Q

Jörg Brendle

Kobe University
Oaxaca, September 14, 2016

Q-sets

$X \subseteq 2^{\omega}$ is Q-set:
X uncountable and every subset of X is a relative G_{δ}.

Q-sets

$X \subseteq 2^{\omega}$ is Q-set:
X uncountable and every subset of X is a relative G_{δ}.
X Q-set $\Longrightarrow 2^{|X|}=\mathfrak{c} \Longrightarrow|X|<\mathfrak{c}$.
\exists Q-set $\Longrightarrow 2^{\omega_{1}}=c$.

Q-sets

$X \subseteq 2^{\omega}$ is Q-set:
X uncountable and every subset of X is a relative G_{δ}.
X Q-set $\Longrightarrow 2^{|X|}=\mathfrak{c} \Longrightarrow|X|<\mathfrak{c}$.
\exists Q-set $\Longrightarrow 2^{\omega_{1}}=c$.
$\mathrm{MA} \Longrightarrow$ every uncountable $X \subseteq 2^{\omega}$ of size $<\mathfrak{c}$ is Q .

Q-sets

$X \subseteq 2^{\omega}$ is Q-set:
X uncountable and every subset of X is a relative G_{δ}.
X Q-set $\Longrightarrow 2^{|X|}=\mathfrak{c} \Longrightarrow|X|<\mathfrak{c}$.
\exists Q-set $\Longrightarrow 2^{\omega_{1}}=c$.
$\mathrm{MA} \Longrightarrow$ every uncountable $X \subseteq 2^{\omega}$ of size $<\mathfrak{c}$ is Q .
Przymusiński (1980): \exists Q-set $\Longrightarrow \exists$ Q-set of size \aleph_{1} all of whose finite powers are Q.

Squares of Q-sets

Fleissner claimed (1983): CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q).

Squares of Q-sets

Fleissner claimed (1983): CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q).
more explicit claim: CON (\exists Q-set of size \aleph_{2} and $\forall X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\} \subseteq 2^{\omega}$, the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is not a relative G_{δ} in X^{2}).

Squares of Q-sets

Fleissner claimed (1983): CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q).
more explicit claim: CON (\exists Q-set of size \aleph_{2} and $\forall X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\} \subseteq 2^{\omega}$, the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is not a relative G_{δ} in X^{2}).
this is false!!!

Squares of Q-sets

Fleissner claimed (1983): CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q).
more explicit claim: CON (\exists Q-set of size \aleph_{2} and $\forall X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\} \subseteq 2^{\omega}$, the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is not a relative G_{δ} in X^{2}).
this is false!!!
Theorem (Miller)
If $\exists Q$-set of size \aleph_{2} then there is a set of reals $X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\}$ such that the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is a relative G_{δ} in X^{2}.

Squares of Q-sets

Fleissner claimed (1983): CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q).
more explicit claim: CON (\exists Q-set of size \aleph_{2} and
$\forall X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\} \subseteq 2^{\omega}$, the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is not a relative G_{δ} in X^{2}).
this is false!!!
Theorem (Miller)
If $\exists Q$-set of size \aleph_{2} then there is a set of reals $X=\left\{x_{\alpha}: \alpha<\omega_{2}\right\}$ such that the set $\left\{\left(x_{\alpha}, x_{\beta}\right): \alpha<\beta<\omega_{2}\right\}$ is a relative G_{δ} in X^{2}.

Open Problem

CON ($\exists \mathrm{Q}$-set of size \aleph_{2} and no square of a set of reals of size \aleph_{2} is Q$)$?

Squares of Q-sets 2

Question (Miller)

$\operatorname{CON}\left(\exists \mathrm{Q}\right.$-set $X\left(\right.$ of size $\left.\aleph_{1}\right)$ such that X^{2} is not Q$)$?

Squares of Q-sets 2

Question (Miller)
$\operatorname{CON}\left(\exists \mathrm{Q}\right.$-set $X\left(\right.$ of size $\left.\aleph_{1}\right)$ such that X^{2} is not Q$)$?

