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Problem Statement

v

Knapsack with capacity b > 0 and item set N = {1,...,n}.
Each item ¢ has

1. deterministic value ¢;,

2. independent random size A; > 0 with known distribution.

v

When attempting to insert ¢:
If 2 fits collect ¢;, update capacity.

Else process ends.

v

Policy may depend on remaining items and remaining
capacity.
» Goal is to maximize expected value.

v

Problem is at least NP-hard, some versions PSPACE-hard
(Vondrak, 05).
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Brief Literature Review

» Derman/Lieberman/Ross (78): Sizes are exponential r.v.’s.
» Greedy policy w.r.t. ¢;/E[A;] is optimal.

» Dean/Goemans/Vondrék (04,08): Two LP bounds with
polynomially many variables.
» Linear knapsack, polymatroid, both within constant gap.

» Greedy approximate policies.

» Gupta/Krishnaswamy/Molinaro/Ravi (11), Ma (14): Integer
sizes, LP bounds of pseudo-polynomial size.

» Randomized policies based on LP optimal solutions.

» Extensions to models with correlated random item values,
preemption, multi-armed bandits.

> Other work, e.g. Bhalgat/Goel/Kanna (11), Li/Yuan (13),
Bansal/Nagarajan (14).
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Linear Knapsack Bound
Dean/Goemans/Vondrak (08)

» Use x;, probability policy attempts to insert 4:
m:?x Zcil‘i
ieN
st. Y wB[A]<b;  0<z <1, i€l
ieN



Linear Knapsack Bound
Dean/Goemans/Vondrak (08)

» Use x;, probability policy attempts to insert 4:

max Z ciziP(A; < D)
* iEN
st. Y wB[A]<b;  0<z <1, i€N.
iEN



Linear Knapsack Bound
Dean/Goemans/Vondrak (08)

» Use x;, probability policy attempts to insert i:

max Zcixi]P’(Ai S b)
“ieN
s.t. ZajiE[min{b, A} < b 0<z; <1, i€N.
iEN
» “Mean truncated size” E[min{b, A;}]: A; above b is irrelevant
(insertion will fail).
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Linear Knapsack Bound
Dean/Goemans/Vondrak (08)

» Use x;, probability policy attempts to insert i:

max Z cimiIP’(Ai < b)
“ ien
s.t. in]E[min{b, Ai}] < 2b; 0<z;<1, i€N.
ieN
» “Mean truncated size” E[min{b, A;}]: A; above b is irrelevant
(insertion will fail).

» Bound intuition: In worst case, policy exactly fills knapsack,
then attempts to insert very large item.

» Worst-case gap is 32/7.

» Polymatroid bound is extension of same idea.
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Dynamic Programming Formulation

State: remaining items, remaining capacity
(M,s) for M C N, s €0,b].

Actions: attempt to insert ¢ € M.

» Bellman recursion is

v (s) = maxP(4; < s)(e; + Efvpy (s — Ai)[Ai < s)),
1€

vg(s) = 0.

» In doubly infinite LP form:

min vy (b)

s.t. vpui(s) > P(A; < s)(e + Elopr(s — 4)|Ai < s]),

ieN, MCN\i, sel0,b]
vp s [0,0) = Ry, M CN.
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Value Function Approximation

» Any feasible solution to LP yields upper bound.

» Use affine approximation
v (s) = gs+ro+ Z T,
ieM
where
¢ is marginal value of capacity,
r; is item 4's “inherent” value,

1o is value of process continuing ( “staying alive").
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Value Function Approximation

Lemma
The best bound given by v(s) = qs + Y ;e i s the
semi-infinite LP

min qb—+ 19+ g T
q,r>0 ‘
iEN

s.t. gE[min{s, A;}] + roP(A4; > s) +1r; > ¢P(A; < s),
i€ N, se0,b].
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Value Function Approximation

Lemma
The best bound given by vy(s) = qs + Y icaroTi IS the
semi-infinite LP

min qb—+ 19+ g T
q,r=>0 “
iEN

s.t. ¢E[min{s, A;}] + roP(4; > s) +1r; > ¢;P(A; < s),
i€ N, se0,b].

