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1 Overview of the Field

The two most pressing and fundamental issues in modern physics are the identity of dark matter (DM) and
the nature of physics at the TeV energy scale. A wealth of theories has been proposed for each, and an
enormous amount of experimental data has been collected to test those theories. Unfortunately though, when
it comes to comparing all these theories with all the relevant data, existing computational and statistical tools
in particle and astroparticle physics are woefully inadequate. Our Workshop was aimed at helping remedy
this situation.

DM constitutes 80% of the matter in the Universe and was discovered 80 years ago, but its composition
remains a mystery. With the impending activation of the 14 TeV Large Hadron Collider (LHC), discovery
of the Higgs boson and construction of high-energy astrophysics experiments like the Fermi-LAT, HESS-II,
IceCube and SuperCDMS, we now stand on the doorstep of the TeV scale. Many popular DM candidates
are intrinsically linked to the appearance of new physics beyond the Standard Model (BSM) at precisely
this scale [1]. The mass of the newly-discovered Higgs itself even compels us to move beyond the Standard
Model [2, 3]. We also know that the Standard Model (SM) is incomplete because it does not include gravity,
nor explain the excess of matter over antimatter in our Universe, nor the fact that neutrinos have mass.

Many different experimental probes of BSM physics exist: direct and indirect searches for DM, accelera-
tor searches, and neutrino experiments. Experiments such as CRESST [4], Fermi-LAT [5] and PAMELA [6]
may even already show tantalizing hints of DM. To make robust conclusions about the overall level of support
for different BSM scenarios from such varied sources, a simultaneous statistical fit of all the data, fully taking
into account all relevant uncertainties, assumptions and correlations is an absolute necessity. This global fit
approach is the one we discussed and developed at CMO-BIRS in 2015. Such holistic analyses exploit the
synergy between different experimental approaches to its maximum potential, squeezing every last statistical
drop of information possible from each experiment. Robust analysis of correlated signals, in a range of com-
plementary experiments, is essential for claiming a credible discovery of DM or new physics at the TeV scale
— and indeed, even for definitively excluding theories. This ‘win-win’ situation is a particular feature of a
global fit analysis, as even non-detections provide crucial physical insight into which theories and parameter
regions are disfavoured.



#define MODULE FlavBit
START _MODULE

#define CAPABILITY Kmunu_pimunu // Observable: BR(K->mu nu)/BR(pi->mu nu)
START_CAPABILITY
#define FUNCTION SI_Kmunu_pimunu // Name of specific functien providing the observable
START_FUNCTION(double) // Function calculates a double precision variable
DEPENDENCY (FlavBit_fill, parameters) // Needs some other functien to caluclate FlavBit_fill data
BACKEND_REQ(Kmunu_pimunu, {(libsuperiso), double, (struct parameters*)) // Needs a function from a backend
BACKEND_OPTION( (SuperIse, 3.4), (libsuperiso) ) // Backend must be SuperIso v3.4
ALLOW_MODELS (MSSM78atQ, MSSM78atMGUT) // Can be used with GUT-scale or other-scale MSSM-78, and all their children

#undef FUNCTION
#undef CAPABILITY

Figure 1: Example of the declaration of a module function in GAMBIT, showing the assignment of a capa-
bility to a module function, as well as an example dependency and an example backend requirement. Also
shown are some example conditions placed on usage of the module function, in terms of the identity of the
backend used to fulfil the backend requirement, and according to the BSM model being examined.

2 Recent Developments and Open Problems

Existing global fits [7, 8, 9, 10, 11, 12, 13, 14] cover only a very small subset of interesting particle models;
most have dealt with only the very simplest versions of supersymmetry. This is partly for computational rea-
sons, as efficiently exploring the parameter spaces of more complicated models is extremely time consuming.
Existing optimization and inference techniques are barely capable of dealing with even the models that have
been considered so far [15, 16]. Efforts to date have rarely been truly ‘global’, as the full range of possible
observables and datasets (e.g. indirect searches for dark matter) have not been included in a detailed way.
The present generation of global analysis suites have all now essentially hit a brick wall in their abilities to
deal with alternative theories, additional observables and the advanced numerical and statistical algorithms
required for producing genuinely robust results.

