Bases of homogeneous families below the first Mahlo cardinal

Christina Brech
Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Set Theory and its Applications in Topology

Introduction

Introduction

Recall the Schreier family

$$
\mathcal{S}=\{s \subseteq \omega: \# s \leq \min s\}
$$

Introduction

Recall the Schreier family

$$
\mathcal{S}=\{s \subseteq \omega: \# s \leq \min s\} .
$$

It is hereditary, compact and large.

Introduction

Recall the Schreier family

$$
\mathcal{S}=\{s \subseteq \omega: \# s \leq \min s\}
$$

It is hereditary, compact and large.
Theorem (Lopez-Abad, Todorcevic, 2013)
TFAE:

- κ is not ω-Erdös;
- there is a hereditary, compact and large family \mathcal{F} on κ;
- there is a non-trivial weakly-null basis $\left(x_{\alpha}\right)_{\alpha<\kappa}$ in a Banach space with no subsymmetric basic subsequence (ie. indiscernibles).

Introduction

Recall the Schreier family

$$
\mathcal{S}=\{s \subseteq \omega: \# s \leq \min s\}
$$

It is hereditary, compact and large.

Theorem (Lopez-Abad, Todorcevic, 2013)

TFAE:

- κ is not ω-Erdös;
- there is a hereditary, compact and large family \mathcal{F} on κ;
- there is a non-trivial weakly-null basis $\left(x_{\alpha}\right)_{\alpha<\kappa}$ in a Banach space with no subsymmetric basic subsequence (ie. indiscernibles).

For a whole separable reflexive space with no subsymmetric basic sequences (Tsirelson space), finite powers of the Schreier family were used.

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

A Schreier sequence is defined inductively for $\alpha<\omega_{1}$ by
(a) $\mathcal{S}_{0}:=[\omega]^{\leq 1}$,
(b) $\mathcal{S}_{\alpha+1}:=\mathcal{S}_{\alpha} \otimes \mathcal{S}$,
(c) $\mathcal{S}_{\alpha}:=\bigcup_{n<\omega}\left(\mathcal{S}_{\alpha_{n}} \upharpoonright \omega \backslash n\right)$ where $\left(\alpha_{n}\right)_{n}$ is such that $\sup _{n} \alpha_{n}=\alpha$, if α is limit;

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

A Schreier sequence is defined inductively for $\alpha<\omega_{1}$ by
(a) $\mathcal{S}_{0}:=[\omega]^{\leq 1}$,
(b) $\mathcal{S}_{\alpha+1}:=\mathcal{S}_{\alpha} \otimes \mathcal{S}$,
(c) $\mathcal{S}_{\alpha}:=\bigcup_{n<\omega}\left(\mathcal{S}_{\alpha_{n}} \upharpoonright \omega \backslash n\right)$ where $\left(\alpha_{n}\right)_{n}$ is such that $\sup _{n} \alpha_{n}=\alpha$, if α is limit;
where, given $\mathcal{F}, \mathcal{G} \subseteq[\omega]^{<\omega}$,

$$
\mathcal{F} \otimes \mathcal{G}=\left\{\bigcup_{i=1}^{n} s_{i}: s_{1}<\cdots<s_{n} \text { in } \mathcal{F} \text { and }\left\{\min s_{i}: 1 \leq i \leq n\right\} \in \mathcal{G}\right\} .
$$

More concretely, given some (uncountable) cardinal κ, we want:

More concretely, given some (uncountable) cardinal κ, we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;

More concretely, given some (uncountable) cardinal κ, we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω;

More concretely, given some (uncountable) cardinal κ, we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

More concretely, given some (uncountable) cardinal κ, we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

Theorem (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ.

More concretely, given some (uncountable) cardinal κ, we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

Theorem (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ.

Corollary (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric basic sequences.

Basic definitions

Basic definitions

Definitions

Given $\alpha<\omega_{1}, \mathcal{F}$ is α-homogeneous if $\alpha=\operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$, where

$$
\operatorname{srk}(\mathcal{F}):=\inf \{\operatorname{rk}(\mathcal{F} \upharpoonright C): C \text { is an infinite subset of } \kappa\}
$$

$\iota(\alpha)=\min \{$ exponentially indecomposible ordinal larger than $\alpha\}$.
\mathcal{F} is homogeneous if it is α-homogeneous for some $\alpha<\omega_{1}$.