Theorem (J. Br. 2015)
$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.

Squares of Q-sets 2

Question (Miller)
$\operatorname{CON}\left(\exists \mathrm{Q}\right.$-set $X\left(\right.$ of size $\left.\aleph_{1}\right)$ such that X^{2} is not Q$)$?

Theorem (J. Br. 2015)
CON $\left(\exists Q\right.$-set X of size κ such that X^{2} is not Q), κ uncountable.
Theorem (Miller 2016)
If $|X|=\aleph_{1}$ and X^{2} is Q, then all of its finite powers are Q.

Squares of Q-sets 2

Question (Miller)

$\operatorname{CON}\left(\exists \mathrm{Q}\right.$-set X (of size \aleph_{1}) such that X^{2} is not Q$)$?

Theorem (J. Br. 2015)
CON ($\exists Q$-set X of size κ such that X^{2} is not Q), κ uncountable.

Theorem (Miller 2016)
If $|X|=\aleph_{1}$ and X^{2} is Q, then all of its finite powers are Q.

Open Problem (Miller)
$\operatorname{CON}\left(\exists X\right.$ such that X^{2} is Q but X^{3} is not $)$.

Rough outline of proof

Theorem (J. Br. 2015)
$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.

Rough outline of proof

Theorem (J. Br. 2015)
$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.
Proof outline. Add κ Cohen reals $C=\left\{c_{\alpha}: \alpha<\kappa\right\}$.

Rough outline of proof

Theorem (J. Br. 2015)

$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.
Proof outline. Add κ Cohen reals $C=\left\{c_{\alpha}: \alpha<\kappa\right\}$.
Make C into a Q-set by an fsi of length κ^{+}, going through all subsets of C by book-keeping, turning them into relative G_{δ} 's by ccc forcing.

Rough outline of proof

Theorem (J. Br. 2015)

$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.
Proof outline. Add κ Cohen reals $C=\left\{c_{\alpha}: \alpha<\kappa\right\}$.
Make C into a Q-set by an fsi of length κ^{+}, going through all subsets of C by book-keeping, turning them into relative G_{δ} 's by ccc forcing.

To show that C^{2} is not a Q-set, prove that $\left\{\left(c_{\alpha}, c_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not relative G_{δ} in C^{2}.

Rough outline of proof

Theorem (J. Br. 2015)

$\operatorname{CON}\left(\exists Q\right.$-set X of size κ such that X^{2} is not $\left.Q\right), \kappa$ uncountable.
Proof outline. Add κ Cohen reals $C=\left\{c_{\alpha}: \alpha<\kappa\right\}$.
Make C into a Q-set by an fsi of length κ^{+}, going through all subsets of C by book-keeping, turning them into relative G_{δ} 's by ccc forcing.

To show that C^{2} is not a Q-set, prove that $\left\{\left(c_{\alpha}, c_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not relative G_{δ} in C^{2}.
no contradiction to Miller's result!!!

Definition of the forcing

$V \vDash \mathrm{GCH}$.

Definition of the forcing

$V \vDash \mathrm{GCH}$.

$\left(\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}\right)$finite support iteration of ccc forcing.

Definition of the forcing

$V \vDash$ GCH.

($\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}$) finite support iteration of ccc forcing. Recursive definition with finitary conditions.

Definition of the forcing

$V \vDash$ GCH.
($\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}$) finite support iteration of ccc forcing.
Recursive definition with finitary conditions.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

Definition of the forcing

($\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}$) finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t. $\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.

Definition of the forcing

($\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}$) finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.

Definition of the forcing

($\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}$) finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.
- $(\gamma \geq 1) \mathbb{P}_{\gamma+1}$ consists of functions p with $\operatorname{dom}(p)=\gamma+1$, $p \upharpoonright \gamma \in \mathbb{P}_{\gamma}$ and $p(\gamma) \subseteq\left(2^{<\omega} \cup \kappa\right) \times \omega$ finite s.t.

