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Introduction

The raw problem

Let E be a finite set of elements, where each e ∈ E is associated with a
pair of real weights (ce , de), where de ≥ 0. Let S be a collection of subsets
of E .

The MINSUM problem is to find a subset X ∈ S of minimum total
weight, c(X ) + d(X ) =

∑
e∈X (ce + de).

The MINMAX problem with respect to the d weights is to find a
subset X ∈ S minimizing the sum of c(X ) and the maximum element
in {de : e ∈ X}.
The k-SUM problem with respect to the d weights is to find a subset
X ∈ S minimizing the sum of c(X ) and the sum of the k-largest
elements in the set {de : e ∈ X}.

Examples

assignment, shortest paths, matching, spanning trees, matroid, ...
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Introduction

Background

The name: Gupta and Punnen 1990.

Trace back till k-centrum problem (Slater 1978).

Kalcsics, Nickel, P. and Tamir (2002)

Ogryczak and Tamir (2003)

Bertsimas and Sim (2003)

...
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Introduction

Bottleneck problems (Tamir DAM 1982, Burkard & Rendl, ORL 1991)

Minimum deviation problems (Gupta and Punnen ORL 1988)

Partial sum problems (Gupta and Punnen ORL 1990)

Lexicographical (De la Croce et al. ORL 1999)

Balance or range criterion (max-min) (Martello et al. ORL 1984)

Multifacility location (Tamir, DAM 2001; Tamir, P., Perez, DAM 2002; Kalcsics, Nickel,
P., Networks 2003)

Robust optimization (Bertsimas and Sim, Math. Prog. 2003)

Discrete ordered median location problems (Nickel and P., Networks 2005)

Ordered path and spanning tree location in graphs (P. and Tamir, Math. Prog. 2005)

The k-Centrum Shortest Path Problem, (Garfinkel, Fernandez, Lowe TOP, 2006)

Universal Shortest Paths. (Turner and Hamacher.Report in Wirtschaftsmathematik 128,
Universitt Kaiserslautern, 2010.)

OWA Spanning trees (Galand and Spanjaard CORS 2012)

Discrete optimization with ordering (Fernández, P., Rodŕıguez Annals OR 2012)

OWA Combinatorial Optimization (Fernández, Pozo, P., DAM 2014)

On the generality of the greedy algorithm for solving matroid base problems (Turner et
al., DAM 2015)

Shifted combinatorial optimization (Kaibel, Onn, Sarrabezolles, ORL 2015) . . .
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Introduction

Our program started in 2010 ...
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Introduction

General Complexity Results

Garfinkel, Fernández and Lowe (2006) show that the class of
k-centrum shortest s − t-paths problem among the paths with
cardinality at least k is NP-hard (Reduction for k = n − 1 from
Hamiltonian path).

Our claim is that in a slightly modified setting solving the minimum
k-centrum problem on the respective combinatorial model can be
done by solving O(t) linear optimization problems where t is the
number of different cost coefficients of the elements (e.g., edges of a
graph, nodes of a graph, etc.).
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Achievements in this paper...

Problem Best known complexity Our complexity
k-centrum minimum cost network flow problem Approximate Strongly

alg., Bertsimas & Sim 2003 polynomial

k-centrum path problem on trees Unknown O(n2 log n)

Continuous tactical k-centrum subree problem on trees O(n3 + n2.5I ), P.& Tamir 2005 O(n log n)

Continuous tactical k-centrum path problem on trees Unkonwn O(n(nα(n) log n)2)

Continuous strategic k-centrum subtree problem on trees O(kn7), P.& Tamir 2005 O(n log n)
Single facility k-centrum problem:

Undirected general networks O(nm log n), Kalcsics et al. 2002 O(mn log n)
Continuous `1-norm O(n), Tamir 2003 O(n log n)

k-centrum Chinese Postman Problem Unknown Strongly polyn.

