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Basic definitions

Definition
An ideal I on ω is called a P-ideal if I is countably directed mod finite. In
other words, if {an : n ∈ ω} ⊆ I, then there exists a ∈ I such that
∀n ∈ ω [an ⊆

∗ a].

Remark
Ideals on ω are always assumed to be proper (i.e. ω < I) and
non-principal (meaning every finite subset of ω belongs to I).
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In this talk I am primarily interested in I that are definable.

Especially analytic P-ideals.

Definition
When I is a tall P-ideal on ω you can define the following:

add∗(I) = min{|F | : F ⊆ I ∧ ∀b ∈ I∃a ∈ F
[
a 1∗ b

]
},

cov∗(I) = min{|F | : F ⊆ I ∧ ∀a ∈ [ω]ω∃b ∈ F [|a ∩ b| = ω]},

cof∗(I) = min{|F | : F ⊆ I ∧ ∀b ∈ I∃a ∈ F
[
b ⊆∗ a

]
},

non∗(I) = min{|F | : F ⊆ [ω]ω ∧ ∀b ∈ I∃a ∈ F [|a ∩ b| < ω]}.
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There are actually equal to the add, cov, cof, and non of an associated
σ-ideal.

For each a ∈ P(ω), let â = {b ⊆ ω : |a ∩ b| = ω}.

For each a ∈ P(ω), let â = {b ⊆ ω : |a ∩ b| = ω}.

For a tall ideal I, Î = {X ⊆ P(ω) : ∃a ∈ I [X ⊆ â]} is an ideal on P(ω)
generated by Borel sets.

I is a P-ideal iff Î is a σ-ideal.

add(Î) = add∗(I), cov(Î) = cov∗(I), cof(Î) = cof∗(I),
non(Î) = non∗(I) hold.
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Definition

A set A ⊆ ω is said to have asymptotic density 0 if lim
n→∞

|A ∩ n|
n
= 0.

Z0 =

{
A ⊆ ω : lim

n→∞

|A ∩ n|
n
= 0

}
.

This an Fσδ P-ideal.

We are interested in the invariants cov∗(Z0) and non∗(Z0).
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Four basic invariants

Definition
For f , g ∈ ωω, f <∗ g means that |{n ∈ ω : g(n) ≤ f (n)}| < ω. A set F ⊆ ωω is
said to be unbounded if there does not exist g ∈ ωω such that
∀f ∈ F

[
f <∗ g

]
. A set F ⊆ ωω is said to be dominating or cofinal if

∀f ∈ ωω∃g ∈ F
[
f <∗ g

]
.

Definition
For a, b ∈ P(ω) we say that a splits b if both b ∩ a and b ∩ (ω \ a) are
infinite. A family F ⊆ P(ω) is called a splitting family if
∀b ∈ [ω]ω∃a ∈ F [a splits b].
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Definition
We define the cardinal invariants b, d, s, and r as follows:

b = min{|F| : F ⊆ ωω ∧ F is unbounded};

d = min{|F| : F ⊆ ωω ∧ F is dominating};

s = min{|F| : F ⊆ P(ω) ∧ F is a splitting family};

r = min{|F| : F ⊆ [ω]ω ∧ ¬∃a ∈ P(ω)∀b ∈ F [a splits b]}.

Fact
ℵ1 ≤ max{b, s} ≤ d ≤ c.

Fact
ℵ1 ≤ b ≤ r ≤ c.
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Theorem (Hernández-Hernández and Hrušák [1])
min{cov(N), b} ≤ cov∗(Z0) ≤ max{b, non(N)} and
min{d, cov(N)} ≤ non∗(Z0) ≤ max{d, non(N)} hold.

Theorem (R. and Shelah [3])
cov∗(Z0) ≤ d and b ≤ non∗(Z0).

This can be improved slightly.
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We adopt the convention that for a set x ⊆ ω, x0 = x and x1 = ω \ x

Definition
Let X = 〈xi : i ∈ ω〉 be a sequence of elements of P(ω). We say that X
promptly splits a if for each n ∈ ω and each σ ∈ 2n+1,

(⋂
i<n+1xσ(i)

i

)
∩ a is

infinite. A family F ⊆ (P(ω))ω is said to be a promptly splitting family if
for each a ∈ [ω]ω, there exists X ∈ F which promptly splits a.

