Spaces that are discretely generated at infinity

Rodrigo Hernández-Gutiérrez
rodrigo.hdz@gmail.com

Universidad Autónoma Metropolitana (UAM), Iztapalapa
Joint work with Alan Dow

September 12, 2016

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D}$.

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

This notion was defined in a paper (2002) by Dow, Tkachenko, Tkachuk and Wilson.

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

This notion was defined in a paper (2002) by Dow, Tkachenko, Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

This notion was defined in a paper (2002) by Dow, Tkachenko, Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated but there are discretely generated spaces of any given tightness.

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

This notion was defined in a paper (2002) by Dow, Tkachenko, Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated but there are discretely generated spaces of any given tightness.

Let $X=\kappa \cup\{\infty\}$, where κ is discrete and the neighborhoods of ∞ are of the form $A \cup\{\infty\}$, where $|\kappa \backslash A|<\kappa$.

Discretely generated spaces

A space X is discretely generated at a point p if for every $A \subset X$ with $p \in \bar{A}$ there is a discrete set $D \subset A$ such that $p \in \bar{D} . X$ is discretely generated if it is discretely generated at each of its points.

This notion was defined in a paper (2002) by Dow, Tkachenko, Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated but there are discretely generated spaces of any given tightness.

Let $X=\kappa \cup\{\infty\}$, where κ is discrete and the neighborhoods of ∞ are of the form $A \cup\{\infty\}$, where $|\kappa \backslash A|<\kappa$. Then X is discretly generated with tightness equal to κ.

Discretely generated examples

Discretely generated examples

- It was shown that box products of monotonically normal spaces (Tkachuk and Wilson, 2012) and countable products of monotonically normal spaces (Alas and Wilson, 2013) are discretely generated.

Discretely generated examples

- It was shown that box products of monotonically normal spaces (Tkachuk and Wilson, 2012) and countable products of monotonically normal spaces (Alas and Wilson, 2013) are discretely generated.

Example: linearly ordered spaces

Discretely generated examples

- It was shown that box products of monotonically normal spaces (Tkachuk and Wilson, 2012) and countable products of monotonically normal spaces (Alas and Wilson, 2013) are discretely generated.

Example: linearly ordered spaces

- A regular, maximal (countable) space is not discretely generated at any point.

Discretely generated examples

- It was shown that box products of monotonically normal spaces (Tkachuk and Wilson, 2012) and countable products of monotonically normal spaces (Alas and Wilson, 2013) are discretely generated.

Example: linearly ordered spaces

- A regular, maximal (countable) space is not discretely generated at any point.

Maximal $=$ topology is maximal among crowded topologies

Discretely generated examples

- It was shown that box products of monotonically normal spaces (Tkachuk and Wilson, 2012) and countable products of monotonically normal spaces (Alas and Wilson, 2013) are discretely generated.

Example: linearly ordered spaces

- A regular, maximal (countable) space is not discretely generated at any point.

Maximal $=$ topology is maximal among crowded topologies
Discrete subspaces of maximal spaces are closed.

Compact spaces

A compact space X is weakly discretely generated:

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$.

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$. (this follows from a result by Tkachuk, 1988)

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$. (this follows from a result by Tkachuk, 1988)

But some are not discretely generated:

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$. (this follows from a result by Tkachuk, 1988)

But some are not discretely generated: take $\mathbb{R} \cup\{p\} \subset \beta \mathbb{R}$, where p is a remote point.

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$. (this follows from a result by Tkachuk, 1988)

But some are not discretely generated: take $\mathbb{R} \cup\{p\} \subset \beta \mathbb{R}$, where p is a remote point.
p is a remote point of $\beta X \equiv p \notin \bar{N}$ for any N nowhere dense in X.

Compact spaces

A compact space X is weakly discretely generated: if $A \subset X$ is not closed, then there is $D \subset A$ discrete, such that $\bar{D} \backslash A \neq \emptyset$. (this follows from a result by Tkachuk, 1988)

But some are not discretely generated: take $\mathbb{R} \cup\{p\} \subset \beta \mathbb{R}$, where p is a remote point.
p is a remote point of $\beta X \equiv p \notin \bar{N}$ for any N nowhere dense in X.