The k-centrum p-facility problem on trees O(pk2n2), Kalcsics 2011 O(pn4)

The k-centrum p-facility problem on paths Unknown O(pn3)

The discrete tactical k-centrum path problem on trees Unknown O(n3 log n)

The discrete strategic k-centrum subtree problem on trees O(kn3), P.& Tamir 2005 O(n3)

The k-centrum shortest path problem O(n2m2), Garfinkel et al. 2006 O(m2 + mn log n)

The continuous multifacility OMP λ = (a, s. . ., a, b, n−s. . ., b) O(pn9s2), Kalcsics et al 2003 O(pn8 log4 n)
The convex continuous OMP Unknown Polynomial



Introduction

OM-Combinatorial optimization, Fernandez, Pozo, P. (2014)

Let P be a problem with feasible region Q and fi (x) = dix , i = 1, . . . , p:

P : min{
p∑

i=1

c ix +

p∑
i=1

wid
σi x : x ∈ Q ⊂ S}

where dσ1x ≥ dσ2x ≥ . . . ≥ dσpx .

NP-hard for p = 2 and Q being shortest paths, matchings, spanning
trees...

w = (1, 0, . . . , 0, 0): minimize the maximum of the weights,

w = (1, (k). . ., 1, 0, . . . , 0): minimize the sum of the k-largest weights
(k-centrum)

w = (0, (k1). . ., 0, 1, . . . , 1, 0, (k2). . ., 0): minimization of the
(k1, k2)-trimmed mean of m weights,...
w = (1, α, . . . , α): minimizing the convex combination of the sum
and the maximum of the weights (w -centdian).
w = (1, 0, . . . , 0,−1): minimize the range of a set of weights.
lexicographic optimization, ...J.Puerto (IMUS) CMO 2015 9 / 35



Introduction k-sum optimization

min
x∈X

(cx + max{
∑
j∈Sk

djxj : Sk ⊆ {1, ...., n}, |Sk | = k}),

where X = {(xe)e∈E} characteristic vectors of subsets of E .

The inner maximization for a fixed
x ∈ X is (d ≥ 0):

max
n∑

j=1

djxjvj

s.t.
n∑

j=1

vj ≤ k

vj ∈ {0, 1}, ∀j = 1, . . . , n.

The problem above is:

Z ∗ = min
r≥0

Z (r), (1)

Z (r) = kr + min
(x ,p)

(cx +
n∑

j=1

pj),

subject to pj ≥ djxj − r , j = 1, ..., n,

pj ≥ 0, j = 1, ..., n,

x ∈ X .

+ constraint on the support!
J.Puerto (IMUS) CMO 2015 10 / 35
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Linear k-sum optimization
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Linear k-sum optimization

X a polytope in Rn

Let XL := {x : Ax = b, x ≥ 0} be the region X for this particular case

Theorem

1 ZXL
(r) is a piecewise linear convex function.

2 Suppose that there is a combinatorial algorithm of O(T (n,m))
complexity to compute ZXL

(r) for any given r . Then, Z ∗XL
can be

computed in O((T (n,m))2) time. Moreover, if T (n,m) = O(n) then
Z ∗XL

can be computed in O(n log n) time.
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Linear k-sum optimization

X a polytope in Rn

Let XL := {x : Ax = b, x ≥ 0} be the region X for this particular case

Theorem

1 ZXL
(r) is a piecewise linear convex function.

Use duality from the previous reformulation!

2 Suppose that there is a combinatorial algorithm of O(T (n,m))
complexity to compute ZXL

(r) for any given r . Then, Z ∗XL
can be

computed in O((T (n,m))2) time. Moreover, if T (n,m) = O(n) then
Z ∗XL

can be computed in O(n log n) time.
Use Megiddo’s parametric approach on ZXL

(r).!
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Linear k-sum optimization Consequences
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Linear k-sum optimization Consequences

1 Robust minimum cost network flow problem in Bertismas and Sim
(2003). (Only approximately solved!)

min
x∈X

(cx + max{
∑
j∈Sk

djxj : Sk ⊆ {1, ...., n}, |Sk | = k}),

Our approach gives an exact algorithm with strongly polynomial
complexity.
Indeed, the evaluation of ZXL

(r) can be done solving a flow problem
with piecewise linear costs: T (n,m) = O((m log n)(m + n log n)).