Definition
Let P = 〈xi : i ∈ ω〉 be a partition of ω (that is,

⋃
i∈ωxi = ω and for any

i < j < ω, xi ∩ xj = 0). We say that P splits a if for each i ∈ ω xi ∩ a is
infinite. A family of partitions F is called a splitting family of partitions if
for each a ∈ [ω]ω, there exists P ∈ F which splits a.
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Definition

s
ω = min{|F | : F is a splitting family of partitions}.

Lemma
sω = min{|F | : F ⊆ (P(ω))ω ∧ F is a promptly splitting family}.

Next we will see that sω is also the least cardinal for which a certain
type of strong coloring exists.

Dilip Raghavan More on the density zero ideal



Cardinal invariants of P-ideals
Splitting numbers and colorings

s versus sω

Bibliography

Definition

s
ω = min{|F | : F is a splitting family of partitions}.

Lemma
sω = min{|F | : F ⊆ (P(ω))ω ∧ F is a promptly splitting family}.

Next we will see that sω is also the least cardinal for which a certain
type of strong coloring exists.

Dilip Raghavan More on the density zero ideal



Cardinal invariants of P-ideals
Splitting numbers and colorings

s versus sω

Bibliography

Definition
Let κ be any cardinal. We say that a coloring c : κ × ω × ω→ 2 is tortuous
if for each A ∈ [ω]ω and each partition of κ, 〈Kn : n ∈ ω〉, there exists n ∈ ω
such that

∀σ ∈ 2n+1∃α ∈ Kn∃k ∈ A [k > n ∧ ∀i < n + 1 [σ(i) = c(α, k, i)]] .

Lemma
Let 〈Xα : α < κ〉 be a promptly splitting family. There exists a tortuous
coloring on κ.

Lemma
sω = min{κ : there is a tortuous coloring on κ}.
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Theorem ([2])
Let κ be a cardinal on which a tortuous coloring exists. Then
cov∗(Z0) ≤ max{κ, b}.

Corollary
cov∗(Z0) ≤ max{sω, b}.

Lemma
max{sω, b} ≤ d.
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Lemma
Suppose F ⊆ [ω]ω is a family of size less than r. Then there exists a
sequence X = 〈xk : k < ω〉 ∈ (P(ω))ω such that X promptly splits A, for
each A ∈ F .

Theorem ([2])
min{d, r} ≤ non∗(Z0).
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These results are all based on a general method for generating sets
in Z0.

Definition
Let J be an interval partition where the size of Jn is some power of 2
(larger than n), for each n ∈ ω. Let FJ be the family of all functions f in ωω

such that for each n, l ∈ ω:

1
|{k ∈ Jn : f (k) ≥ l}|

|Jn|
≤ 2−l;

2 for any i, j ∈ {k ∈ Jn : f (k) ≥ l}, if i , j, then |i − j| > 2l−1.
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Definition
Let J be an interval partition where the size of Jn is some power of 2
(larger than n), for each n ∈ ω. For any interval partition I, function f ∈ FJ ,
and l ∈ ω, define ZI,J,f ,l = {m ∈ ω : ∃k ∈ Il

[
m ∈ Jk ∧ f (m) ≥ l

]
}. Define

ZI,J,f =
⋃

l∈ωZI,J,f ,l.

Lemma
For any I, J, and f as above, ZI,J,f has density 0.

In all cases the proof consists of identifying a “large enough” subclass
F ⊆ FJ .

Here “large enough” essentially means for every A ∈ [ω]ω there exists
f ∈ F which is unbounded on A.
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To get cov∗(Z0) ≤ κ, one needs to find an F ⊆ FJ such that |F | ≤ κ
but still F is large enough in the above sense.

To get κ ≥ non∗(Z0), one needs to find a single f ∈ FJ which is
unbounded on κ many A ∈ [ω]ω.
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Is s different from sω?

Question
Is it true that sω ≤ max{s, b}? Is s = sω

Lemma
If P is a Suslin c.c.c. forcing, then V ∩ (P(ω))ω remains promptly splitting.

Definition
Let κ, λ, and θ be cardinals. Then �(κ, λ, θ) is the following principle:

There is a family C ⊆ [κ]ℵ0 of size λ such that for any X ∈ [κ]θ, there
exists A ∈ C such that A ⊆ X.
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Lemma ([2])
If �(s, s,ℵ1) holds, then s = sω. If �(max{b, s},max{b, s}, b) holds, then
sω ≤ max{b, s}.

Question
Is cov∗(Z0) ≤ b?
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