Future progress in understanding which BSM models are favoured by experimental data will be contin-
gent upon massively expanding the range of theories to which global fits have been applied, and the number
of experimental results included in them. The only way to do this is to reconsider the computational and
statistical tools used to carry them out, from the ground up. Our BIRS Workshop did exactly this.

3 Highlights and Progress

We discussed and carried out a large part of the development of a new, second-generation global fitting suite
for particle and astroparticle physics: GAMBIT. GAMBIT will transform the budding field of global fits,
by providing a framework in which new theories, observables, likelihoods and scanning algorithms can be
quickly, easily and consistently combined in order to completely and rigorously test essentially any proposed
extension of particle physics beyond the SM.

Below we list a few particular highlights in this development.

3.1 Physics and Scanner Modules

GAMBIT consists of a series of core components, a scanning module (ScannerBit) and 6 specific physics
modules. These are:

e DarkBit — consisting of dark matter observables and associated likelihood functions. This includes
relic density calculations, direct detection and indirect detection with gamma rays, neutrinos and the
cosmic microwave background radiation. Likelihood functions for the Fermi, CTA, HESS, IceCube,
LUX, SuperCDMS, SIMPLE, XENON100 and Plack experiments are all included.

e ColliderBit — consisting of LHC and LEP observables and associated likelihoods. This includes sparti-
cle production at the LHC and LEP, Monte Carlo simulation of such signals, and LHC Higgs bounds.

e DecayBit — consisting of routines to calculate decay rates of all particles from the SM and beyond, as
well as LHC likelihoods for Higgs decays.



e SpecBit — consisting of routines to perform renormalisation group evolution and calculate particle
masses.

e FlavBit — consisting of observables and likelihood functions from flavour physics. This includes exten-
sive rare process predictions and corresponding LHCDb likelihoods.

e PrecisionBit — consisting of precision observables and likelihoods. These include uncertainties on SM
quantities like the top and bottom quark masses and the SM gauge couplings, as well as things like
electroweak precision observables and the anomalous magnetic moment of the muon.

The physics modules each consist of a series of standalone functions. These functions are each assigned
a capability describing what they calculate, and may also optionally be given dependencies and/or back-
end requirements (Fig. 3.1). GAMBIT then connects different functions to each other according to these
capabilities, dependencies and backend requirements.

3.2 Backend system

Many excellent codes exist for performing small numbers of specialised calculations in specific BSM the-
ories. Rather than repeat the many years of work that went into these codes, we created a system whereby
any existing code can be used to perform calculations from within GAMBIT. These ‘backend’ codes must
be compiled as shared libraries, and some basic code written in GAMBIT in order to inform it of which
functions might be required from those shared libraries. The actual libraries are then dynamically loaded
at runtime, making it possible to use GAMBIT with or without the presence of any particular backend on
a user’s machine. If the required backend is present, any backend functions required by a module function
are then provided as function pointers to the module function at runtime. When the necessary backend is
missing, GAMBIT attempts to compensate by using any other compatible functions available from backends
that are present, or provides a detailed error message informing the user which backend they need to install
in order to complete a given scan.

3.3 BOSS and the new C++ ‘ladder’ pattern

To be able to dynamically load other C++ libraries which define classes necessary for the code’s use by
an external program such as GAMBIT, we needed to come up with a system for dynamically loading C++
classes at runtime. This does not exist as a possibility in the language, as the dynamic loader dlopen is
a pure C utility. To solve this problem, we created the Backend on a Stick Script (BOSS). BOSS utilises a
‘ladder’ pattern, which is a generalisation of the well-know ‘factory’ pattern for external classloading. BOSS
parses the code of the external library, creating additional interface and factory classes. It then causes every
class in the hierarchy in which a class of interest is involved to descend from its interface class. The headers
declaring the interface and factory classes are compiled into both GAMBIT and the external code, allowing
the class to be instantiated from within GAMBIT, but actually constructed from the external code. GAMBIT
also tracks which BOSSed libraries have actually been loaded or not at runtime, and only allows module
functions using classes for which a constructor is available to be activated in a scan.

Some example diagnostic output of the backend system is shown in Fig. 3.2. This indicates which back-
ends GAMBIT has been configured to work with, their library locations, status and the number of available
functions, classes and constructors that each library would provide.