Question
(Alas, Junqueria and Wilson, 2014) Is there a locally compact and discretely generated space with its one-point compactification NOT discretely generated?

First countable examples

Theorem

There is a first countable locally compact space with its one-point compactification not discretely generated if either:
(1) CH holds (Alas, Junqueira, Wilson, 2014) or
(2) there is a Souslin tree. (Aurichi 2009)

First countable examples

Theorem

There is a first countable locally compact space with its one-point compactification not discretely generated if either:
(1) CH holds (Alas, Junqueira, Wilson, 2014) or
(2) there is a Souslin tree. (Aurichi 2009)

How can we modify the CH example to obtain one under MA?

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}.

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$.

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$. Then

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$. Then

- X is dg at $\omega \times{ }^{\omega} 2$ by first countability,

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$. Then

- X is dg at $\omega \times^{\omega} 2$ by first countability,
- X is dg at $[0, \mathfrak{p})$ because local character is $<\mathfrak{p}$

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$. Then

- X is dg at $\omega \times{ }^{\omega} 2$ by first countability,
- X is dg at $[0, \mathfrak{p})$ because local character is $<\mathfrak{p}$ and because it is linearly ordered, but

Example under MA

Theorem
(HG, 2014) If $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$, there is a compact space that is discretely generated at all points except one.

There is a closed set F remote from $\omega \times{ }^{\omega} 2$ with a base linearly ordered of type \mathfrak{p}. Consider the quotient space

$$
X=\left(\omega \times{ }^{\omega} 2\right) \cup[0, \mathfrak{p}) \cup\{F\}
$$

of $\beta\left(\omega \times{ }^{\omega} 2\right)$. Then

- X is dg at $\omega \times^{\omega} 2$ by first countability,
- X is dg at $[0, \mathfrak{p})$ because local character is $<\mathfrak{p}$ and because it is linearly ordered, but
- X is NOT discretely generated at $\{F\}$.

The harder part

Theorem
(Dow-HG, 2015) PFA implies that every locally compact, discretely generated space of countable tightness has its one point compactification discretely generated.

The harder part

Theorem
(Dow-HG, 2015) PFA implies that every locally compact, discretely generated space of countable tightness has its one point compactification discretely generated.

Notice that the $\mathfrak{p}=\operatorname{cof}(\mathcal{M})$ example exists under PFA.

The harder part

Let X be locally compact, discretely generated and countably tight.

The harder part

Let X be locally compact, discretely generated and countably tight. Let $A \subset X$ be non-compact (so that $\infty \in \bar{A}$).

The harder part

Let X be locally compact, discretely generated and countably tight. Let $A \subset X$ be non-compact (so that $\infty \in \bar{A}$). Passing to a subspace, we me assume that A is dense in X.

The harder part

Let X be locally compact, discretely generated and countably tight. Let $A \subset X$ be non-compact (so that $\infty \in \bar{A}$). Passing to a subspace, we me assume that A is dense in X. It is possible to reduce this situation to one of the two following cases:

The harder part

Let X be locally compact, discretely generated and countably tight. Let $A \subset X$ be non-compact (so that $\infty \in \bar{A}$). Passing to a subspace, we me assume that A is dense in X. It is possible to reduce this situation to one of the two following cases:

Case $1 A$ is countable.

The harder part

Let X be locally compact, discretely generated and countably tight. Let $A \subset X$ be non-compact (so that $\infty \in \bar{A}$). Passing to a subspace, we me assume that A is dense in X. It is possible to reduce this situation to one of the two following cases:

Case $1 A$ is countable.
Case 2 No countable subset of A has ∞ in its closure and ∞ has character ω_{1} (in $X \cup\{\infty\}$).

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

$$
\begin{gathered}
\square \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}}
\end{gathered}{ }_{Y} \prod^{\square}
$$

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

$$
\begin{gathered}
\square \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
Y \\
Y=X \backslash \bigcup\left\{\overline{A_{n}}: n<\omega\right\}
\end{gathered}
$$

Non-trivial case: $\infty \in \bar{Y}$.