Basic definitions

Definitions

Given $\alpha<\omega_{1}, \mathcal{F}$ is α-homogeneous if $\alpha=\operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$, where

$$
\operatorname{srk}(\mathcal{F}):=\inf \{\operatorname{rk}(\mathcal{F} \upharpoonright C): C \text { is an infinite subset of } \kappa\}
$$

$\iota(\alpha)=\min \{$ exponentially indecomposible ordinal larger than $\alpha\}$.
\mathcal{F} is homogeneous if it is α-homogeneous for some $\alpha<\omega_{1}$.

If \mathcal{F} is homogeneous on κ and \mathcal{H} is homogeneous on ω, a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} when

- \mathcal{G} is homogeneous and $\iota(\operatorname{srk}(\mathcal{G}))=\iota(\operatorname{srk}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H}))$.
- Every sequence $\left(s_{n}\right)_{n<\omega}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that for every $x \in \mathcal{H}$ one has that $\bigcup_{n \in x} t_{n} \in \mathcal{G}$.

Definition

A basis on κ is a pair (\mathfrak{B}, \times) such that:

- \mathfrak{B} is a collection of homogeneous families on κ containing all cubes and for all $\omega \leq \alpha<\omega_{1}$, there is a α-homogeneous family on κ in \mathfrak{B}.
- \mathfrak{B} is closed under \cup and \sqcup.
- $\times: \mathfrak{B} \times \mathfrak{S} \rightarrow \mathfrak{B}$ is such that for every $\mathcal{F} \in \mathfrak{B}$ and every $\mathcal{H} \in \mathfrak{S}$ one has that $\mathcal{F} \times \mathcal{H}$ is a multiplication of \mathcal{F} by \mathcal{H}.
(\mathfrak{S} is the collection of all hereditary, spreading, uniform families on ω.)

Definition

A basis on κ is a pair (\mathfrak{B}, \times) such that:

- \mathfrak{B} is a collection of homogeneous families on κ containing all cubes and for all $\omega \leq \alpha<\omega_{1}$, there is a α-homogeneous family on κ in \mathfrak{B}.
- \mathfrak{B} is closed under \cup and \sqcup.
- $\times: \mathfrak{B} \times \mathfrak{S} \rightarrow \mathfrak{B}$ is such that for every $\mathcal{F} \in \mathfrak{B}$ and every $\mathcal{H} \in \mathfrak{S}$ one has that $\mathcal{F} \times \mathcal{H}$ is a multiplication of \mathcal{F} by \mathcal{H}.
(\mathfrak{S} is the collection of all hereditary, spreading, uniform families on ω.)
Remark: Schreier families are spreading and uniform, so that, in particular, any element of the basis can be multiplied (within the basis) by a Schreier family.

Example Given \mathcal{F} on ω, let $\langle\mathcal{F}\rangle_{\text {spr }}$ be the set of all $\left\{n_{1}<\cdots<n_{k}\right\}$ such that there is $\left\{m_{1}<\cdots<m_{k}\right\} \in \mathcal{F}$ such that $m_{i} \leq n_{i}$.

Example Given \mathcal{F} on ω, let $\langle\mathcal{F}\rangle_{\text {spr }}$ be the set of all $\left\{n_{1}<\cdots<n_{k}\right\}$ such that there is $\left\{m_{1}<\cdots<m_{k}\right\} \in \mathcal{F}$ such that $m_{i} \leq n_{i}$.

The collection \mathfrak{B} of all homogeneous families on ω such that

$$
\iota(\operatorname{srk}(\mathcal{F}))=\iota\left(\operatorname{srk}\left(\langle\mathcal{F}\rangle_{\mathrm{spr}}\right)\right)
$$

Example Given \mathcal{F} on ω, let $\langle\mathcal{F}\rangle_{\text {spr }}$ be the set of all $\left\{n_{1}<\cdots<n_{k}\right\}$ such that there is $\left\{m_{1}<\cdots<m_{k}\right\} \in \mathcal{F}$ such that $m_{i} \leq n_{i}$.