Definition of the forcing

$\left(\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}\right)$finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.
- $(\gamma \geq 1) \mathbb{P}_{\gamma+1}$ consists of functions p with $\operatorname{dom}(p)=\gamma+1$, $p \upharpoonright \gamma \in \mathbb{P}_{\gamma}$ and $p(\gamma) \subseteq\left(2^{<\omega} \cup \kappa\right) \times \omega$ finite s.t.
- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \mid \vdash \alpha \notin \dot{A}_{\gamma}$,

Definition of the forcing

$\left(\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}\right)$finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.
- $(\gamma \geq 1) \mathbb{P}_{\gamma+1}$ consists of functions p with $\operatorname{dom}(p)=\gamma+1$, $p \upharpoonright \gamma \in \mathbb{P}_{\gamma}$ and $p(\gamma) \subseteq\left(2^{<\omega} \cup \kappa\right) \times \omega$ finite s.t.
- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Definition of the forcing

$\left(\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}\right)$finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.
- $(\gamma \geq 1) \mathbb{P}_{\gamma+1}$ consists of functions p with $\operatorname{dom}(p)=\gamma+1$, $p \upharpoonright \gamma \in \mathbb{P}_{\gamma}$ and $p(\gamma) \subseteq\left(2^{<\omega} \cup \kappa\right) \times \omega$ finite s.t.
- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$. $q \leq p$ if $q \upharpoonright \gamma \leq p \upharpoonright \gamma$ and $q(\gamma) \supseteq p(\gamma)$.

Definition of the forcing

$\left(\mathbb{P}_{\gamma}: \gamma \leq \kappa^{+}\right)$finite support iteration of ccc forcing.
$\left(\dot{A}_{\gamma}: \gamma<\kappa^{+}\right)$sequence of \mathbb{P}_{γ}-names of subsets of κ s.t.
$\forall \mathbb{P}_{\kappa^{+-}}$name \dot{A} for subset of $\kappa \exists \gamma<\kappa^{+}$s.t. $\Vdash_{\gamma} \dot{A}=\dot{A}_{\gamma}$
(standard book-keeping).

- \mathbb{P}_{0} trivial.
- $\mathbb{P}_{1}=\mathbb{C}_{\kappa}$. If $p \in \mathbb{P}_{1}$, then $p(0)=\left(\sigma_{\alpha}^{p} \in 2^{<\omega}: \alpha \in F^{p}\right)$, $F^{p} \subseteq \kappa$ finite. Order as usual.
- $(\gamma \geq 1) \mathbb{P}_{\gamma+1}$ consists of functions p with $\operatorname{dom}(p)=\gamma+1$, $p \upharpoonright \gamma \in \mathbb{P}_{\gamma}$ and $p(\gamma) \subseteq\left(2^{<\omega} \cup \kappa\right) \times \omega$ finite s.t.
- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$. $q \leq p$ if $q \upharpoonright \gamma \leq p \upharpoonright \gamma$ and $q(\gamma) \supseteq p(\gamma)$.
- $(\gamma$ limit $)$ as usual.

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p\left\lceil\gamma \| \alpha \notin \dot{A}_{\gamma}\right.$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p\left\lceil\gamma \| \alpha \notin \dot{A}_{\gamma}\right.$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open
$\dot{H}_{\gamma}=\bigcap_{n} \dot{U}_{\gamma, n} \quad G_{\delta}$

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open
$\dot{H}_{\gamma}=\bigcap_{n} \dot{U}_{\gamma, n} \quad G_{\delta}$
$(\sigma, n) \in p(\gamma)$ means: $[\sigma] \subseteq \dot{U}_{\gamma, n}$

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open
$\dot{H}_{\gamma}=\bigcap_{n} \dot{U}_{\gamma, n} \quad G_{\delta}$
$(\sigma, n) \in p(\gamma)$ means: $[\sigma] \subseteq \dot{U}_{\gamma, n}$
$(\alpha, n) \in p(\gamma)$ means: $\dot{c}_{\alpha} \notin \dot{U}_{\gamma, n} \Longrightarrow \dot{c}_{\alpha} \notin \dot{H}_{\gamma}$

