The Ramsey degree of the pre-pseudoarc

Aleksandra Kwiatkowska

University of Bonn joint work with Dana Bartošová

September 15, 2016

The pseudo-arc is the unique hereditarily indecomposable chainable continuum.

The pseudo-arc is the unique hereditarily indecomposable chainable continuum.

• continuum = compact and connected metric space;

The pseudo-arc is the unique hereditarily indecomposable chainable continuum.

- continuum = compact and connected metric space;
- indecomposable = not a union of two proper subcontinua;

The pseudo-arc is the unique hereditarily indecomposable chainable continuum.

- continuum = compact and connected metric space;
- indecomposable = not a union of two proper subcontinua;
- chainable = each open cover is refined by an open cover U_1, U_2, \ldots, U_n such that for $i, j, U_i \cap U_j \neq \emptyset$ if and only if $|j i| \leq 1$

Universal minimal flows

G – topological group

Definition

A G-flow is a continuous action of G on a compact Hausdorff space.

Universal minimal flows

G – topological group

Definition

A G-flow is a continuous action of G on a compact Hausdorff space.

Definition

A *G*-flow is called minimal if it has no non-trivial closed invariant subsets.

Universal minimal flows

G – topological group

Definition

A G-flow is a continuous action of G on a compact Hausdorff space.

Definition

A *G*-flow is called minimal if it has no non-trivial closed invariant subsets.

Definition

The universal minimal flow of G is the unique minimal G-flow that has all other minimal G-flows as its homomorphic images.

The following important question is open.

Question (Uspenskij, 2000)

Let P be the pseudo-arc and H(P) be its homeomorphism group. Is the action $H(P) \curvearrowright P$ given by $(h, x) \rightarrow h(x)$ the universal minimal flow of H(P)?

Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

A continuous surjection $\phi: S \to T$ is an epimorphism iff

$$egin{array}{l} r^{ op}(a,b) \ \iff \exists c,d\in S\left(\phi(c)=a,\phi(d)=b, ext{ and } r^{S}(c,d)
ight). \end{array}$$

An example of an epimorphism

- 4 聞 と 4 臣 と 4 臣 と

æ

Theorem (Irwin-Solecki)

- **1** The family \mathcal{G} has the amalgamation property.
- ② There is a unique P = (P, r^P), where P is compact, separable, zero-dimensional, r^P is closed, which is projectively universal, projectively ultrahomogeneous, and continuous maps onto finite sets factor through epimorphisms onto finite structures.
- Some of the relation r^P is an equivalence relation such that each equivalence class has at most two elements.

Theorem (Irwin-Solecki)

- **1** The family \mathcal{G} has the amalgamation property.
- ② There is a unique P = (P, r^P), where P is compact, separable, zero-dimensional, r^P is closed, which is projectively universal, projectively ultrahomogeneous, and continuous maps onto finite sets factor through epimorphisms onto finite structures.
- Some of the relation r^P is an equivalence relation such that each equivalence class has at most two elements.

Theorem (Irwin-Solecki)

 $P = \mathbb{P}/r^{\mathbb{P}}$ is the pseudo-arc.

Each automorphism h ∈ Aut(P) can be identified in a natural way with a homeomorphism h^{*} ∈ H(P).

- Each automorphism h ∈ Aut(P) can be identified in a natural way with a homeomorphism h^{*} ∈ H(P).
- $Aut(\mathbb{P})$ is equipped with the compact-open topology.

- Each automorphism h ∈ Aut(P) can be identified in a natural way with a homeomorphism h^{*} ∈ H(P).
- $Aut(\mathbb{P})$ is equipped with the compact-open topology.
- The topology on $Aut(\mathbb{P})$ is finer than the compact-open topology on H(P).

- Each automorphism h ∈ Aut(P) can be identified in a natural way with a homeomorphism h^{*} ∈ H(P).
- $Aut(\mathbb{P})$ is equipped with the compact-open topology.
- The topology on Aut(ℙ) is finer than the compact-open topology on H(P).
- The group $Aut(\mathbb{P})$ is dense in H(P).

Let \mathcal{F} be a family of structures and let $A \in \mathcal{F}$ Let $\binom{B}{A}$ denote the set of all epimorphisms from B onto A. Let \mathcal{F} be a family of structures and let $A \in \mathcal{F}$ Let $\binom{B}{A}$ denote the set of all epimorphisms from B onto A.

Definition

Say that the Ramsey degree of A is $\leq t$ iff for any $A \leq B$ and any r there is $B \leq C$ such that for any coloring of $\binom{C}{A}$ into r colors there is $g \in \binom{C}{B}$ such that $\{f \circ g : f \in \binom{B}{A}\}$ is in $\leq t$ many colors.

Let \mathcal{F} be a family of structures and let $A \in \mathcal{F}$ Let $\binom{B}{A}$ denote the set of all epimorphisms from B onto A.

Definition

Say that the Ramsey degree of A is $\leq t$ iff for any $A \leq B$ and any r there is $B \leq C$ such that for any coloring of $\binom{C}{A}$ into r colors there is $g \in \binom{C}{B}$ such that $\{f \circ g : f \in \binom{B}{A}\}$ is in $\leq t$ many colors.

Definition

If there is no such t, say that the Ramsey degree is infinite.

Theorem

The Ramsey degree of the 3-element structure in \mathcal{G} is infinite.

- **→** → **→**

문 문 문

Theorem

The Ramsey degree of the 3-element structure in \mathcal{G} is infinite.

This result was also independently obtained by S. Solecki.

Theorem (Zucker)

Infinite Ramsey degree for a structure in a Fraïssé family $\mathcal{F} \iff$ The universal minimal flow of $\operatorname{Aut}(\mathbb{F})$, the automorphism group of the projective Fraïssé limit of \mathcal{F} , is non-metrizable.

Theorem (Zucker)

Infinite Ramsey degree for a structure in a Fraïssé family $\mathcal{F} \iff$ The universal minimal flow of $\operatorname{Aut}(\mathbb{F})$, the automorphism group of the projective Fraïssé limit of \mathcal{F} , is non-metrizable.

Therefore we obtain:

Theorem

The universal minimal flow of $Aut(\mathbb{F})$ is non-metrizable.

Sketch of the proof

- Take $B = 2(2^{2n+1} + 2)$ and $r = 2^n 1$. Let C > B be arbitrary.
- Want a coloring c such that for any $f \in {\binom{C}{B}}$ the set ${\binom{B}{A}} \circ f$ takes all 2^n colors.
- Let $z = \min\{i : h(c_i) = 1\}$. Let $Z = \min\{i > z : h(c_i) = 3\}$ and let Z = 0 if no such *i*.
- Define $\phi(h) = 0$ if Z = 0 and otherwise $\phi(h) = |\{z < i < Z : h(c_{i-1}) = 1 \& h(c_i) = 2\}|.$
- And we take the coloring $c(h) = \phi(h) \mod 2^n$.

Thank you!

æ