The collection \mathfrak{B} of all homogeneous families on ω such that

$$
\iota(\operatorname{srk}(\mathcal{F}))=\iota\left(\operatorname{srk}\left(\langle\mathcal{F}\rangle_{\mathrm{spr}}\right)\right),
$$

together with $\times: \mathfrak{B} \times \mathfrak{S} \rightarrow \mathfrak{B}$ defined by

$$
\mathcal{F} \times \mathcal{H}:=(\mathcal{F} \otimes \mathcal{H}) \oplus \mathcal{F},
$$

is a basis on ω.

Example Given \mathcal{F} on ω, let $\langle\mathcal{F}\rangle_{\text {spr }}$ be the set of all $\left\{n_{1}<\cdots<n_{k}\right\}$ such that there is $\left\{m_{1}<\cdots<m_{k}\right\} \in \mathcal{F}$ such that $m_{i} \leq n_{i}$.

The collection \mathfrak{B} of all homogeneous families on ω such that

$$
\iota(\operatorname{srk}(\mathcal{F}))=\iota\left(\operatorname{srk}\left(\langle\mathcal{F}\rangle_{\mathrm{spr}}\right)\right),
$$

together with $\times: \mathfrak{B} \times \mathfrak{S} \rightarrow \mathfrak{B}$ defined by

$$
\mathcal{F} \times \mathcal{H}:=(\mathcal{F} \otimes \mathcal{H}) \oplus \mathcal{F}
$$

is a basis on ω.

$$
\begin{gathered}
\mathcal{F} \oplus \mathcal{G}=\{s \cup t: s<t, s \in \mathcal{G}, t \in \mathcal{F}\} . \\
\mathcal{F} \otimes \mathcal{G}=\left\{\bigcup_{k<n} s_{k}: n \in \omega, s_{k}<s_{k+1}, s_{k} \in \mathcal{F},\left\{\min s_{k}: k<n\right\} \in \mathcal{G}\right\} .
\end{gathered}
$$

Let $\mathcal{P}=(P, \leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Let $\mathcal{P}=(P, \leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha<\omega_{1}, \mathcal{F}$ on \mathcal{P} is α-homogeneous if $\alpha=\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$, where

$$
\operatorname{srk}_{\mathcal{P}}(\mathcal{F})=\inf \{\operatorname{rk}(\mathcal{F} \upharpoonright C): C \text { infinite chain }\} \leq \operatorname{rk}(\mathcal{F})
$$

\mathcal{F} is homogeneous if it is α-homogeneous for some $\alpha<\omega_{1}$.

Let $\mathcal{P}=(P, \leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha<\omega_{1}, \mathcal{F}$ on \mathcal{P} is α-homogeneous if $\alpha=\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$, where

$$
\operatorname{srk}_{\mathcal{P}}(\mathcal{F})=\inf \{\operatorname{rk}(\mathcal{F} \upharpoonright C): C \text { infinite chain }\} \leq \operatorname{rk}(\mathcal{F}) .
$$

\mathcal{F} is homogeneous if it is α-homogeneous for some $\alpha<\omega_{1}$.

If \mathcal{F} is homogeneous on \mathcal{P} and \mathcal{H} is homogeneous on ω, a family \mathcal{G} on \mathcal{P} is a multiplication of \mathcal{F} by \mathcal{H} when

- \mathcal{G} is homogeneous and $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H})\right)$.
- Every sequence $\left(s_{n}\right)_{n<\omega}$ in \mathcal{F} whose union is a chain has an infinite subsequence $\left(t_{n}\right)_{n}$ such that for every $x \in \mathcal{H}$ one has that $\bigcup_{n \in x} t_{n} \in \mathcal{G}$.