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open
$\dot{H}_{\gamma}=\bigcap_{n} \dot{U}_{\gamma, n} \quad G_{\delta}$
$(\sigma, n) \in p(\gamma)$ means: $[\sigma] \subseteq \dot{U}_{\gamma, n}$
$(\alpha, n) \in p(\gamma)$ means: $\dot{c}_{\alpha} \notin \dot{U}_{\gamma, n} \Longrightarrow \dot{c}_{\alpha} \notin \dot{H}_{\gamma}$
Lemma
$\Vdash_{\gamma+1} \dot{H}_{\gamma} \cap\left\{\dot{c}_{\alpha}: \alpha<\kappa\right\}=\left\{\dot{c}_{\alpha}: \alpha \in \dot{A}_{\gamma}\right\}$

The Q-set

- $(\alpha, n) \in p(\gamma) \Longrightarrow \alpha \in F^{p}$ and $p \upharpoonright \gamma \Vdash \alpha \notin \dot{A}_{\gamma}$,
- $(\alpha, n),(\sigma, n) \in p(\gamma) \Longrightarrow \sigma_{\alpha}^{p}$ and σ incompatible in $2^{<\omega}$.

Intention:
$\dot{U}_{\gamma, n}=\bigcup\{[\sigma]:(\sigma, n) \in p(\gamma)$ for some $p \in \dot{G}\}$ open
$\dot{H}_{\gamma}=\bigcap_{n} \dot{U}_{\gamma, n} \quad G_{\delta}$
$(\sigma, n) \in p(\gamma)$ means: $[\sigma] \subseteq \dot{U}_{\gamma, n}$
$(\alpha, n) \in p(\gamma)$ means: $\dot{c}_{\alpha} \notin \dot{U}_{\gamma, n} \Longrightarrow \dot{c}_{\alpha} \notin \dot{H}_{\gamma}$

Lemma

$\Vdash_{\gamma+1} \dot{H}_{\gamma} \cap\left\{\dot{c}_{\alpha}: \alpha<\kappa\right\}=\left\{\dot{c}_{\alpha}: \alpha \in \dot{A}_{\gamma}\right\}$

Corollary

$\Vdash_{\kappa^{+}}\left\{\dot{c}_{\alpha}: \alpha<\kappa\right\}$ is a Q-set.

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$: $(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)$.

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$: $(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)$.
Then p and q are compatible with common extension r given by
- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$: $(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)$.
Then p and q are compatible with common extension r given by
- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,
- $F^{r}=F^{p} \cup F^{q}$,

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$: $(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)$.
Then p and q are compatible with common extension r given by
- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,
- $F^{r}=F^{p} \cup F^{q}$,
- $\sigma_{\alpha}^{r}= \begin{cases}\sigma_{\alpha}^{p} & \text { if } \alpha \in F^{p} \\ \sigma_{\alpha}^{q} & \text { if } \alpha \in F^{q},\end{cases}$

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$:

$$
(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)
$$

Then p and q are compatible with common extension r given by

- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,
- $F^{r}=F^{p} \cup F^{q}$,
- $\sigma_{\alpha}^{r}= \begin{cases}\sigma_{\alpha}^{p} & \text { if } \alpha \in F^{p} \\ \sigma_{\alpha}^{q} & \text { if } \alpha \in F^{q},\end{cases}$
- $r(\delta)=p(\delta) \cup q(\delta)$ for all $\delta \in \operatorname{supp}(r)$ with $\delta>0$.

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$:

$$
(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)
$$

Then p and q are compatible with common extension r given by

- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,
- $F^{r}=F^{p} \cup F^{q}$,
- $\sigma_{\alpha}^{r}= \begin{cases}\sigma_{\alpha}^{p} & \text { if } \alpha \in F^{p} \\ \sigma_{\alpha}^{q} & \text { if } \alpha \in F^{q},\end{cases}$
- $r(\delta)=p(\delta) \cup q(\delta)$ for all $\delta \in \operatorname{supp}(r)$ with $\delta>0$.

