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Problem Statement

I Knapsack with capacity b > 0 and item set N = {1, . . . , n}.
Each item i has

1. deterministic value ci,

2. independent random size Ai ≥ 0 with known distribution.

I When attempting to insert i:

If i fits collect ci, update capacity.

Else process ends.

I Policy may depend on remaining items and remaining
capacity.

I Goal is to maximize expected value.

I Problem is at least NP-hard, some versions PSPACE-hard
(Vondrák, 05).
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Brief Literature Review

I Derman/Lieberman/Ross (78): Sizes are exponential r.v.’s.
I Greedy policy w.r.t. ci/E[Ai] is optimal.

I Dean/Goemans/Vondrák (04,08): Two LP bounds with
polynomially many variables.

I Linear knapsack, polymatroid, both within constant gap.

I Greedy approximate policies.

I Gupta/Krishnaswamy/Molinaro/Ravi (11), Ma (14): Integer
sizes, LP bounds of pseudo-polynomial size.

I Randomized policies based on LP optimal solutions.

I Extensions to models with correlated random item values,
preemption, multi-armed bandits.

I Other work, e.g. Bhalgat/Goel/Kanna (11), Li/Yuan (13),
Bansal/Nagarajan (14).



Linear Knapsack Bound
Dean/Goemans/Vondrák (08)

I Use xi, probability policy attempts to insert i:

max
x

∑
i∈N

cixi

s.t.
∑
i∈N

xiE[Ai] ≤ b; 0 ≤ xi ≤ 1, i ∈ N.

I “Mean truncated size” E[min{b, Ai}]: Ai above b is irrelevant
(insertion will fail).

I Bound intuition: In worst case, policy exactly fills knapsack,
then attempts to insert very large item.

I Worst-case gap is 32/7.

I Polymatroid bound is extension of same idea.
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I Use xi, probability policy attempts to insert i:

max
x

∑
i∈N
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s.t.
∑
i∈N

xiE[min{b, Ai}] ≤ 2b; 0 ≤ xi ≤ 1, i ∈ N.

I “Mean truncated size” E[min{b, Ai}]: Ai above b is irrelevant
(insertion will fail).

I Bound intuition: In worst case, policy exactly fills knapsack,
then attempts to insert very large item.

I Worst-case gap is 32/7.

I Polymatroid bound is extension of same idea.



Dynamic Programming Formulation

State: remaining items, remaining capacity
(M, s) for M ⊆ N , s ∈ [0, b].

Actions: attempt to insert i ∈M .

I Bellman recursion is

v∗M (s) = max
i∈M

P(Ai ≤ s)(ci + E[v∗M\i(s−Ai)|Ai ≤ s]),

v∗∅(s) = 0.

I In doubly infinite LP form:

min
v

vN (b)

s.t. vM∪i(s) ≥ P(Ai ≤ s)(ci + E[vM (s−Ai)|Ai ≤ s]),
i ∈ N, M ⊆ N \ i, s ∈ [0, b]

vM : [0, b]→ R+, M ⊆ N.



Value Function Approximation

I Any feasible solution to LP yields upper bound.

I Use affine approximation

vM (s) ≈ qs+ r0 +
∑
i∈M

ri,

where

q is marginal value of capacity,

ri is item i’s “inherent” value,

r0 is value of process continuing (“staying alive”).



Value Function Approximation

Lemma
The best bound given by vM (s) ≈ qs+

∑
i∈M∪0 ri is the

semi-infinite LP

min
q,r≥0

qb+ r0 +
∑
i∈N

ri

s.t. qE[min{s,Ai}] + r0P(Ai > s) + ri ≥ ciP(Ai ≤ s),
i ∈ N, s ∈ [0, b].

Proof sketch.

vM∪i(s)− P(Ai ≤ s)E[vM (s−Ai)|Ai ≤ s]
≈ qs− P(Ai ≤ s)E[q(s−Ai)|Ai ≤ s] (focusing on q)

= qsP(Ai > s) + qP(Ai ≤ s)E[Ai|Ai ≤ s] = qE[min{s,Ai}]
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Multiple-Choice Linear Knapsack Bound

Theorem
The LP’s finite-support dual is solvable and has zero duality gap:

max
x≥0

∑
i∈N

∑
s∈[0,b]

cixi,sP(Ai ≤ s)

s.t.
∑
i∈N

∑
s∈[0,b]

xi,sE[min{s,Ai}] ≤ b, (exp. frac. size under b)

∑
i∈N

∑
s∈[0,b]

xi,sP(Ai > s) ≤ 1 (one exp. failure; cf. Ma 14)

∑
s∈[0,b]

xi,s ≤ 1 (insert i once)

x has finite support.