Let $\mathcal{P}=(P, \leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha<\omega_{1}, \mathcal{F}$ on \mathcal{P} is α-homogeneous if $\alpha=\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$, where

$$
\operatorname{srk}_{\mathcal{P}}(\mathcal{F})=\inf \{\operatorname{rk}(\mathcal{F} \upharpoonright C): C \text { infinite chain }\} \leq \operatorname{rk}(\mathcal{F})
$$

\mathcal{F} is homogeneous if it is α-homogeneous for some $\alpha<\omega_{1}$.

If \mathcal{F} is homogeneous on \mathcal{P} and \mathcal{H} is homogeneous on ω, a family \mathcal{G} on \mathcal{P} is a multiplication of \mathcal{F} by \mathcal{H} when

- \mathcal{G} is homogeneous and $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H})\right)$.
- Every sequence $\left(s_{n}\right)_{n<\omega}$ in \mathcal{F} whose union is a chain has an infinite subsequence $\left(t_{n}\right)_{n}$ such that for every $x \in \mathcal{H}$ one has that $\bigcup_{n \in x} t_{n} \in \mathcal{G}$.

A basis of families on \mathcal{P} is defined analagously.

Families and bases on trees

Families and bases on trees

Let T be a tree and given families \mathcal{A} and \mathcal{C} on T, let $\mathcal{A} \odot{ }_{T} \mathcal{C}$ be the family on T of all $s \subseteq T$ such that:

- $\langle s\rangle \cap C h_{a} \subseteq \mathcal{A}$, that is, for every $t \in T$, the set of immediate successors of t with respect to s belongs to \mathcal{A};
- $\langle s\rangle \cap C h_{c} \subseteq \mathcal{C}$, that is, and every chain $\langle s\rangle$ belongs to \mathcal{C}.

Families and bases on trees

Let T be a tree and given families \mathcal{A} and \mathcal{C} on T, let $\mathcal{A} \odot{ }_{T} \mathcal{C}$ be the family on T of all $s \subseteq T$ such that:

- $\langle s\rangle \cap C h_{a} \subseteq \mathcal{A}$, that is, for every $t \in T$, the set of immediate successors of t with respect to s belongs to \mathcal{A};
- $\langle s\rangle \cap C h_{c} \subseteq \mathcal{C}$, that is, and every chain $\langle s\rangle$ belongs to \mathcal{C}.

Proposition

If \mathcal{A} and \mathcal{C} are homogeneous families on $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, respectively, then $\mathcal{A} \odot_{T} \mathcal{C}$ is a homogeneous family on T.

Families and bases on trees

Let T be a tree and given families \mathcal{A} and \mathcal{C} on T, let $\mathcal{A} \odot{ }_{T} \mathcal{C}$ be the family on T of all $s \subseteq T$ such that:

- $\langle s\rangle \cap C h_{a} \subseteq \mathcal{A}$, that is, for every $t \in T$, the set of immediate successors of t with respect to s belongs to \mathcal{A};
- $\langle s\rangle \cap C h_{c} \subseteq \mathcal{C}$, that is, and every chain $\langle s\rangle$ belongs to \mathcal{C}.

Proposition

If \mathcal{A} and \mathcal{C} are homogeneous families on $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, respectively, then $\mathcal{A} \odot_{T} \mathcal{C}$ is a homogeneous family on T.

The proof is based on controlling the ranks of $\mathcal{A} \odot_{T} \mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C}.

Families and bases on trees

Let T be a tree and given families \mathcal{A} and \mathcal{C} on T, let $\mathcal{A} \odot_{T} \mathcal{C}$ be the family on T of all $s \subseteq T$ such that:

- $\langle s\rangle \cap C h_{a} \subseteq \mathcal{A}$, that is, for every $t \in T$, the set of immediate successors of t with respect to s belongs to \mathcal{A};
- $\langle s\rangle \cap C h_{c} \subseteq \mathcal{C}$, that is, and every chain $\langle s\rangle$ belongs to \mathcal{C}.

Proposition

If \mathcal{A} and \mathcal{C} are homogeneous families on $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, respectively, then $\mathcal{A} \odot_{T} \mathcal{C}$ is a homogeneous family on T.