2 The k-centrum path problem on trees.
Solved in O(n2 log n) time. Uses the reformulation

min
n−1∑
k=1

wk

∑
j :ej∈P[vk ,v0)

`j(1− xj)

s.t.
∑

k∈ES(ei )

xk ≤ xi , ∀i = 1, . . . , n − 1

0 ≤ xj ≤ 1, ∀j = 1, . . . , n − 1.

Solves also discrete version: property of k-centrum path
1 Robust minimum cost network flow problem in Bertismas and Sim

(2003). (Only approximately solved!)
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Linear k-sum optimization Consequences

The continuous tactical k-centrum subtree/path problem
on trees
Consists of:

minY⊆A(T )

n∑
i=1

wid(vi ,Y )

s.t. L(Y ) ≤ L.

Best complexity bound P. and Tamir (2005): O(n3 + n2.5I )) where I is the
total number of bits needed to represent the input.

Theorem

1 The continuous tactical k-centrum subtree problem on trees can be
solved in O(n log n) time.

2 The continuous tactical k-centrum path problem on trees can be
solved in O(n(nα(n) log n)2) time, where α(n) is the inverse of the
Ackermann function.)

J.Puerto (IMUS) CMO 2015 13 / 35



Linear k-sum optimization Consequences

The continuous tactical k-centrum subtree/path problem
on trees
Consists of:

minY⊆A(T )

n∑
i=1

wid(vi ,Y )

s.t. L(Y ) ≤ L.

Best complexity bound P. and Tamir (2005): O(n3 + n2.5I )) where I is the
total number of bits needed to represent the input.

Theorem

1 The continuous tactical k-centrum subtree problem on trees can be
solved in O(n log n) time.

2 The continuous tactical k-centrum path problem on trees can be
solved in O(n(nα(n) log n)2) time, where α(n) is the inverse of the
Ackermann function.)

J.Puerto (IMUS) CMO 2015 13 / 35



Linear k-sum optimization Consequences

The continuous strategic k-centrum subtree problem on
trees

Consists of:

minY⊆A(T )

n∑
i=1

wid(vi ,Y ) + δL(Y ), with δ ∈ R.

Best complexity bound is O(kn7).

Theorem

The continuous strategic k-centrum subtree problem on trees is solvable in
O(n log n) time.

J.Puerto (IMUS) CMO 2015 14 / 35



Linear k-sum optimization Consequences

The single facility k-centrum problem

Theorem

The following complexity bounds can be obtained for the single facility
k-centrum problem.

1 On undirected general networks the k-centrum is solvable in
O(mn log n) time.

2 On a continuous d-dimension (d fixed) `1-norm space the k-centrum
problem is solvable in O(n log n) time.

Complexity bounds similar to those in Kalcsics, Nickel, P. and Tamir
(2002) with the general methodology!
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k-sum integer optimization

k-centrum integer optimization

Let XI = {x ∈ Rn : Ax = b, xj ∈ {0, 1, 2, ...}, j = 1, ..., n} be the region X
for this case

Some negative results

Unlike the linear case, even for the binary case, the function ZXI
(r) is not

generally convex when k = 1, and is not generally unimodal when k = 3.

Positive results

If all the integer variables are bounded by M = M(n,m), where M(n,m) is
a polynomial in m, n, the integer model is polynomially solvable.
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k-sum integer optimization

ZXI
(r) = kr + min

x∈XI

(
cx +

n∑
j=1

max{djxj − r , 0}
)
.

Decompose [0,M max
j=1,...,n

{dj}] into consecutive intervals induced by the set

of points {pdj}, p = 0, 1, ...,M, and j = 1, ..., n.
Let I = [pds , qdt ] with p, q ∈ {0, . . . ,M} and s, t(s ≤ t) ∈ {1, . . . , n}.
For each j = 1, ..., n, let hj ∈ Z+ such I ⊆ [hjdj , (hj + 1)dj ].
Then, over the nonnegative integers for each r ∈ I,

max{djxj − r , 0} =

{
0 if xj ≤ hj
djxj − r if xj ≥ hj + 1

The function ZXI
(r) = kr + min

x∈XI

(
cx +

n∑
j=1

xj>hj

(djxj − r)
)

is concave for r ∈ I.
Hence, we may conclude that without loss of generality r∗ ∈ {pds , qdt}.