Proof sketch.

vamui(s) — P(A; < s)Efopr(s — Ai)|Ai < s

qs —P(A; < s)E[g(s — A;)|A4; < 5] (focusing on q)
= ¢sP(A4; > s) + qP(A; < s)E[A4;|A; < s] = ¢gE[min{s, A;}]

Q
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Multiple-Choice Linear Knapsack Bound

Theorem
The LP'’s finite-support dual is solvable and has zero duality gap:

max Z Z cixi sP(A; < s)

i€N s€[0,b]

s.t. Z Z z; sE[min{s, A;}] < b, (exp. frac. size under b)

1€EN s€[0,b]

Z Z zi sP(A; > s) <1 (one exp. failure; cf. Ma 14)
1€N s€(0,b]

Z Tis <1 (insert i once)
s€[0,0]

x has finite support.

» x;s: probability policy attempts to insert ¢ when

§ capacity remains. Ceguan



Multiple-Choice Linear Knapsack Bound

Pricing problem

mln{qb—|— Z r; : gqE[min{s, A;}] + roP(A; > s) +r; > P(A; < s),Vie N,s €0, b]}

r>
B 1€ NUO

» Pricing/separation: Given ¢, r, for each i solve

Slgét}) {¢E[min{s, 4;}] — (¢; +10)P(4; < 5)}.

Mean truncated size is concave in s. If CDF is piecewise
convex, check only endpoints of convex intervals.

» Applies to discrete, uniform distributions

» Polynomially many variables.

» Other distributions (e.g. exponential, conditional normal) have
closed-form solution.

» Check at most countably many points in general.
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Multiple-Choice Linear Knapsack Bound

Pricing problem: Exponential distribution example

Sren[(l)n {qE[min{s, 4;}] — (¢; +r0)P(4; < 5)}

» Suppose A; ~ exp(A):

P(A; <s)=1—e
E[min{s, A;}] = P(A; < s)/A.

Thus
gE[min{s, A;}] — (¢; + r0)P(A; < s)
= (g/A— ¢ —1o)P(4; < s)
minimized at s € {0, b}. Geargia



Multiple-Choice Linear Knapsack Bound
» So if sizes are exponentially distributed, the bound is

max Z cixiplP(A; < b)
1EN
s.t. Z z; pE[min{b, 4;}] < b
1EN
0<ap<1, i€N.

This is DGV linear knapsack with capacity cut in half.

> Applies to other size distributions, e.g. conditional normal,
uniform, geometric.

Theorem
The MCLK bound dominates the DGV knapsack bound on any
instance.

» Conjecture: MCLK also dominates DGV polymatroid. ceorsia
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Computational Experiments

» Generated instances from deterministic knapsack instances.

» 8 small, n € [5,24]: people.sc.fsu.edu/~jburkardt
» 10 large, n = 100: www.diku.dk/~pisinger/codes.html
(uncorrelated)

» For a deterministic size a;, generated:
Exponential (1/a;)
Uniform [0, 2a;] and [a;/2,3a;/2]
Conditional normal (a;,a;/3)

» Bound comparison: average of deterministic knapsack over
400 simulations (“perfect information relaxation™).

> Not reporting: DGV polymatroid bound not competitive.

» Benchmark: Adaptive greedy policy w.r.t. % (basic

version studied in DGV).
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Computational Experiments

Geometric gap mean

Small Large
PIR | MCLK || PIR | MCLK
Exponential* | 48% | 5% 22% | 0.5%

Uniform 1 | 41% | 12% || 12% 1%
Uniform 2 | 26% | 12% 4% | 0.6%
Normal 30% | 12% 5% 0.5%

* Greedy benchmark is optimal (Derman/Lieberman/Ross 78).

» MCLK gives consistently better bound across instance types.
Tighter for most small, all large instances.

» All gaps improve as number of items increases.
» See an averaging effect as n grows.

» Especially stark advantage for exponential instances.
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Extensions

» Correlated value: Much of analysis applies, but must use
conditional value E[C;|4; < s] (GKMR 11, Ma 14).

> If items have integer support: Use non-parametric
pseudo-polynomial approximation

S
v (s) =~ Z r; + Zwo.
o=0

ieM

> Yields Ma bound (14).

» Can use to show Ma bound dominates GKMR bound
(strengthen Ma's result).

» Policies: MCLK and pseudo-polynomial bounds can be used
for policy design.
» E.g. from value function approximation, “rounding”, ad hoc
methods.
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Conclusions

» MCLK bound has theoretical guarantees and good empirical
performance on various item size distributions.

» Gets better as number of items increases. Asymptotically
optimal? (We have a rough proof.)

» Value function approximation is systematic way to generate
bounds for dynamic problems.

» Big picture questions:
1. Exact algorithms: cutting planes, branching?

2. Extend to general “stochastic and dynamic” IP (Vondrak 05).

atoriello@isye.gatech.edu
www.isye.gatech.edu/~atoriello3
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