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

$$
\begin{gathered}
\square \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}} \\
\overline{A_{i}}
\end{gathered} \frac{\square}{\vdots}{ }_{Y}^{\infty}
$$

Non-trivial case: $\infty \in \bar{Y}$.
If there is a countable, discrete and non-compact set $D \subset Y$, we are done:

Case 1: A is countable.

There is a partition $A=\bigcup\left\{A_{n}: n<\omega\right\}$, where each $\overline{A_{n}}$ is compact and has dense interior.

$$
\begin{gathered}
\square \overline{A_{i}} \overline{\overline{A_{i}}} \overline{\overline{A_{i}}} \overline{\overline{A_{i}}} \overline{\overline{A_{i}}} \frac{\square}{Y} \\
Y=X \backslash \bigcup\left\{\overline{A_{n}}: n<\omega\right\}
\end{gathered}
$$

Non-trivial case: $\infty \in \bar{Y}$.
If there is a countable, discrete and non-compact set $D \subset Y$, we are done: by our hypothesis there is a countable discrete set with D in its closure.

Free ω_{1}-sequence

A sequence $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset K$ is a free ω_{1}-sequence if for every $\beta<\omega_{1}$,

$$
\overline{\left\{x_{\alpha}: \alpha<\beta\right\}} \cap \overline{\left\{x_{\alpha}: \beta \leq \alpha<\omega_{1}\right\}}=\emptyset
$$

Free ω_{1}-sequence

A sequence $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset K$ is a free ω_{1}-sequence if for every $\beta<\omega_{1}$,

$$
\overline{\left\{x_{\alpha}: \alpha<\beta\right\}} \cap \overline{\left\{x_{\alpha}: \beta \leq \alpha<\omega_{1}\right\}}=\emptyset
$$

Lemma
Let K be a compact space and $p \in K$ such that $K \backslash\{p\}$ is countably tight, p is not isolated and p is not in the closure of any countable discrete subset of K. Then there is a free ω_{1}-sequence in K such that p is its only complete accumulation point.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure. Let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset Y$ be a free ω_{1}-sequence.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure. Let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset Y$ be a free ω_{1}-sequence.

Fix an enumeration $A_{n}=\{a(n, m): m<\omega\}$.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure. Let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset Y$ be a free ω_{1}-sequence.

Fix an enumeration $A_{n}=\{a(n, m): m<\omega\}$. For each $\alpha<\omega_{1}$, let $E_{\alpha} \in[\omega]^{\omega}$ and $f_{\alpha}: E_{\alpha} \rightarrow \omega$ be such that $\left\{a\left(n, f_{\alpha}(n)\right): n \in E_{\alpha}\right\}$ converges to x_{α}.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure. Let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset Y$ be a free ω_{1}-sequence.

Fix an enumeration $A_{n}=\{a(n, m): m<\omega\}$. For each $\alpha<\omega_{1}$, let $E_{\alpha} \in[\omega]^{\omega}$ and $f_{\alpha}: E_{\alpha} \rightarrow \omega$ be such that $\left\{a\left(n, f_{\alpha}(n)\right): n \in E_{\alpha}\right\}$ converges to x_{α}. By $\mathbf{M A}(\text { ctble })_{\omega_{1}}$, there is $f: \omega \rightarrow \omega$ such that f_{α} is equal to f infinitely often, for all α.

Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure. Let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subset Y$ be a free ω_{1}-sequence.

Fix an enumeration $A_{n}=\{a(n, m): m<\omega\}$. For each $\alpha<\omega_{1}$, let $E_{\alpha} \in[\omega]^{\omega}$ and $f_{\alpha}: E_{\alpha} \rightarrow \omega$ be such that $\left\{a\left(n, f_{\alpha}(n)\right): n \in E_{\alpha}\right\}$ converges to x_{α}. By $\mathbf{M A}(\text { ctble })_{\omega_{1}}$, there is $f: \omega \rightarrow \omega$ such that f_{α} is equal to f infinitely often, for all α.

Then $\left\{a\left(n, f_{\alpha}(n)\right): n \in E_{\alpha}\right\}$ converges to ∞.