J.Puerto (IMUS) CMO 2015 17 / 35
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k-sum integer optimization

Theorem

Consider the k-sum integer optimization problem Z ∗XI
, and assume that

the matrix A is totally unimodular. Suppose further that all integer
variables are bounded by some polynomial M(n,m). Then, Z ∗XI

can be
computed in strongly polynomial time.

Proof. Z ∗XI
can be computed by evaluating ZXI

(r) for O(nM(n,m)) values
of the parameter r . Specifically, for a fixed value of r , we need to solve the
following problem:

min cx +
n∑

j=1

max{djxj − r , 0},

s.t. x ∈ XI .
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k-sum integer optimization

The above can be solved in strongly polynomial time by substituting
xj = uj + vj + zj , j = 1, . . . , n, and solving the respective integer program,
defined by a totally unimodular system,

min c(u + v + z) +
n∑

j=1

(dj(dr/dje − r/dj)vj + djzj),

s.t. A(u + v + z) = b,

uj ∈ {0, 1, ..., br/djc}, j = 1, ..., n,

vj ∈ {0, 1}, j = 1, ..., n,

zj ∈ {0, 1, 2, ...}, j = 1, ..., n.

Since A is totally unimodular this problem is an LP with {0,±1}-matrix
and therefore, by Tardos (1985), it is solvable by a strongly polynomial
algorithm.

Applications

The k-sum Chinese Postman Problem defined on undirected connected
graphs and on strongly connected directed graphs is solvable in strongly
polynomial time.
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k-sum combinatorial optimization problem

In this section X = {0, 1}n.

Therefore, given a finite set of elements E , where each e ∈ E is associated
with a pair of real weights (ce , de) and XC be a collection of subsets of E ;
MINSUM problem is to find a subset x ∈ XC of minimum total weight,
c(x) + d(x) =

∑
e∈x(ce + de).

k-sum optimization problem with respect to the d weights

Find a subset S ∈ S minimizing the sum of c(S) and the sum of the
k-largest elements in the set {de : e ∈ S}.

J.Puerto (IMUS) CMO 2015 20 / 35



k-sum combinatorial optimization problem

Theorem

Punnen & Aneja (1996) Suppose that for each real r the MINSUM
problem with respect to the weights (ce ,max(0, de − r)), e ∈ E, is solvable
in T (m) time, where m = |E |. Then, the k-centrum problem with respect
to the d weights can be solved in O(m′T (m)) time, where m′ is the
number of distinct elements in the set {de : e ∈ E}.

Remark

The supposition that de ≥ 0, for each e ∈ E, which is made in the papers
by Punnen & Aneja is used extensively in the proofs. Based on this
nonnegativity supposition, they can relax the formulation and introduce
the constraint that at most k elements are selected, i.e.,

∑
e∈E ue ≤ k.
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k-sum combinatorial optimization problem

From the proof of the above result we note that it actually holds also for
some specific linear functions as stated in the next theorem.

Consider the case of arbitrary {de}. For the general case we need to
impose the constraint

∑
e∈E ue = k . We will then obtain that the

parameter θ is unrestricted in sign and we will get the following result for
general {de}:

Theorem

Suppose that for any real r the MINSUM problem with respect to the
weights (ce ,max(0, de − r)), e ∈ E, is solvable in T (m) time, where
m = |E |. Then, the k-centrum problem with respect to the d weights can
be solved in O(m′T (m) + T ′(m)) time, where m′ is the number of distinct
elements in the set {de : e ∈ E}, and T ′(m) is the time to solve the
original MINISUM problem with respect to the weights (ce , de), e ∈ E.
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k-sum combinatorial optimization problem Consequences