3.4 Scan initialisation by graph methods

One of the problems with existing BSM global fit codes is their inability to adapt efficiently to new models, by
running only the calculations required for the specific model under investigation, and identifying gaps where
new code must be written in order to complete a particular calculation in a new model. To deal with this, we
designed GAMBIT such that module functions are placed automatically into a dependency tree at runtime,
according to their capabilities and dependencies on other module functions’ results. GAMBIT takes input
from the user about what observables or likelihoods need to be calculated for each parameter combination,
and then uses the reported capabilities and dependencies of the various module functions to work out which
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Figure 2: Example diagnostic output of the GAMBIT backend system, showing which backends are con-
figured within GAMBIT, which ones are actually detected and working, where they reside, and how many
functions, constructors and classes they each provide.



Figure 3: Example dependency trees for GAMBIT scans of the CMSSM (left) and MSSM-7 (right). Quan-
tities calculated earlier typically appear near the top of the plots (left in portrait orientation), whereas later
calculations generally appear further down the page (right in portrait orientation). Red shading indicates the
approximate region where module functions are doing model parameter translation (core and SpecBit func-
tions), blue corresponds to PrecisionBit, green to LEP likelihoods (ColliderBit), purple to DecayBit, grey to
DarkBit, orange to LHC likelihoods (ColliderBit), and pink to FlavBit.
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Figure 4: The GAMBIT model hierarchy as it currently stands. Here one can see ‘nuisance models’ (SM,
nuclear parameters), the scalar singlet DM model, and two branches of supersymmetry: the high-scale branch
(CMSSM, NUHM, etc) and the weak-scale branch (MSSM-7, -11, -15, etc). Parameter translations from
child to parent models are shown with black arrows, and translations to friend models with red arrows.

functions it needs to place into the dependency tree in order to complete this calculation. Assuming that
no closed loops are formed (which GAMBIT treats as an error), the dependency tree therefore constitutes
a directed acyclic graph. GAMBIT uses methods from graph theory to solve this graph and determine the
correct order in which to evaluate the different module functions such that every module function runs only
after all functions that fulfil its dependencies have run.

In this manner, large parts of likelihood calculation become reusable for multiple models, as the further
‘downstream’ in the dependency tree a calculation goes, the more model-independent it typically becomes.
Examples of this are shown in Fig. 3.4 for the two example supersymmetric scans that we started working
with in Oaxaca: the high-scale constrained minimal supersymmetric model (CMSSM) and the 7-parameter
weak-scale MSSM (MSSM-7). In these examples, the earlier parts of the calculations show obvious differ-
ences at the graph level, e.g. in module functions implementing model parameter translations and precision
observables, but more derived quantities — like dark matter observables — are essentially identical for the two
models.

3.5 Model hierarchy

In order to track the model-dependence of each step in every observable and likelihood calculation, GAMBIT
demands that each module function either have a series of models explicitly declared as allowed for use
with that module function (e.g. Fig. 3.1), or that a module function can be used with any model. BSM
models are declared to GAMBIT simply as a group of parameters. Models can be declared to descend
from other models, which implies that a parameter point in the child model must be able to be interpreted
— via an appropriate translation function — as a point in its parent model (and therefore by extension, in any
of its parent’s ancestors). The model definition therefore requires that any child model also comes with a
declaration of that translation function. It is also possible to declare translation functions from one model to
a ‘friend’ model, allowing translational links to be established across model families. The resulting model
hierarchy presently declared within GAMBIT can be seen in Fig. 3.5.

Together, this arrangement helps ensure that module functions written for one scan can be easily and
safely re-used automatically in scans of new models, if and only if they are appropriate for doing so. GAMBIT
makes use of this by automatically translating a model point in a given scan to the corresponding point in the
model(s) that each module function declares that it can work with. GAMBIT is not limited to scanning just
one model at a time, so joint models (e.g. a DM particle model and a model for the Galaxy’s DM halo) need
not be declared as joint models, but merely scanned over simultaneously — any module function that needs



StandardModel SLHA2: !import StandardModel SLHA2 defaults.yaml

Parameters:
MSSM25atQ: !import LesHouches.in.MSSM_1.yaml

Priors:
# none: all parameters fixed in this example.
EScanner:
use_scanner: toy_mcmc

E scanners:

= toy_mcmc:
plugin: toy mcmc
point_number: 28080
output_file: output
like: Likelihood