Case 2: No countable subset of A has ∞ in its closure and

 ∞ has character ω_{1}.(We will assume first countability to simplify this proof)

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)
Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)
Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)
Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$,

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)

Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$,
(iii) \mathcal{N}_{p} is a finite \in-chain of countable elementary submodels of $(H(\kappa), \in)$,

Case 2: No countable subset of A has ∞ in its closure and

 ∞ has character ω_{1}.(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)
Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$,
(iii) \mathcal{N}_{p} is a finite \in-chain of countable elementary submodels of $(H(\kappa), \in)$,
(iv) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then there is $N \in \mathcal{N}_{p}$ and $j \in 2$ such that $a_{i} \in N$ iff $B_{i} \in N$ iff $i=j$,

Case 2: No countable subset of A has ∞ in its closure and

 ∞ has character ω_{1}.(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)
Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$,
(iii) \mathcal{N}_{p} is a finite \in-chain of countable elementary submodels of $(H(\kappa), \in)$,
(iv) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then there is $N \in \mathcal{N}_{p}$ and $j \in 2$ such that $a_{i} \in N$ iff $B_{i} \in N$ iff $i=j$,
(v) if $N \in \mathcal{N}_{p}$ and $\langle a, B\rangle \in H_{p} \backslash N$ then for every $a^{\prime} \in A \cap N$ and every $B^{\prime} \in \mathcal{B}$ with $a^{\prime} \in B^{\prime}$ it follows that $a \notin B^{\prime}$.

Case 2: No countable subset of A has ∞ in its closure and

 ∞ has character ω_{1}.(We will assume first countability to simplify this proof)
There is a point-countable π-base \mathcal{B} of X such that each of its members has compact closure. (Shapirovskii, Todorčević)

Let \mathbb{P} be the set of all $p=\left\langle H_{p}, \mathcal{N}_{p}\right\rangle$ such that the following holds:
(i) H_{p} is a finite set of pairs $\langle a, B\rangle$ where $a \in A \cap B$ and $B \in \mathcal{B}$,
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$,
(iii) \mathcal{N}_{p} is a finite \in-chain of countable elementary submodels of $(H(\kappa), \in)$,
(iv) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then there is $N \in \mathcal{N}_{p}$ and $j \in 2$ such that $a_{i} \in N$ iff $B_{i} \in N$ iff $i=j$,
(v) if $N \in \mathcal{N}_{p}$ and $\langle a, B\rangle \in H_{p} \backslash N$ then for every $a^{\prime} \in A \cap N$ and every $B^{\prime} \in \mathcal{B}$ with $a^{\prime} \in B^{\prime}$ it follows that $a \notin B^{\prime}$.
$q \leq p$ if $H_{p} \subset H_{q}$ and $\mathcal{N}_{p} \subset \mathcal{N}_{q}$

Case 2: No countable subset of A has ∞ in its closure and

 ∞ has character ω_{1}.\mathbb{P} is proper (we will not prove this).

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
\mathbb{P} is proper (we will not prove this). Given a generic filter G,

$$
D=\{a: \exists p \in G \exists B \in \mathcal{B}(\langle a, B\rangle \in G)\}
$$

is discrete by property (ii)

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
\mathbb{P} is proper (we will not prove this). Given a generic filter G,

$$
D=\{a: \exists p \in G \exists B \in \mathcal{B}(\langle a, B\rangle \in G)\}
$$

is discrete by property (ii):
(ii) if $\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle$ are in H_{p} then $a_{i} \notin B_{1-i}$ for $i \in 2$

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
\mathbb{P} is proper (we will not prove this). Given a generic filter G,

$$
D=\{a: \exists p \in G \exists B \in \mathcal{B}(\langle a, B\rangle \in G)\}
$$

is discrete by property (ii):

$$
\begin{aligned}
& \text { (ii) if }\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle \text { are in } H_{p} \text { then } a_{i} \notin B_{1-i} \text { for } \\
& i \in 2 \\
& \text { Let }\left\{U_{\alpha}: \alpha<\omega_{1}\right\} \text { be a base at } \infty \text {. }
\end{aligned}
$$

Case 2: No countable subset of A has ∞ in its closure and ∞ has character ω_{1}.
\mathbb{P} is proper (we will not prove this). Given a generic filter G,

$$
D=\{a: \exists p \in G \exists B \in \mathcal{B}(\langle a, B\rangle \in G)\}
$$

is discrete by property (ii):

$$
\text { (ii) if }\left\langle a_{0}, B_{0}\right\rangle \neq\left\langle a_{1}, B_{1}\right\rangle \text { are in } H_{p} \text { then } a_{i} \notin B_{1-i} \text { for }
$$

$$
i \in 2
$$

Let $\left\{U_{\alpha}: \alpha<\omega_{1}\right\}$ be a base at ∞. Then, given $\alpha<\omega_{1}$, the set

$$
D_{\alpha}=\left\{p \in P: \exists\langle a, B\rangle \in H_{p}\left(a \in U_{\alpha}\right)\right\}
$$

is dense.