The k-centrum p-median problem on trees and paths
Let us denote by Xmed(p) the lattice points defined by p-median polytope.
The sum version of above problem is solvable in polynomial time provided
that cij are distances induced by the metric of shortest paths on a tree
Hassin and Tamir (2002). (It is NP-hard for a general linear objective
function.)
k-sum: requires to solve O(G ) problems of the form:

min
n∑

i=1

n∑
j=1

max{cij − c(`), 0}xij

s.t. x ∈ Xmed(p)

The algorithm in Tamir (1996) also applies to the above problem.
Therefore, by Theorem, the k-centrum p-facility on trees is solvable in
O(pn4). This improves upon the O(min(k , p)kpn5) bound in Tamir (2000)
and equals the complexity reported in Kalcsics (2011), although in this
case using ad hoc arguments.
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k-sum combinatorial optimization problem Consequences

1 The discrete tactical k-centrum path problem on trees
The case of locating a discrete median path is solvable in O(n log n)
time, see (Alstrup et al 1997). Following our approach, the k-centrum
version of this model can be solve in O(n3 log n) time.

2 The best complexity for the k-centrum version of locating a subtree
using the strategic model is O(kn3) (P. & Tamir 2005). Using
Theorem above we improved upon the complexity above to O(n3)
time.

3 The k-centrum shortest path problem can be solved in O(n2m2) time
provided that any simple s− t-path there are at least k arcs, otherwise
this problem is NP-hard, see Garfinkel, Fernández, Lowe (2006).
We improve the bound to O(m2 + mn log n) time.

4 The k-centrum minimum weight matching problem is also solvable in
polynomial time applying the above theorem.
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Extension to the ordered median function

A natural question

Can Theorem above be extended to the convex ordered median
optimization problem?

min
x∈X

cx + max
σ∈P(1,...,n)


n∑

j=1

λjdσj xσj : dσ1xσ1 ≥ . . . ≥ dσnxσn


 .

Some partial answers

Bottleneck problems (Tamir 1982, Burkard & Rendl, ORL 1991)

Lexicographical (De la Croce et al. ORL 1999)

Balance or range criterion (max-min) (Martello et al. ORL 1984)

...
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Extension to the ordered median function

The formulation of the problem is:

minx∈X

cx + max
σ∈P(1,...,n)


n∑

j=1

λjdσj xσj : dσ1xσ1 ≥ . . . ≥ dσnxσn


 .

Or equivalently, using λn+1 := 0,

min cx +
n∑

k=1

(λk − λk+1)(ktk +
n∑

j=1

pjk)

s.t. pjk ≥ djxj − rk , j , k = 1, . . . , n

pjk ≥ 0, j , k = 1, . . . , n

x ∈ X .

Again, this problem can be reformulated as:

min
x∈X ,(r1,...,rk )∈Rk

cx +
n∑

k=1

(λk − λk+1)(ktk +
n∑

j=1

max{0, djxj − rk})
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Extension to the ordered median function

Theorem

If the number of different values of the vector λ = (λ1, . . . , λn) is
constant, let say k0, we have that

1 The discrete convex ordered median problem can be solved in
O(nk0Td(n,m)) time, where Td(n,m) is the combinatorial complexity
of solving the sum problem on the discrete set X . (Solving nk0 sum
problems on X .)

2 The continuous convex ordered median problem can be solved in
O(k3

0Tc(n,m) log2k0 n) time, where Tc(n,m) is the combinatorial
complexity of solving the sum problem on the polytope X . (Using the
multiparametric approach Cohen and Megiddo (1993).)

Applications

1 Multifacility Ordered Median Problem on Trees

2 The centdian subtree on tree networks
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Extension to the ordered median function

Non constant number of λ values

Theorem

The continuous convex ordered median problem with monotone λ on the
polytope X can be solved in polynomial time.

Proof.
We observe that

max
σ ∈ Perm(1, . . . , n)

dσ1
xσ1
≥ . . . ≥ dσn xσn

n∑
j=1

λjdσj xσj = max{
n∑

i=1

n∑
j=1

λjdixipij :
n∑

i=1

pij = 1, ∀j ;
n∑

j=1

pij = 1, ∀i}.

Next, dualizing the second problem one has the Problem is equivalent to:

min c ′x +
∑n

i=1 ui +
∑n

j=1 vj
s.t. ui + vj ≥ λjdixi ∀ i , j

x ∈ X .