Proof. Prove by induction on $\delta \leq \gamma$ that $r \upharpoonright \delta$ is condition.

Compatibility of conditions

Lemma

Assume $p, q \in \mathbb{P}_{\gamma}$ are s.t.

- $\sigma_{\alpha}^{p}=\sigma_{\alpha}^{q}$ for all $\alpha \in F^{p} \cap F^{q}$,
- $\forall \delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$ with $\delta>0, \forall(\sigma, n)$:

$$
(\sigma, n) \in p(\delta) \Longleftrightarrow(\sigma, n) \in q(\delta)
$$

Then p and q are compatible with common extension r given by

- $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$,
- $F^{r}=F^{p} \cup F^{q}$,
- $\sigma_{\alpha}^{r}= \begin{cases}\sigma_{\alpha}^{p} & \text { if } \alpha \in F^{p} \\ \sigma_{\alpha}^{q} & \text { if } \alpha \in F^{q},\end{cases}$
- $r(\delta)=p(\delta) \cup q(\delta)$ for all $\delta \in \operatorname{supp}(r)$ with $\delta>0$.

Proof. Prove by induction on $\delta \leq \gamma$ that $r \upharpoonright \delta$ is condition. $\delta=1$, limit step: obvious.

Compatibility of conditions 2

$(\delta \geq 1)$ Prove for $\delta+1$. Assume $(\alpha, n) \in r(\delta)$. Wlog $(\alpha, n) \in p(\delta) \Longrightarrow p \upharpoonright \delta \mid \vdash \alpha \notin \dot{A}_{\delta} \Longrightarrow r \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta}$.

Compatibility of conditions 2

$(\delta \geq 1)$ Prove for $\delta+1$. Assume $(\alpha, n) \in r(\delta)$.
Wlog $(\alpha, n) \in p(\delta) \Longrightarrow p \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta} \Longrightarrow r \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta}$.
Assume $(\alpha, n),(\sigma, n) \in r(\delta)$. Wlog $(\alpha, n) \in p(\delta)$ and $(\sigma, n) \in q(\delta)$.
So $\delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q) \Longrightarrow(\sigma, n) \in p(\delta)$
$\Longrightarrow \sigma_{\alpha}^{r}=\sigma_{\alpha}^{p}$ and σ incompatible.

Compatibility of conditions 2

$(\delta \geq 1)$ Prove for $\delta+1$. Assume $(\alpha, n) \in r(\delta)$.
Wlog $(\alpha, n) \in p(\delta) \Longrightarrow p \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta} \Longrightarrow r \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta}$.
Assume $(\alpha, n),(\sigma, n) \in r(\delta)$. Wlog $(\alpha, n) \in p(\delta)$ and $(\sigma, n) \in q(\delta)$.
So $\delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q) \Longrightarrow(\sigma, n) \in p(\delta)$
$\Longrightarrow \sigma_{\alpha}^{r}=\sigma_{\alpha}^{p}$ and σ incompatible.
Order relation trivial.

Compatibility of conditions 2

$(\delta \geq 1)$ Prove for $\delta+1$. Assume $(\alpha, n) \in r(\delta)$.
Wlog $(\alpha, n) \in p(\delta) \Longrightarrow p \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta} \Longrightarrow r \upharpoonright \delta \Vdash \alpha \notin \dot{A}_{\delta}$.
Assume $(\alpha, n),(\sigma, n) \in r(\delta)$. Wlog $(\alpha, n) \in p(\delta)$ and $(\sigma, n) \in q(\delta)$.
So $\delta \in \operatorname{supp}(p) \cap \operatorname{supp}(q) \Longrightarrow(\sigma, n) \in p(\delta)$
$\Longrightarrow \sigma_{\alpha}^{r}=\sigma_{\alpha}^{p}$ and σ incompatible.
Order relation trivial.

Corollary

\mathbb{P}_{γ} is ccc, $\gamma \leq \kappa^{+}$.