Proof that D_{α} is dense

Let $p \in \mathbb{P}$,

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$.

Proof that D_{α} is dense

$$
\text { Let } p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\} \text {. Consider } p \in M \prec H(\kappa) \text {. }
$$

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$. Finally, choose $a_{k} \in B_{k} \cap A$.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$. Finally, choose $a_{k} \in B_{k} \cap A$.

Define q such that $H_{q}=H_{p} \cup\left\{\left\langle a_{k}, B_{k}\right\rangle\right\}$ and $\mathcal{N}_{q}=\mathcal{N}_{p} \cup\{M\}$.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$. Finally, choose $a_{k} \in B_{k} \cap A$.

Define q such that $H_{q}=H_{p} \cup\left\{\left\langle a_{k}, B_{k}\right\rangle\right\}$ and $\mathcal{N}_{q}=\mathcal{N}_{p} \cup\{M\}$.
Condition (b) was needed for

$$
\begin{aligned}
& \text { (v) if } N \in \mathcal{N}_{p} \text { and }\langle a, B\rangle \in H_{p} \backslash N \text { then for every } \\
& a^{\prime} \in A \cap N \text { and every } B^{\prime} \in \mathcal{B} \text { with } a^{\prime} \in B^{\prime} \text { it follows that } \\
& a \notin B^{\prime} .
\end{aligned}
$$

which we need for properness.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$. Finally, choose $a_{k} \in B_{k} \cap A$.

Define q such that $H_{q}=H_{p} \cup\left\{\left\langle a_{k}, B_{k}\right\rangle\right\}$ and $\mathcal{N}_{q}=\mathcal{N}_{p} \cup\{M\}$.
Condition (b) was needed for
(v) if $N \in \mathcal{N}_{p}$ and $\langle a, B\rangle \in H_{p} \backslash N$ then for every $a^{\prime} \in A \cap N$ and every $B^{\prime} \in \mathcal{B}$ with $a^{\prime} \in B^{\prime}$ it follows that $a \notin B^{\prime}$.
which we need for properness. Then $q \in \mathbb{P} \cap D_{\alpha}$ and $q \leq p$.

Proof that D_{α} is dense

Let $p \in \mathbb{P}, H_{p}=\left\{\left\langle a_{i}, B_{i}\right\rangle: i<k\right\}$. Consider $p \in M \prec H(\kappa)$.
(a) $V=U_{\alpha} \backslash\left(\bigcup\left\{\overline{B_{i}}: i<k\right\}\right)$ is an open neighborhood of ∞ so it's not separable.
(b) $\mathcal{C}=\{B \in \mathcal{B}: \exists a \in M \cap A(a \in B)\}$ is countable.

Thus, there is $B_{k} \in \mathcal{B} \backslash \mathcal{C}$ contained in $V(|\mathcal{B}|>\omega)$. Finally, choose $a_{k} \in B_{k} \cap A$.

Define q such that $H_{q}=H_{p} \cup\left\{\left\langle a_{k}, B_{k}\right\rangle\right\}$ and $\mathcal{N}_{q}=\mathcal{N}_{p} \cup\{M\}$.
Condition (b) was needed for
(v) if $N \in \mathcal{N}_{p}$ and $\langle a, B\rangle \in H_{p} \backslash N$ then for every $a^{\prime} \in A \cap N$ and every $B^{\prime} \in \mathcal{B}$ with $a^{\prime} \in B^{\prime}$ it follows that $a \notin B^{\prime}$.
which we need for properness. Then $q \in \mathbb{P} \cap D_{\alpha}$ and $q \leq p$. \square

Thank you