ObsLikes:
# Test DecayBit

- purpese: Test
capability: decay rates
type: DecayTable

# 79-string IceCube likelihood
- capability: IceCube likelihood
purpose: Likelihood
function: IC79_loglike
Rules:

- capability: MSSM_spectrum
function: get MSSMatQ_spectrum
options:

invalid_point_fatal: true

Figure 5: An extract from an example GAMBIT yaml input file, used for defining a scan. Simple text-based
input sections exist for defining the model (Parameters), priors on its parameters (Priors), the optimiser or
integrator to be employed for exploring the paramter space (Scanner), the observables and likelihoods to
include in the scan (ObsLikes) and specific conditions to be imposed on how they are calculated (Rules).

parameters from both such models need only say so in its declaration (Fig. 3.1).

3.6 Improved scanning algorithms for BSM global fits

Existing codes rely almost exclusively on nested sampling, a technique designed to calculated the Bayesian
evidence. So far, only a small amount of attention has been paid to methods designed for optimisation rather
than integration [15]. This is problematic when one is interested in calculating a profile likelihood, as that
requires an accurate characterisation of the global maximum likeihood point, as well as dense sampling
around it. We investigated and implmented a number of improved methods in Oaxaca. These included the
evolutionary algorithms known as differential evolution and genetic algorithms, as well as improved Bayesian
methods that make use of multiple interacting MCMC-type chains (polycord and the so-called t-walk). It is
apparent that the most efficient algorithm for any given scan will depend strongly on the model being scanned,
the observables included in the likelihood function, and whether one is interested in drawing conclusions with
Bayesian or frequentist inference techniques. For this reason, we plan to offer all these methods as options in
the public release of the GAMBIT code.

3.7 Simple input format

Practically driving a GAMBIT scan is done by writing a simple YAML-format text file, and using it as
input to the GAMBIT executable. An excerpt from an example GAMBIT yaml file is shown in Fig. 3.7.
The file consists of sections for defining the model(s) to be scanned over and the allowed ranges for the
model parameters (‘Parameters’), a section for specifying what priors are to be applied to them (‘Priors’), a
section for choosing which scanning algorithm to employ and what settings it should be run with (‘Scanner’),
and sections for choosing which functions actually end up in the dependency tree (ObsLikes’ and ’Rules’).
The ObsLikes section is for specifying likelihood components that should be used for driving the scanner’s
exploration of the parameter space, as well as additional observables that the user is interested in having
calculated for each parameter combination. The Rules section provides a way to define rules about which
module and backend functions should be used for resolving different dependencies and backend requirements.



This gives the user complete control over exactly what is connected to what in the dependency tree, allowing
him/her to override automatic decisions made by GAMBIT or break deadlocks that GAMBIT has no way
to solve (if e.g. many functions exist that are all equally valid ways of fulfilling a dependency). The Rules
section also allows the user to provide options to be passed to module functions. There is also an additional
section not shown, where the user can set global options relating to how GAMBIT itself (rather than individual
module functions) operates.

4 OQOutcomes of the Meeting

We made quite substantial progress on the common project of writing the GAMBIT code, defining the physics
analyses that we will do with it, and carrying them out.

1. We re-evaluated the computational and statistical techniques used to carry out global fits in particle and
astroparticle physics.

2. We completed the majority of the development of a second generation global-fitting package for par-
ticle and astroparticle physics: GAMBIT, the Global And Modular Beyond-the-Standard-Model Infer-
ence Tool.

3. We determined the statistical approaches to be supported by GAMBIT: parameter estimation by both
Bayesian posterior and profile likelihood, model comparison by Bayesian model comparison and direct
p-value computation, and systematic error treatment by inline marginalisation and profiling.

4. We identified new computational strategies that optimise the efficiency and accuracy of GAMBIT rel-
ative to first-generation codes: differential evolution, the t-walk algorithm, graph-theoretic techniques
for scan initialisation, model hierarchies and the new C++ ‘ladder pattern’ for dynamic classloading.

5. We determined a public release plan for the GAMBIT software.

6. We prioritised and discussed different physics analyses to be carried out with GAMBIT. The first of
these will be centred on supersymmetry and scalar singlet models for dark matter.

7. We began drafting a series of 9 initial papers to be submitted to the European Journal of Physics C in
the next few months, describing GAMBIT, its component physics and statistical packages, and its first
physics results. Many aspects of this report will be expanded on in those papers.
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