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.
Proof outline. Assume $\dot{V}_{n} \subseteq\left(2^{\omega}\right)^{2}$ open, $\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\} \subseteq \bigcap_{n} \dot{V}_{n}$.

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.
Proof outline. Assume $\dot{V}_{n} \subseteq\left(2^{\omega}\right)^{2}$ open, $\Vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\} \subseteq \bigcap_{n} \dot{V}_{n}$.
Need to find $\beta<\alpha<\kappa$ s.t. $\Vdash_{\kappa^{+}}\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right) \in \bigcap_{n} \dot{V}_{n}$.

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.
Proof outline. Assume $\dot{V}_{n} \subseteq\left(2^{\omega}\right)^{2}$ open, $\Vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\} \subseteq \bigcap_{n} \dot{V}_{n}$.
Need to find $\beta<\alpha<\kappa$ s.t. $\Vdash_{\kappa^{+}}\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right) \in \bigcap_{n} \dot{V}_{n}$.
χ large, $M \prec H(\chi)$ countable, $\kappa, \mathbb{P}_{\kappa^{+}}, \dot{V}_{n} \in M$.
Fix $M \cap \omega_{1} \leq \beta<\alpha<\omega_{1}$.

Main Lemma

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.
Proof outline. Assume $\dot{V}_{n} \subseteq\left(2^{\omega}\right)^{2}$ open, $\Vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\} \subseteq \bigcap_{n} \dot{V}_{n}$.
Need to find $\beta<\alpha<\kappa$ s.t. $\Vdash_{\kappa^{+}}\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right) \in \bigcap_{n} \dot{V}_{n}$.
χ large, $M \prec H(\chi)$ countable, $\kappa, \mathbb{P}_{\kappa^{+}}, \dot{V}_{n} \in M$.
Fix $M \cap \omega_{1} \leq \beta<\alpha<\omega_{1}$.
Main Claim
$\forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega}$ s.t. $\sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q}$, and $q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$.

Main Lemma

Main Lemma

$\vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\}$ is not a relative G_{δ}.
Proof outline. Assume $\dot{V}_{n} \subseteq\left(2^{\omega}\right)^{2}$ open, $\Vdash_{\kappa^{+}}\left\{\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right): \alpha<\beta<\kappa\right\} \subseteq \bigcap_{n} \dot{V}_{n}$.
Need to find $\beta<\alpha<\kappa$ s.t. $\Vdash_{\kappa^{+}}\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right) \in \bigcap_{n} \dot{V}_{n}$.
χ large, $M \prec H(\chi)$ countable, $\kappa, \mathbb{P}_{\kappa^{+}}, \dot{V}_{n} \in M$.
Fix $M \cap \omega_{1} \leq \beta<\alpha<\omega_{1}$.
Main Claim
$\forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega}$ s.t. $\sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q}$, and $q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$.

This clearly implies $\Vdash\left(\dot{c}_{\alpha}, \dot{c}_{\beta}\right) \in \bigcap_{n} \dot{V}_{n}$. Done!

Main Claim

Main Claim

$\forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega}$ s.t. $\sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q}$, and $q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$.

Main Claim

$\forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega}$ s.t. $\sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q}$, and $q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$.

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

Main Claim

$$
\begin{aligned}
& \forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega} \text { s.t. } \sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q} \text {, and } \\
& q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n} .
\end{aligned}
$$

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

By compatibility lemma $p \| p^{\prime}$. So let $p^{\prime \prime} \leq p, p^{\prime}$.

Main Claim

$$
\begin{aligned}
& \forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega} \text { s.t. } \sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q} \text {, and } \\
& q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n} .
\end{aligned}
$$

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

By compatibility lemma $p \| p^{\prime}$. So let $p^{\prime \prime} \leq p, p^{\prime}$.
Find $\tilde{p} \leq p^{\prime \prime}$ and σ_{0}, τ_{0} s.t. $\tilde{p} \Vdash\left(\dot{c}_{\alpha^{\prime}}, \dot{c}_{\beta}\right) \in\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Then $\sigma_{0} \subseteq \sigma_{\alpha^{\prime}}^{\tilde{p}}, \tau_{0} \subseteq \sigma_{\beta}^{\tilde{p}}$.