The above is a linear programming problem that can be solved in
polynomial time and thus the result follows.
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Extension to the ordered median function Minimizing the middle range problem

Minimizing the middle range problem (k3 > k1)
Suppose that d1 ≥ d2 ≥ . . . ≥ dm are the values of the coefficients of the
ground set E .

Our optimization problem is defined by:

min Sx
k3
− Sx

k1

s.t. x ∈ X

(1, k1. . ., 1, k3−k1. . . , 1, 0, . . . , 0)

(1, k1. . ., 1, 0, . . . , 0)

where Sx
k is the sum of the largest k and is given by

max
∑m

j=1 vjdj
s.t.

∑m
j=1 vj = k ,

vj ≤ xj , ∀j
0 ≤ vj ≤ 1, ∀j

⇔
min kt +

∑m
i=1 yj

s.t. yj + t ≥ djxj , ∀j
yj ≥ 0.
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Extension to the ordered median function Minimizing the middle range problem

Joining both:

min
x∈X

min
yj+t≥djxj ;yj ,xj≥0∀j

k3t +
n∑

i=1

yj − max∑n
j=1 vj = k1, 0 ≤ vj ≤ xj ≤ 1

vj ∈ {0, 1}

n∑
j=1

vjdj

It can be rewritten as:

min k3t +
n∑

i=1

yj −
n∑

j=1

vjdj

s.t. x ∈ X

yj ≥ djxj − t, ∀j = 1, . . . , n
n∑

j=1

vj = k1

vj ≤ xj , ∀j = 1, . . . , n

yj , vj ≥ 0, vj ∈ {0, 1} ∀j = 1, . . . , n.
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Extension to the ordered median function Minimizing the middle range problem

Now, for any t ∈ [d`, d`−1] we have an equivalent formulation of the above
problem:

min k3d` +
`−1∑
j=1

(dj − d`)xj −
n∑

j=1

vjdj (2)

s.t. x ∈ X
n∑

j=1

vj = k1

0 ≤ vj ≤ xj , vj ∈ {0, 1} j = 1, . . . , n

Next, for each d` consider the
(position of d`

k1

)
different forms of fixing the

v -variables and for each one of them we solve the resulting linear problem
(2) with those variables already fixed. Therefore the overall complexity
seems to be O(G k1) where G is the number of distinct values for dj .
Clearly, this approach is in general non polynomial. If the number k1 of
trimmed components is fixed then is polynomial.
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Problems on matroids

Matroids and non-negative lambda weights

For a matroidal system any ordered median function with non negative
λ-weights is optimized by the base that optimizes the minisum problem.

We can solve any ordered median problem on matroidal systems with a
constant number of coefficient values using separators and matroid
intersection algorithms.
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Problems on matroids

Minimizing the mid-range problem

We solve the problem (2) for each d` as follow:

For each e ∈ E , we associate two costs with e, de − d` and −d`. Sort in
nondecreasing order the list {de − d`, e ∈ E} ∪ {−d` : e ∈ E}. For solving
the problem above, we start choosing edges associated with the costs from
the beginning of this list following these rules:

1 The chosen element together with the previous ones is an
independent set.

2 For a given element e, it can be chosen either de − d` or −d`.
3 After choosing k1 elements with associated cost −d`, delete from the

list the remaining costs of the type −d`.
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Problems on matroids

Minimizing the difference between the largest k and the
smallest t elements.

Using separators

We solve O(m2) subproblems for each pair i < j . Consider the three
subsets:
E1 = {e1, . . . , ei}, E2 = {ei+1, . . . , ei+j} and E3 = {ei+j+1, . . . , em}.

With each ek ∈ E1 associate a coefficient dk , with each ek ∈ E2 associate
a coefficient 0, and with each ek ∈ E3 associate a coefficient −dk .

Using matroid intersection find an optimal base of cardinality n̄ w.r.t.
these weights which contains at most k element from E1, at most t
elements from E3, and at most n̄ − k − t from E2.
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Problems on matroids

Thanks for your attention!
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