The proof is based on controlling the ranks of $\mathcal{A} \odot_{T} \mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C}. In these computations, the following fact is helpful:

Families and bases on trees

Let T be a tree and given families \mathcal{A} and \mathcal{C} on T, let $\mathcal{A} \odot_{T} \mathcal{C}$ be the family on T of all $s \subseteq T$ such that:

- $\langle s\rangle \cap C h_{a} \subseteq \mathcal{A}$, that is, for every $t \in T$, the set of immediate successors of t with respect to s belongs to \mathcal{A};
- $\langle s\rangle \cap C h_{c} \subseteq \mathcal{C}$, that is, and every chain $\langle s\rangle$ belongs to \mathcal{C}.

Proposition

If \mathcal{A} and \mathcal{C} are homogeneous families on $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, respectively, then $\mathcal{A} \odot_{T \mathcal{C}}$ is a homogeneous family on T.

The proof is based on controlling the ranks of $\mathcal{A} \odot_{T} \mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C}. In these computations, the following fact is helpful: for every family \mathcal{F} on T,
$\operatorname{srk}(\mathcal{F})=\inf \{\operatorname{rk}(\mathcal{F} \mid X): X$ is an infinite chain, comb or fan $\}$.

Given a family \mathcal{F} on T, let

$$
\langle\mathcal{F}\rangle=\{x \subseteq\langle s\rangle: s \in \mathcal{F}\}
$$

Given a family \mathcal{F} on T, let

$$
\langle\mathcal{F}\rangle=\{x \subseteq\langle s\rangle: s \in \mathcal{F}\}
$$

Lemma

If \mathcal{B}^{a} and \mathcal{B}^{c} are bases on $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, respectively, let \mathfrak{B} be the collection of all homogeneous families \mathcal{F} on T such that

- $\langle\mathcal{F}\rangle$ is homogeneous and $\operatorname{rk}(\langle\mathcal{F}\rangle)<\iota(\operatorname{rk}(\mathcal{F}))$;
- $\mathcal{A}:=\langle\mathcal{F}\rangle \cap C h_{a} \in \mathfrak{B}^{a}$ and $\mathcal{C}:=\langle\mathcal{F}\rangle \cap C h_{c} \in \mathfrak{B}^{c}$.

Given $\mathcal{F} \in \mathfrak{B}$ and a hereditary, spreading, uniform family \mathcal{H} on ω, then

$$
\mathcal{F} \times \mathcal{H}=\left(\left(\mathcal{A} \times_{a} \mathcal{H}\right) \sqcup_{a}[T]^{\leq 1}\right) \odot_{T}\left(\left(\mathcal{C} \times_{c} \mathcal{H}\right) \boxtimes_{c} 5\right)
$$

is a multiplication such that \mathfrak{B} is a basis on T.

Case (2.3)

Stepping up

Stepping up

Theorem
If there is a basis on κ, then there is a basis on 2^{κ}.

Stepping up

Theorem
If there is a basis on κ, then there is a basis on 2^{κ}.
Given a basis \mathfrak{B} on κ, the collection of families of the form

$$
\mathcal{G}=\left\{s \subset T: s \text { is a chain and } h t^{\prime \prime} s \in \mathcal{F}\right\}
$$

for some $\mathcal{F} \in \mathfrak{B}$ (with some suitable multiplication) is a basis on $\left(T,<_{c}\right)$.

Definition

$\left(C_{\alpha}\right)_{\alpha<\kappa}$ is a small C-sequence on κ if

- each C_{α} is a club in α with $\operatorname{otp}\left(C_{\alpha}\right)=\operatorname{cof}(\alpha)$;
- there is $f: \kappa \rightarrow \kappa$ such that $\operatorname{otp}\left(C_{\alpha}\right)<f\left(\min C_{\alpha}\right)$ for all α.

Definition

$\left(C_{\alpha}\right)_{\alpha<\kappa}$ is a small C-sequence on κ if

- each C_{α} is a club in α with $\operatorname{otp}\left(C_{\alpha}\right)=\operatorname{cof}(\alpha)$;
- there is $f: \kappa \rightarrow \kappa$ such that $\operatorname{otp}\left(C_{\alpha}\right)<f\left(\min C_{\alpha}\right)$ for all α.