Main Claim

$$
\begin{aligned}
& \forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega} \text { s.t. } \sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q} \text {, and } \\
& q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n} .
\end{aligned}
$$

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

By compatibility lemma $p \| p^{\prime}$. So let $p^{\prime \prime} \leq p, p^{\prime}$.
Find $\tilde{p} \leq p^{\prime \prime}$ and σ_{0}, τ_{0} s.t. $\tilde{p} \Vdash\left(\dot{c}_{\alpha^{\prime}}, \dot{c}_{\beta}\right) \in\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Then $\sigma_{0} \subseteq \sigma_{\alpha^{\prime}}^{\tilde{\rho}}, \tau_{0} \subseteq \sigma_{\beta}^{\tilde{p}}$.

Find $r \in M$ compatible with \tilde{p} s.t. $r \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Wlog $\tilde{p} \leq r$.

Main Claim

Main Claim

$$
\begin{aligned}
& \forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega} \text { s.t. } \sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q} \text {, and } \\
& q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n} .
\end{aligned}
$$

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

By compatibility lemma $p \| p^{\prime}$. So let $p^{\prime \prime} \leq p, p^{\prime}$.
Find $\tilde{p} \leq p^{\prime \prime}$ and σ_{0}, τ_{0} s.t. $\tilde{p} \Vdash\left(\dot{c}_{\alpha^{\prime}}, \dot{c}_{\beta}\right) \in\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Then $\sigma_{0} \subseteq \sigma_{\alpha^{\prime}}^{\tilde{\rho}}, \tau_{0} \subseteq \sigma_{\beta}^{\tilde{p}}$.

Find $r \in M$ compatible with \tilde{p} s.t. $r \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Wlog $\tilde{p} \leq r$.

Claim

p and r have common extension q s.t. $\sigma_{\alpha}^{q}=\sigma_{\alpha^{\prime}}^{\tilde{p}}$ and $\sigma_{\beta}^{q}=\sigma_{\beta}^{\tilde{p}}$.

Main Claim

Main Claim

$$
\begin{aligned}
& \forall n \forall p \exists q \leq p \exists \sigma_{0}, \tau_{0} \in 2^{<\omega} \text { s.t. } \sigma_{0} \subseteq \sigma_{\alpha}^{q}, \tau_{0} \subseteq \sigma_{\beta}^{q} \text {, and } \\
& q \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n} .
\end{aligned}
$$

Proof outline. By elementarily find $\alpha^{\prime}<M \cap \omega_{1} \leq \beta$ and $p^{\prime} \in M$ s.t. $\sigma_{\alpha^{\prime}}^{p^{\prime}}=\sigma_{\alpha}^{p}$ and p^{\prime} "looks like" p.

By compatibility lemma $p \| p^{\prime}$. So let $p^{\prime \prime} \leq p, p^{\prime}$.
Find $\tilde{p} \leq p^{\prime \prime}$ and σ_{0}, τ_{0} s.t. $\tilde{p} \Vdash\left(\dot{c}_{\alpha^{\prime}}, \dot{c}_{\beta}\right) \in\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Then $\sigma_{0} \subseteq \sigma_{\alpha^{\prime}}^{\tilde{p}}, \tau_{0} \subseteq \sigma_{\beta}^{\tilde{p}}$.
Find $r \in M$ compatible with \tilde{p} s.t. $r \Vdash\left[\sigma_{0}\right] \times\left[\tau_{0}\right] \subseteq \dot{V}_{n}$. Wlog $\tilde{p} \leq r$.

Claim

p and r have common extension q s.t. $\sigma_{\alpha}^{q}=\sigma_{\alpha^{\prime}}^{\tilde{p}}$ and $\sigma_{\beta}^{q}=\sigma_{\beta}^{\tilde{\rho}}$.
Proof like comnatibilitv lemma $\underset{\text { Jorg Brendle }}{\text { Done! }}$

