis f : w — w such that f~Y(E) € J forall E€ T
R ideal generated by the homogeneous sets of the random graph
Theorem (Hrusak-Meza) (i) w — (Z7)3 iff R £k Z.

(i) It = (Z1)3 iff R Lk I[Aforall AcTT.

There is ¢ such that hom(p) CZ iff R <k Z.



Coloring of pairs does not suffice
Let e = (rn), be an enumeration of Q.

Let ¥ : NI — 2 be given by
Pk, I,m} =1 < |n—r>|m—nl, k<Il<m.

There is No ¢ : NIl — 2 such that hom(y) C hom(v)).



Coloring of pairs does not suffice
Let e = (rn), be an enumeration of Q.

Let ¥ : NI — 2 be given by
Pk, I,m} =1 < |n—r>|m—nl, k<Il<m.
There is No ¢ : NIl — 2 such that hom(y) C hom(v)).
Sierpinski's coloring of N2
veli,j} =1 & n<r, i<j.

Theorem: Let ¢ : N[ — 2. There is A C N such that (fn)nea is
order isomorphic to Q and

hom(pe[A) C hom(y).



Local version

Theorem: For any F, tall (i.e cofinal) ideal Z and any A € Z" there
is B e It with B C A and a coloring ¢ : NI2l — 2 such that

hom(p[B) C T.

It is an open question whether the previous fact holds for every tall
Borel ideal (Hrusak-Meza).
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Galvin's Lemma and closed basis

Theorem: (Galvin, 1968) Let © C NI be an open set and A C N
infinite. There is B C A infinite such that

Bl¥XInO =0 or Bl®lcCO.

For each F C FIN, let Or = J,c{A € N®I: s = A}
Every open set O C NIl js of the form O for some F C FIN.

hom(F) = the homogeneous sets for the partition given by Or.

Theorem: Let C be a cofinal family. If C has a closed base, then
there is 7 C FIN such that hom(F) C C.

Fact: There is a cofinal ideal Z such that hom(F) Z Z for all
F C FIN.

i Which cofinal families admit a base of the form hom(F)?
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F,s families

Theorem: Let C be a cofinal family such that
Cc=(F
n

each F, is F, hereditary and closed under finite changes. Then
there is a F C FIN such that hom(F) C C.

Questions:

(Farah) Is every F,s ideal of the previous form?
(Hrusak) Does any Borel tall ideal contains a F, tall ideal?
Let 7 be a Borel ideal over N. Is there 7 C FIN such that

hom(F) CTUT

7t = {ACN: AN Bis finite for all B € T}
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Borel selectors for cofinal families

A selector for a cofinal family C is ® : N>l — NI such that
P(A) C A & P(A) eC.
i Which cofinal families admit Borel selectors?
Theorem: hom(y) admits a Borel selector for each ¢ : NI — 2.

More generally

Theorem: If O C NI*l is clopen, then hom(©) admits a Borel
selector.
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A C-antichain B C FIN is a front, if every infinite set has an initial
segment in B.

Theorem: Let BB be a front. There is a Borel map
® : 28 x NIl s Nl*l st &(F, A) C A and &(F, A) € hom(F).

Theorem: For each front B, there is a coanalytic cofinal family Z
such that hom(F) Z T for all F C B.
There is a co-analytic Ramsey tall ideal Z, i.e.

Tt — (Z7)3.

Questions:
(1) Is there a Borel map ¢ : 2FIN 5 Nl —s Nl such that

®(F,A) C Aand &(F,A) € hom(F)?

(2) Does any closed cofinal family admit a Borel selector?



Uniform selectivity

An ideal 7 is uniformly selective if there is a Borel function ¢ such
that whenever (D,), is a decreasing sequence of sets not in Z, then
®((Dp)n) = D is an infinite set not in Z such that D/n C D,
forall ne D.

Let A be an almost disjoint family of infinite subsets of N. Then
Z(.A), the ideal generated by A, is selective (Mathias).



Uniform selectivity

An ideal 7 is uniformly selective if there is a Borel function ¢ such
that whenever (D,), is a decreasing sequence of sets not in Z, then
®((Dp)n) = D is an infinite set not in Z such that D/n C D,
forall ne D.

Let A be an almost disjoint family of infinite subsets of N. Then
Z(.A), the ideal generated by A, is selective (Mathias).

Theorem: Any F, selective ideal is uniformly selective.
This holds for Z(.A) when A is a closed almost disjoint family.

Question: Does the previous result hold for any analytic selective
ideal?