Given a small C-sequence $\left(C_{\alpha}\right)_{\alpha<\kappa}$, let $\rho_{0}:[\kappa]^{2} \rightarrow(\wp(\kappa))^{<\omega}$ for $\alpha<\beta$ defined recursively by

$$
\begin{aligned}
& \rho_{0}(\alpha, \beta):=\left(C_{\beta} \cap \alpha\right)^{\wedge} \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) \\
& \rho_{0}(\alpha, \alpha):=\emptyset .
\end{aligned}
$$

Let $T=T\left(\rho_{0}\right)$ be the tree whose nodes are $\rho_{0}(\cdot, \beta) \upharpoonright \alpha, \alpha<\beta$, ordered by end-extension as functions.

Definition

$\left(C_{\alpha}\right)_{\alpha<\kappa}$ is a small C-sequence on κ if

- each C_{α} is a club in α with $\operatorname{otp}\left(C_{\alpha}\right)=\operatorname{cof}(\alpha)$;
- there is $f: \kappa \rightarrow \kappa$ such that $\operatorname{otp}\left(C_{\alpha}\right)<f\left(\min C_{\alpha}\right)$ for all α.

Given a small C-sequence $\left(C_{\alpha}\right)_{\alpha<\kappa}$, let $\rho_{0}:[\kappa]^{2} \rightarrow(\wp(\kappa))^{<\omega}$ for $\alpha<\beta$ defined recursively by

$$
\begin{aligned}
& \rho_{0}(\alpha, \beta):=\left(C_{\beta} \cap \alpha\right)^{\wedge} \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) \\
& \rho_{0}(\alpha, \alpha):=\emptyset .
\end{aligned}
$$

Let $T=T\left(\rho_{0}\right)$ be the tree whose nodes are $\rho_{0}(\cdot, \beta) \upharpoonright \alpha, \alpha<\beta$, ordered by end-extension as functions.

Proposition

If there is a basis on every $\theta<\kappa$, then there is a basis on $\left(T,<_{c}\right)$ and hence on κ.

Definition

$\left(C_{\alpha}\right)_{\alpha<\kappa}$ is a small C-sequence on κ if

- each C_{α} is a club in α with $\operatorname{otp}\left(C_{\alpha}\right)=\operatorname{cof}(\alpha)$;
- there is $f: \kappa \rightarrow \kappa$ such that $\operatorname{otp}\left(C_{\alpha}\right)<f\left(\min C_{\alpha}\right)$ for all α.

Given a small C-sequence $\left(C_{\alpha}\right)_{\alpha<\kappa}$, let $\rho_{0}:[\kappa]^{2} \rightarrow(\wp(\kappa))^{<\omega}$ for $\alpha<\beta$ defined recursively by

$$
\begin{aligned}
& \rho_{0}(\alpha, \beta):=\left(C_{\beta} \cap \alpha\right)^{\wedge} \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) \\
& \rho_{0}(\alpha, \alpha):=\emptyset .
\end{aligned}
$$

Let $T=T\left(\rho_{0}\right)$ be the tree whose nodes are $\rho_{0}(\cdot, \beta) \upharpoonright \alpha, \alpha<\beta$, ordered by end-extension as functions.

Proposition

If there is a basis on every $\theta<\kappa$, then there is a basis on $\left(T,<_{c}\right)$ and hence on κ.

Corollary

Every cardinal below the first Mahlo cardinal has a basis.

Problems

Problems

- Characterize κ supporting a basis.

Problems

- Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

Problems

- Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

The minimal cardinal $\mathfrak{n s}_{\text {refl }}$ such that any reflexive Banach space of density $\mathfrak{n s}_{\text {refl }}$ has a subsymmetric sequence is between the first Mahlo cardinal and the first ω-Erdös cardinal.

Problems

- Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

The minimal cardinal $\mathfrak{n s}_{\text {refl }}$ such that any reflexive Banach space of density $\mathfrak{n s}_{\text {refl }}$ has a subsymmetric sequence is between the first Mahlo cardinal and the first ω-Erdös cardinal.

- Can we get better bounds?