I xi,s: probability policy attempts to insert i when
s capacity remains.



Multiple-Choice Linear Knapsack Bound
Pricing problem

min
q,r≥0

{
qb+

∑
i∈N∪0

ri : qE[min{s,Ai}] + r0P(Ai > s) + ri ≥ ciP(Ai ≤ s),∀ i ∈ N, s ∈ [0, b]

}

I Pricing/separation: Given q, r, for each i solve

min
s∈[0,b]

{
qE[min{s,Ai}]− (ci + r0)P(Ai ≤ s)

}
.

Mean truncated size is concave in s. If CDF is piecewise
convex, check only endpoints of convex intervals.

I Applies to discrete, uniform distributions

I Polynomially many variables.

I Other distributions (e.g. exponential, conditional normal) have
closed-form solution.

I Check at most countably many points in general.



Multiple-Choice Linear Knapsack Bound
Pricing problem: Exponential distribution example

min
s∈[0,b]

{
qE[min{s,Ai}]− (ci + r0)P(Ai ≤ s)

}
I Suppose Ai ∼ exp(λ):

P(Ai ≤ s) = 1− e−λs

E[min{s,Ai}] = P(Ai ≤ s)/λ.

Thus

qE[min{s,Ai}]− (ci + r0)P(Ai ≤ s)
= (q/λ− ci − r0)P(Ai ≤ s)

minimized at s ∈ {0, b}.



Multiple-Choice Linear Knapsack Bound

I So if sizes are exponentially distributed, the bound is

max
x

∑
i∈N

cixi,bP(Ai ≤ b)

s.t.
∑
i∈N

xi,bE[min{b, Ai}] ≤ b

0 ≤ xi,b ≤ 1, i ∈ N.

This is DGV linear knapsack with capacity cut in half.
I Applies to other size distributions, e.g. conditional normal,

uniform, geometric.

Theorem
The MCLK bound dominates the DGV knapsack bound on any
instance.

I Conjecture: MCLK also dominates DGV polymatroid.



Computational Experiments

I Generated instances from deterministic knapsack instances.
I 8 small, n ∈ [5, 24]: people.sc.fsu.edu/∼jburkardt
I 10 large, n = 100: www.diku.dk/∼pisinger/codes.html

(uncorrelated)

I For a deterministic size ai, generated:

Exponential (1/ai)
Uniform [0, 2ai] and [ai/2, 3ai/2]

Conditional normal (ai, ai/3)

I Bound comparison: average of deterministic knapsack over
400 simulations (“perfect information relaxation”).

I Not reporting: DGV polymatroid bound not competitive.

I Benchmark: Adaptive greedy policy w.r.t. ciP(Ai≤s)
E[min{s,Ai}] (basic

version studied in DGV).



Computational Experiments
Geometric gap mean

Small Large

PIR MCLK PIR MCLK

Exponential∗ 48% 5% 22% 0.5%
Uniform 1 41% 12% 12% 1%
Uniform 2 26% 12% 4% 0.6%

Normal 30% 12% 5% 0.5%

∗ Greedy benchmark is optimal (Derman/Lieberman/Ross 78).

I MCLK gives consistently better bound across instance types.
Tighter for most small, all large instances.

I All gaps improve as number of items increases.
I See an averaging effect as n grows.

I Especially stark advantage for exponential instances.



Extensions

I Correlated value: Much of analysis applies, but must use
conditional value E[Ci|Ai ≤ s] (GKMR 11, Ma 14).

I If items have integer support: Use non-parametric
pseudo-polynomial approximation

vM (s) ≈
∑
i∈M

ri +

s∑
σ=0

wσ.

I Yields Ma bound (14).

I Can use to show Ma bound dominates GKMR bound
(strengthen Ma’s result).

I Policies: MCLK and pseudo-polynomial bounds can be used
for policy design.

I E.g. from value function approximation, “rounding”, ad hoc
methods.



Conclusions

I MCLK bound has theoretical guarantees and good empirical
performance on various item size distributions.

I Gets better as number of items increases. Asymptotically
optimal? (We have a rough proof.)

I Value function approximation is systematic way to generate
bounds for dynamic problems.

I Big picture questions:

1. Exact algorithms: cutting planes, branching?

2. Extend to general “stochastic and dynamic” IP (Vondrák 05).
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